
CSC A48 – Introduction to Computer Science - UTSC

CSC A48 – Unit 6 – Designing and Building Good Software

1.- What this Unit is about.

So far, we have been thinking of problem solving in terms of the concepts, ideas, and algorithms
we may need to use to get a particular task done. We should also spend some time considering the
related issue of how to organize the software we're writing to solve the problem in a way that makes
our solution as useful to others as possible.

In this Unit, we'll discuss the general principles that guide the organization of larger pieces of
software (as opposed to small, self-contained programs such as the ones we've been implementing
through the term). The goal is to understand how and why we need to think very carefully about the
way we design the software we're writing, and learn about principles that have been developed to help
us better organize, maintain, and expand on a given software solution.

The principles you learn here, will be the foundation on which you will build a full
understanding of the software design process, a topic you will explore in depth in the Software Design
(B07) course, and then refine and apply in the two software engineering courses (C01 and D01).

2.- Software as a collection of modules.

Up to this point, we have been using code that was written for us by someone else. All the
functions in standard C libraries that you have used to implement your exercise solutions and your
assignments had to be designed, developed, and tested well before they shipped with your compiler so
you could easily have 'printf()' or 'qsort()' at your disposal, for example.

The question you should be asking yourself is: what would software look like if we didn't have
any libraries for commonly used functions? If you think about it for a moment, you'll realize that the
answer to that is not very nice:

Figure 1: Cartoon courtesy of Randall Munroe, XKCD, https://xkcd.com/1838/

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 1

CSC A48 – Introduction to Computer Science - UTSC

Without some form of organization, our software would be a big pile of code, with all kinds of
functionality mixed in - there would be functions for carrying out the algorithms we need, but also all
kinds of un-related things, like printing to the terminal, reading user input, managing files,
implementing basic math, etc.

Anyone trying to understand our software, or worse, someone with the task of finding and
fixing any existing bugs in our software would have a very difficult time dealing with our code.

So, we know that instead of writing large piles of code that does every kind of thing, we should
instead figure out how to break down our application into a set of separate components each of
which can be implemented as a module with its own code, and which can be understood, tested, and
debugged without having to sift through the rest of the application's components (or with only minimal
need to do so).

In effect, what we want is to build a large library of modules that we can reuse. For example -
we may want to write a module that sets up the adjacency matrix for a graph, and allows us to do path-
finding on it using DFS. But we want to write this module in such a way that we can use it in any
application that needs to do path finding in a graph.

This is not a trivial consideration - your software needs to be designed just right, so that it can
work on a graph for any data you may want to explore, so that it can easily be called from software not
written by you, and so that it can be tested, debugged, and possibly expanded by other developers who
don't know what your thoughts were when you originally wrote the code.

Let us look at the principles that should be in your mind when you start exploring the world of
software design next term in B07.

3.- A wish list for the software we develop

If we are going to put our time and effort into developing software for solving a problem, we
want to make sure the effort we put into results in the best possible software. Below is a list of
properties that we should carefully consider when designing our software - not every single one will
apply to every single problem, but we must always consider them all before we sit down to design and
develop our solution.

* Modularity - Our software is composed of separate modules each of which has one
 particular task, and each of which is mostly self-contained, can be understood,
 tested, and maintained independently of the others.

 A well thought modular program will help:

- Reduce replication of code.
- Improve the chance that code you write will be reused.
- Make it easier to test your code and verify it is correct.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 2

CSC A48 – Introduction to Computer Science - UTSC

- Help you see the big picture of how your software is structured and how it
 works.

* Reusability - Writing good software requires a lot of thought and hard work, we want to
 ensure any modules we write for a specific task can be re-used by any other
 application that requires that specific task solved. For instance, if we develop
 a module that to find the shortest path between two nodes in a graph (which
 is a very common problem in many application domains). We want our
 implementation to be such that anyone needing to find the shorted path
 between graph nodes can take our module and build it into their application.

* Extendibility - We want our software to be easy to extend and improve. This allows us to
 build on software over time by improving and expanding its usability and
 functionality.

* Maintainability - Our software must be organized, easy to understand, well documented, and
 be free of unnecessary complexity. This improves our ability to test it,
 debug it, and upgrade it as needed over time. A competent developer not

 familiar with your code should be able to quickly get to the point where
 they can work on/with it.

* Correctness - Any software we develop and release must have been thoroughly tested and
 made as close to bug-free as possible. Where appropriate, suitable tools should
 be used to determine correctness, code should have been reviewed by
 experienced developers not related to its implementation, and a suitable process
 must be in place for documenting, keeping track, and taking care of bugs found

 after the software is released.

* Efficiency - We have spent a good amount of time thinking about complexity and how to
study the efficiency of our algorithms. We expect good code to be efficient both
in terms of the algorithm chosen to solve a problem, and also in terms of how
that algorithm is implemented (remember, at the end of the day, the constant
terms will make a difference between different implementations of the same
algorithm).

* Openness - When possible (e.g. when we're not developing software for a company that
 has a stake on what we develop), we should consider contributing to the open
 source software community. There is a lot of good work done for no other gain
 than to provide something useful for others. And we can contribute to this effort.
 Open-source software projects are a good way to make sure your work directly
 benefits others!

* Privacy and security - More and more, the software you write will be part of a system running
 over a network (possibly hosted somewhere else than the user's

 computer). Therefore it's important to pay close attention to the best

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 3

CSC A48 – Introduction to Computer Science - UTSC

 current practice in secure data exchange, as well as having a reliable
 solution for safely storing a user's personal information.

4.- How modules are organized and used in C

So far, we have been working with programs that contain only a couple program files at the
most. We use compiler directives ('#include') to import all the code into a single program which
then is compiled into our application's executable.

This is only suitable for very small programs, and for applications with very limited
functionality. As we said above, we want to split complex applications into modules that implement
part of the application's functionality. Each module will have its own program file(s), and they all need
to be brought together in the right way to generate the executable program for our application.

In C, this is done by splitting each module into:

* A header file - these are files with extension '.h', and contain only the function declarations,
 with no code. You've already been using header files for common C libraries
 such as 'stdio.h', and 'stdlib.h', these provide the function definitions
 the compiler needs in order to know what to do when you call functions in
 these libraries, like 'printf()', and 'calloc()'.

* One of more program files - these have the extension '.c' and contain the actual code needed
 to implement the functions declared in the header file. You're
 already familiar with how this works. We only need to think
 about what to do when we have multiple program files for our
 application.

Applications are built from multiple such modules by

* Compiling each separate module into executable code with placeholders for functions from
 other modules.

* Linking all the modules together: bringing together the code that implements the functionality
 from each of the modules, and updating the place-holders with the actual function calls to
 implemented function code.

The entire process is illustrated in the figure below. An application consisting of four different
modules is split into multiple files - there are four header files, one for each module; and four
implementation files (.c files with the code for each module). Note that each module may use functions
from the others, and uses '#include' statements to bring in the function declarations for those modules
for compilation.

Each module is compiled into a file (with extension '.o') that contains executable code with
placeholders for the functions from other modules (you create a .o file by using the '-c' option when

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 4

CSC A48 – Introduction to Computer Science - UTSC

calling gcc, this tells gcc that it's not expected to generate a full executable program from that module
alone). Then all the .o files are linked together (at which point the placeholders are replaced with actual
working function calls) and the complete application program is generated.

This is exactly the same process that happens when we include libraries of functions already
provided with C (such as printf() from 'stdio.h'). The compiler knows where the header file is located,
uses the declaration of printf() provided there to know what to do when you use it with your program,
and it also knows where the pre-compiled code for every function in 'stdio.h' is stored so it can link it
with the rest of your program and generate an executable.

The process above is cumbersome to do by hand if you have a large application, so, next year in
B09 you will learn how to automate the process of building an application spread across several
modules by writing a makefile that tells the compiler exactly what it has to do to compile each
component and produce your executable program.

5.- Designing a good API

Back to the problem of how to build our software properly. The key problem that concern us is
how will other programs interact with our module? that means we have to think about the
functionality that will be exposed to code using our module, the various different functions that need to
be provided, and the way in which information will be passed to and from these functions.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 5

ModuleA.h ModuleB.h ModuleC.h ModuleD.h

ModuleA.c
#include<ModuleA.h>
#include<ModuleC.h>

ModuleB.c
#include<ModuleB.h>
#include<ModuleC.h>

ModuleC.c
#include<ModuleC.h>

ModuleD.c
#include<ModuleD.h>
#include<ModuleA.h>
#include<ModuleB.h>
#include<ModuleC.h>

Header files (function declarations) for each module

Program files (.c) with code for each
module

ModuleA.o
<executable code
with placeholders>

ModuleB.o
<executable code
with placeholders>

ModuleC.o
<executable code

with placeholders>

ModuleD.o
<executable code

with placeholders>

Application
Executable

Compile
each

module

Link
modules
together

CSC A48 – Introduction to Computer Science - UTSC

Setting down the details of how modules communicate and interact with each other is the job of
the Application Programming Interface or API. The API contains all the specifications needed to
make use of, and to interact with, a software module, code library, subsystem, and even working
components of an operating system or a remote server.

Here are some examples of commonly used APIs you may need to work with in the future:

- Google Maps : Allows you to make use of the Google maps framework for plotting locations
 and for finding paths between points in maps - among many other things!
 https://developers.google.com/maps/documentation/javascript/tutorial

- TensorFlow: Allows you to set up, train, test, evaluate, and operate a deep neural network for
solving a task that requires learning from a very large dataset. Nowadays this is
behind some of the most useful applications in A.I.
https://www.tensorflow.org/

- Amazon AWS: Amazon's cloud-based AWS runs a large portion of internet-hosted services,
 and powers all kinds of applications from on-line trade to providing computing
 power for large simulations.
 https://docs.aws.amazon.com/index.html#lang/en_us

- Unity: Possibly the most popular API for creating, manipulating, and rendering 3D content,
 from graphical user interfaces and simulations, to interactive programs and games.
 https://docs.unity3d.com/ScriptReference/

The above is just a microscopic sample of the universe of APIs our there. Each of them is a
world of complexity but the key is - we don't have to ever look at the code that implements them if we
don't want to!

The usefulness of an API is that it allows us to use a module, library, or service, without having
to know the details of how it's implemented. All we need to know is how to pass information to the
components of that module, and how to get back results. This will be easier or harder, depending on
whether the API is well designed or not. A badly designed API will make software building
cumbersome and reduce the usability of the component for which the API was designed.

In C, the API consists of the function declarations (in the .h) file, along with any constants
and other important values defined there - it also includes all the documentation (at the top of each
function) that describes what each of the functions does and their parameters and return values, and
any documentation that is maintained externally (e.g. manual pages, a wiki, or a webpage describing
the API and providing examples for developers).

In a sense, whenever we provide you with starter code for an assignment or exercise, we're
defining a mini-API for you to use in completing a task - up to now you haven't needed to think about

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 6

CSC A48 – Introduction to Computer Science - UTSC

just how we decided to implement specific functions in a certain way. Let's see what goes into
designing a good API and why it is a challenging but important process.

Why thinking carefully about API design matters

Suppose you're writing a module for graph manipulation that supports finding path between
nodes in the graph. The core function is implemented by this function:

intList *findPath(int Adj[N][N], int start, int goal)
{
 /*

 This function returns a linked-list of nodes
 that form a path from 'start' to 'goal' in

 the input graph described by the adjacency
 matrix Adj. 'start' and 'goal' are the indexes
 of the nodes we want to find a path between.

 If there is no path, the function returns NULL.

 Assumes: Adj is size (N*N) where N is the number
of nodes in the graph. Adj(i,j) is 1

 if there is a node from i to j, and 0
otherwise.
i,j are node indexes in [0,N-1]

 intList consists of nodes that contain:
int nodeIndex;
pathList *next;

 */
 .
 .
 .
}

We don't need to know how the function works! All that matters is that the function declaration
and the comments tell the developer that this function will return the path between 'start' and 'goal', that
the path will be in the form of a linked list of node indices, and that it describes what it expects as input
in order to do its work.

Thereafter, if I need to use that function in my program all I need to do is:
- Set up an adjacency matrix for my graph (size NxN)
- Select the nodes I want to find a path between
- Call the function!

That was easy, wasn't it?

Except... wait a second! what about N? how is N specified? we can't decide what N should be

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 7

CSC A48 – Introduction to Computer Science - UTSC

based on the API we provided! let's try again:

intList *findPath(int Adj[N][N], int N, int start, int goal);

Much better! now the user can let our path finding code what the size of the graph is. So that's
all we need right?

Along comes another developer, and they have in mind finding a path between a 'start' location
and any of a number of possible goal nodes (e.g. I want a path from my current location to any nearby
pastry shop). Well, with our current API the developer is stuck doing this:

- Set up an array of possible goal locations
for each location j in the goals array

path = findPath(A,N,s,goals[j])
if path is not NULL break

Which is not too bad, but this seems like a common-enough use case that we may want to
provide the API with a function to to this, so now we re-define our API to work like this:

 intList *findPath(int Adj[N][N], int N, int start, int goals[k], int k);

And add to the documentation that 'goals[k] is an array with k possible goal nodes' and let the
user know what the function will do when there are paths from the start node to many of the goals (i.e.
the developer needs to know how the returned path is selected among possible paths).

The questions you should have in your mind at this time is: is this better? is the above API
more useful? is it easier to use and more general?

As it happens, the answer may not be straightforward, and likely there won't be an answer that
suits every developer who wants to use your module.

Example: You release your module on GIThub, and you get all kinds of happy comments from
grateful users, except for one who lets you know their graph is too big and they can't keep an adjacency
matrix around, can't you provide a function that works on adjacency list?

That sounds reasonable, but you can't really just expand the function call that uses the adjacency
matrix to also work with an adjacency list (and this is a problem we will come back to again soon, we
can solve it, but in C it would be pretty ugly, so we should solve it with a more advanced language).

For now, you decide to help this developer out by adding one more function to your API:

 intList *findPath_l(intList* A[N], int N, int start, int goals[k], int
k);

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 8

CSC A48 – Introduction to Computer Science - UTSC

This function takes in an adjacency list in the form of an array of pointers to linked lists with the
neighbours of each node. It will allow users to handle much larger graphs as long as the number of
edges per node is reasonably small. So all is well with the universe right?

What if - someone finds a bug in 'findPath()'. The bug is with the actual path finding part of the
function, and is independent of how the graph is stored.

- We can fix it
- But now we have two functions where the bug may be found, we have to fix both

So every time we add a variant of 'findPath()' to support a specific use case we are increasing
the amount of work that needs to be done when bug-fixing and maintaining the module.

In general: You want to be very careful what functions you provide, and how they are declared.
Making changes to the API once it's out there can become very problematic as shown in the diagram
below.

Each time that the API is updated, applications using it need to be re-compiled (this is especially
important if your API has any security-sensitive components). So we need to think about how to
organize our software so it gets updated whenever the APIs are updated.

Moreover, once the API is reasonably stable, and is being used by a growing number of
applications, it becomes very difficult to make serious changes to it even if we discover it wasn't
designed well in the first place. In the example above, suppose that now the 'RobotNav App' requires
that the edges of the graph have weights (e.g. to represent the time it takes to go from one place to
another in the real world locations represented by graph nodes).

This looks like a minor change to the API right? Just update the adjacency matrix to be of type
'double', or 'float', and check that the path finding code works with real-valued edge weights.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 9

MagicGraphs
API V1.0

Mapping App

Robot NavApp

IP route find

Self-driving
Car

a) A happy
 universe
 with everyone
 using the nice
 API

MagicGraphs
API V1.1

Mapping App

Robot NavApp

IP route find

Self-driving
Car

b) Mapping
 app devs
 report a bug,
 API is updated

Bug
report

Every
module
needs to be
recompiled
with the
updated
API

CSC A48 – Introduction to Computer Science - UTSC

However, you start thinking about what this means for everyone else:

Because you can not simply cast an array of int to an array of double or float, if you change the
API to support what 'Robot Nav' wants, every other application using your API will have to be updated
(this now means changing the code, not just recompiling!) so that it uses float or double as the type for
the adjacency matrix. This is not a nice thing to do to developers that were initially told to use int. The
more your API is used, the harder it is to change fundamental aspects of it because of the impact to
all the software that relies on the API.

Once the API is stable and in use, it's a real problem if we didn't think of a use case that turns
out to be important to many potential users out there. In the example above, suppose you get in touch
with the developers of 'Robot Nav' and tell them how to get into the code of the API and update it
themselves to get the functionality they need. You get the situation below:

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 10

MagicGraphs
API V1.1

Mapping App

Robot NavApp

IP route find

Self-driving
Car

a) Old API with
 int adjacency
 matrix

MagicGraphs
API V2.0

Mapping App

Robot NavApp

IP route find

Self-driving
Car

b) New API with
 float adjacency
 matrix

We need to
update the
code in
every other
module to
change the
matrix type!

CSC A48 – Introduction to Computer Science - UTSC

So as you can see, we have to be very thoughtful when we set out to design an API, and we
have to think very hard about what use cases the module we are writing may be required for, and about
how to develop the API in such a way that it will be reasonably easy to maintain and expand without a
significant impact to applications that use it.

Question: How likely is it that the next version of 'stdio.h' will change the definition for
printf()? If it ever turns out we need a more crunchy print function, how do we introduce it into
'stdio.h' without breaking thousands of pieces of software that already use this library?

Note: The discussion above introduces a couple very important concepts:
 use-case - this is simply a specific situation or problem that a module or software

 component may be used for.
 dependency - is a relation between software modules where the dependent module

 requires that a library or module it depends on be available and have the
 correct version in order to compile and run.

 Anything you add to your code via '#include' statements introduces a dependency in
 your code. For instance, your programs most likely depend on the system libraries
 'stdio', and 'stdlib' at the very least. If these are not present, you can't compile your
 program. If they have the wrong version, your executable may not run and needs to

 be re-compiled.

Note: You will learn a lot more about use cases, user stories, and the process of building
software to fit what a user needs in the Software Engineering courses C01 and D01.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 11

MagicGraphs
API V1.1

Mapping App

Robot NavApp

IP route find

Self-driving
Car

a) Old API with
 int adjacency
 matrix

MagicGraphs
API V1.1

Mapping App

Robot NavApp

IP route find

Self-driving
Car

b) RobotNav now
 Has their own
 Modified
 API

MagicGraphs
API V1.2a

Self-driving car no
longer compiles
because the two
modules it
depends
on have different
API – this can’t be
fixed by self-
driving car code!

CSC A48 – Introduction to Computer Science - UTSC

Advice from the experts on building a good API
(this is from Google's How to Design a Good API and Why it Matters:
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/32713.pdf)

According to Google's experts, a good API should be:

- Easy to learn and use
- Difficult to use incorrectly
- Easy to maintain (the code in it is readable and well written)
- Easy to extend and improve
- Suitable for those who will be using it

The principles they propose for you to consider are:

- Your API should do one thing, and do it well - the functionality should be easy to explain and
 make sense of. If it can't be explained in simple terms, it's probably not well done.

- Your API should be as small as possible, but not smaller. It should satisfy the need it's serving,
 but do not try to add every single possible thing you can think of. The key thought here is that

 you can add to it later, but once it's in there, it's hard to remove functionality.

- The API should be implementation independent. This is a particularly important point. It
 should be possible for you to completely change the way a function is implemented, without
 needing to change the API. This also makes it possible to provide API implementations for
 different systems and platforms - they should be identical as far as the user is concerned.

- Maximize information hiding - Only make available to the user the functionality and data
 that the user needs. This is harder to do with C, but consider that every function's data is
 local and can't be accessed outside the function. We will see shortly how to do a much better
 job of controlling what data and functions a user of an API has access to.

- Names should be self-explanatory. Use naming consistently, the same goes for the use of
 underscores and capitalization.

- Good documentation is important. Every component must be documented properly.

- Think about performance, and avoid decisions in the API that will have a negative impact on
 performance.

- The user of the API should not be surprised by the behaviour of the API.

- The API should report errors as soon as possible after they occur (e.g. generating a chain of
 exceptions that is many functions long is not the best way to let anyone figure out what

 happened).

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 12

CSC A48 – Introduction to Computer Science - UTSC

- If the API makes information available in strings, provide functions to parse the string into
 any components the user may need to handle separately. This prevents annoyance and keeps
 the user from having to write parsers for the API's output.

 The items below are general principles of good programming, not just APIs

- Use the most appropriate return value for each function.

- Where functions have similar lists of parameters, be consistent with the ordering of the
 parameters (reduces the chance of the user making a mistake because they got used to
 the parameter ordering in a different function).

- Avoid long parameter lists

The Google document has several more recommendations specific to Java and object oriented
code, so be sure to check back as you're going through your B07 course. For now, keep in mind the
above, and note that even Google developers admit that designing and implementing a good API is a
hard task, and that you can never achieve perfection. But you have to do a good job!

6.- Limitations of our programming language

Once we start working with APIs, and thinking in terms of modules that are self-contained and
provide functionality to the users without them needing to know the internal details of how this
functionality is implemented, we will realize that there are limitations to what we can do with C as our
programming language.

To illustrate the key issue that should concern us here, suppose we're providing a very nice
module for creating and managing linked lists of strings (this could be used by an app, for instance, to
keep the names of all the eBooks a user has in their cellphone). You have determined the appropriate
API, and written both your (very well documented) header file, and the corresponding implementation
file. Any user needing a linked list can include your module in their code and go. It looks like this:

So far so good. But now think about what we have learned of linked lists in C. The pointer to

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 13

StringLists
API V1.0

StringLists.h
StringLists.c

eBook App

CSC A48 – Introduction to Computer Science - UTSC

the head of the linked list is kept and managed by the function(s) that need the list!

We haven't even started using the API, and we have already run into a problem: One of the key
components of the linked list, the head pointer, is declared and kept by a function outside our API.
This is not great - the user of your module has access to all the data definitions for compound data
types, and can declare and initialize as many as they want without calling your API at all.

It's actually worse than that - because the applications using your API have direct and
unrestricted access to the data in the linked list, they can go ahead and modify the list themselves
without using the API.

This may not seem like a big deal - after all, if they're using the API one assumes they intend to
use it to save work and won't go around poking into the list themselves. But, there will always be users
who will find an opportunity to do something your API doesn't provide by directly changing data in the
list, and you also have to worry about malicious users who will try to mess with data in the linked list
to see if they can get your API to crash, or to grant them access to privileged information they shouldn't
have access to.

This breaks the model of a module being a self-contained entity that can be used without
knowledge of the details of how the module is implemented. It introduces the potential for bugs created
by users unintentionally modifying data needed by the module, and it introduces a security concern
because of the potential for misuse by malicious users.

The root cause of the problem is that C provides no way to hide or protect sensitive data from
being mis-used or accessed in a way that was not intended by us when we developed the module . We
can't solve this in C. So at this point we should look beyond the language we've been using and find a
different way to organize our code and data so that we can implement software modules that are truly
self-contained, and that are able to control access to the data managed by the module in a way that
prevents users from unintentionally, or intentionally, mis-using the module and its functionality. This is
called information hiding, and is one of the fundamental principles of good software design.

The model of programming we will explore next is called Object Oriented Programming
(OOP). It is one of the fundamental building blocks of software design and software engineering, and it

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 14

StringLists
API V1.0

StringLists.h
StringLists.c

eBook App
StringList *head;

CSC A48 – Introduction to Computer Science - UTSC

will allow you to build software components that are flexible, powerful, and self-contained.

7.- Object Oriented Programming

Object Oriented Programming is a model for developing software components that is based on
the idea of encapsulation.

Encapsulation means wrapping together all the components required to implement the
functionality of a specific data type, data structure, or software module. This includes all the data as
well as the functions that manipulate it. It requires access control to data and functions that
manipulate it in such a way that the designer of the module can determine what data and functions will
be accessible to the user, and what legitimate use-cases will be supported. Very importantly,
encapsulation requires that we be able to hide data and functionality from the user thus preventing
accidental or intentional misuse.

To support all of these goals, Object Oriented Programming introduces the concept of an object
as the fundamental unit of information storage, processing, and manipulation. You are already familiar
with objects from having worked with them in Python during A08, now we will spend a bit of time
understanding how they are built, what features they have, and what we can do with them as software
designers. But in order to actually understand what an object is, we first need to learn how to design
and implement the principles of OOP that we discussed above.

Classes

In Object Oriented Programming, we expand the idea of compound data types (you already
know very well what these are and how they work, but it wouldn't just to review Unit 3) so that we are
not limited to storing data. With OOP, we want to bundle together all the data and all the functionality
required to manipulate it. The resulting entity is called a class. This is illustrated in the figure below.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 15

StringLists
API V1.0

Compound data
Types

(all data needed
to support this

module)

StringLists
API V1.0

Code for managing
string lists (e.g.
insert, delete,
search, etc.)

Non OOP approach
 (standard C)

StringListsClass
API V1.0

StringLists data
StringLists functions

These are now
bundled together
and can not be
used separately

 OOP approach
 (C++, Java)

Data and functions
are hidden from the
user and can only be
accessed or changed
through the API.

Data and functions
are separate from
each other

The user has access to
everything and can
access/ change any
data, or use any
functions, without
going through the API.

CSC A48 – Introduction to Computer Science - UTSC

The idea of bundling together the code and data that comprise a single module, data type, or
data structure, is important, but you have already worked with compound data types and you have
already used objects in Python, so you know there really is nothing fundamentally new in the concept
of a class. The importance of the class idea lies in how the programming language uses classes to
provide you with information hiding as well as a number of other powerful features that were very
difficult to implement without the support of object oriented languages.

In OOP, the data components of the class are called member variables, and the functions that
implement the functionality for the class are called class methods.

Information Hiding in Classes

Recall that in C all our variables and functions have an associated data type that is fixed and
used by the compiler to determine what code needs to be generated to implement the functionality
specified in your program.

In Object Oriented Programming, both the member variables and the class methods have an
associated access modifiers. These specify the visibility of each of these components much the same
way that scope determines the visibility of variables within the code.

The smallest subset of access control modifiers that has to be implemented by an object-
oriented language is:

public - This modifier states that a member variable or class method can be access by any code
 outside the class that contains it. It is appropriate for all the components of the API
 that the user needs in order to gain the functionality provided by the class.

private - This modifier states that a member variable or class method can be accessed only by
 class methods belonging to the class itself. The user and any code written outside the
 class can not see, access, or use these protected members of the class.

There are further modifiers that may or may not be available depending on the language you are
using, but the two above constitute the minimum subset that will allow you to implement information
hiding and encapsulation. The diagram below shows how a class implementing our string list API
could be structured – it shows both the member variables, and the class methods. Access modifiers
indicate which components of the class are visible to (can be accessed/used by) the user’s program.
Any private members are only accessible from within the class.

For example, the ‘head’ pointer is not accessible to the user, it can not be changed from outside
the class. However, functions such as ‘insert()’ which are class members can access and change the
value of the ‘head’ pointer. In this way, we expose to the user only the functionality of the class that
we want to provide, and can do so in a way that prevents misuse of the class and its member variables
and methods.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 16

CSC A48 – Introduction to Computer Science - UTSC

There are two methods we haven’t seen before in the class model above, the ‘constructor’ and
the ‘destructor’. These two functions have an important role the class:

- The constructor – is automatically called by the compiler when we declare a new instance
 of the class (e.g. when the user declares a StringList in their code in order
 to use it for managing their list of strings). The constructor has the job of
 initializing the member variables and any data that the class will need

 to suitable values. In the example above, we could expect it to set the
 ‘head’ pointer to NULL, and the ‘list_length’ to zero. For more complex
 classes, the constructor may do a lot more work.

- The destructor – is called when an instance of the class goes out of scope or when we want
 to delete an instance of the class. It has the job of cleaning up after the
 class. For instance, in our example above, the destructor would be in charge
 or freeing all memory allocated to the nodes of the linked list. For more
 complex classes, the destructor may do a lot more work.

The important thing to keep in mind is that these methods are provided in order to automate
what you have been doing all along up to this point: creating and initializing compound data types.
Remember that so far we have always needed to write a function whose only task is to do that. With
Object Oriented Programming, this is built into the class. As we will see later, combined with other
features of OOP, this gives us quite a lot of flexibility and power in terms of how a new instance of a
class is initialized.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 17

StringListsClass
API V1.0

Member variables:
private:
 listNode *head;
 int list_length;

Class methods:
private:

update_length()
newNode()

public:
constructor()
destructor()
insert()
delete()
search()
get_length()
print_list()

The head pointer and the list
length are private, so only
member functions can change
them. The user can not
access these variables, they
are hidden.

Private class methods can only
be called by functions within the
class. This means the user can
not directly update the length of
the list, or make new list nodes.

Public class methods (and any
public member variables) are
the part of the class that is
accessible to the user. These
are the only functions the user
can call within their program.
The API defines how information
is passed to and from between
the class and the user’s program

CSC A48 – Introduction to Computer Science - UTSC

Wait a second: just what is an instance? It’s a term used in OOP to indicate a particular
variable of a given class – but since these are much more crunchy than, say, an int or a float, we call
them instances or objects! - And this explains the term Object-Oriented Programming.

- The class is the template for building objects that have all the member variables and class
 methods from the class and can be used within a program. In terms of what you learned
 with C, the class is the equivalent of a typedef, and an instance or object of that class is
 analogous to declaring a variable of a particular compound data type.

8.- Building a class in C++

Now that we’re talking about Object-Oriented-Programming, we need a language that can
support the features we need to build and manipulate classes and the objects we create from them. C is
not designed for that, and will impose limitations on what we can do that will make it very hard for us
to any reasonable job of implementing and working with classes and objects.

Therefore, let’s have a quick look at C’s more powerful and more flexible descendant: C++.

Please note: We don’t expect you to learn C++ from scratch in a couple weeks! We will only
take a few steps into the world of C++ so that you leave A48 with a concrete idea of how object-
oriented programming works in practice. But you’re not expected to learn to implement complicated
programs in C++. That would require its own course! Instead – You want to pay attention at how the
principles of OOP are exemplified by C++ class declarations, to how the class’ methods work, and
what kinds of things we can do with objects once we have created them. You will have plenty of time
to develop programming skills in an object oriented language next term, with Java in B07.

Most of what we will do here should be familiar to you, since you worked with objects in
Python during your A08 course.

C++ was developed in the 80’s as an extension to C (hence the name!), it was provided with the
syntax required to support object-oriented programming, and has been continuously expanded and
improved over the years. C++ is one of the more important languages in serious software development
where speed is important. Areas such as operating systems, security, networking, embedded systems,

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 18

StringListsClass
API V1.0

StringLists data
StringLists functions

Int main()
{
 StringList my_list;

 // Use a StringList object
 // to get some work done!
}

The class provides a template for creating
Instances or objects of that class to use in
our programs.

This is a specific instance also known as an
object of class StringList

CSC A48 – Introduction to Computer Science - UTSC

media-related software (e.g. encoding/decoding video and audio), compilers, and many others are
important users of software written in C++.

You should keep in mind that C is a subset of C++, so all your C code, everything you have
learned so far, can and should be used when you develop in C++. In effect, C++ is just giving you
additional superpowers for dealing with objects, but you can still do everything else you’ve been doing
up to now with C.

 With that in mind, let’s see how a class is declared in C++. While you think about it, consider in
what ways it is similar, and in what ways it is different from a typedef from C.

typedef struct ListNodeStruct
{

char string[1024];
struct LastNodeStrucy *next;

} ListNode;

class StringList
{

// Member variables
private:

ListNode *head;
int list_length;

// Class methods
public:

 StringList()
 {
 head=NULL;
 list_length==0;
 }
 ~StringList();

void insert_string(char string[1024]);
void delete_string(char string[1024]);
ListNode search(char string[1024]);
void clear_list();
int get_length();

private:
void set_length(int l);

};

A few things to note in the example above:

- The typedef for the ListNode is not part of the class, but we need it to define the nodes of the
 string linked list we’re building.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 19

CSC A48 – Introduction to Computer Science - UTSC

- The class declaration is just like any compound data type declaration you’ve done before in
 C, except we say ‘class’ so the C++ compiler knows we’re bundling data and functions into
 one nice package.
- All the member variables in our class are private. No functions or code outside of the class
 can access or change these variables. They are hidden from user code.
- The function ‘StringList()’ which is the class constructor, has no return value or type.
 It gets called automatically when we create objects of this class, and will initialize the class’
 member variables as needed. In the case of our list, it initializes the head pointer to NULL,

 and the 'list_length' to zero. This function has the same role as the '__init__' function you
 have used before with Python objects.

- The function ‘~StringList()’ is the class destructor. Like the constructor, it has no
 return value or type, and gets called automatically when an object of the class goes out of
 scope or gets deleted. Its job is to clean up after the class – so in effect, free any memory
 that was dynamically allocated by class methods, close any open files, etc.
- The remaining public methods are analogous to the functions you would normally find in

 any regular linked list. We have 'insert_string()', 'delete_string()', and 'search()', the only
 interesting thing about them is that the 'search' function does not return a pointer to a node in

 the list!. In C, we used to return a pointer to the node that contains data for the user query. But
 in OOP this would break the principle of encapsulation! we do not want the user to get

 pointers to the class' internal data. So instead, the search function returns a copy of the data
 stored in the node that corresponds to the user's query. This way, the user gets the data they
 need, but does not have access to the list nodes themselves, and therefore can not change their
 content without going through our class' API.

- There is one private class method: 'update_length()'. This method can only be called by
 other methods within the class. It can not be directly called by the user.

Please keep in mind that the above is just a very small example so you can get a concrete idea of
how C++ defines a class, and what the structure of the class looks like. There is a lot of refinement you
can add to classes in C++. We show you what a class definition looks like in C++ so you can have a
concrete picture in your mind about how the general principles of what classes are and how they are
organized are implemented in one of the most common object oriented languages. You will have plenty
of time to learn a lot more about how to declare and use classes during your B07 course, with Java.

Method Overloading

Recall that when we were studying APIs, we ran into a situation where one of the users of our
graph management library wanted to use an adjacency list instead of an adjacency matrix. With C, we
found ourselves stuck either changing the API in a way that would require all modules using our API
to be modified and recompiled, or have the users who want a different API call to use their own
custom version, with the downside that their code would then not be compatible with any other module
using the standard API.

In C++, we have the flexibility to declare multiple versions of a function or class method, each
with a different set of input parameters. This solves precisely the problem we had in C where once the
API is defined it's very difficult to change the function declarations.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 20

CSC A48 – Introduction to Computer Science - UTSC

Suppose that instead of having written our API in C, we had used C++. We would have defined
a class to store and manipulate graphs, and within that class we would have a public method:

 intList *findPath(int Adj[N][N], int N, int start, int goals[k], int k);

Which is identical to the API call we had defined in C. When we find out that a user wants to be
able to use an adjacency list, we can simply add an overloaded function declaration, with the same
name, but with the parameter types our user needs (and even with a different number of parameters!).
So now our graph management class would have the following class methods:

intList *findPath(int Adj[N][N], int N, int start, int goals[k], int k);
intList *findPath(intList* A[N], int N, int start, int goals[k], int k);

Now the class has two methods with the same name - the compiler will select which one to call
based on the user's code (by looking at the types of the parameters the user is calling the 'findPath()'
function with). Suppose that we have another user now who wants to use floating point adjacency
matrices, not int. Well, we can expand our API by providing an overloaded function that accepts a
floating point adjacency matrix:

intList *findPath(int Adj[N][N], int N, int start, int goals[k], int k);
intList *findPath(double Adj[N][N], int N, int start, int goals[k], int k);
intList *findPath(intList* A[N], int N, int start, int goals[k], int k);

We can have as many different versions of the function as we may need, but we should be
careful that each of these supports a valid and distinct use case. Recall that our API should be as small
as possible! so providing every possible combination of input parameters that any user may need is not
good design.

Note: This is true for all your coding, but particularly important for function overloads: Make
sure that similar parameters are declared in the same order. This will reduce the chance of mistakes by
the user of your module, and will also enable them to learn a pattern to how you implemented things
inside your classes.

What you should understand up to this point:

- Limitations of non-object-oriented programming
- Encapsulation and information hiding
- What is a class, and what are the components of a class
- Access modifiers for information hiding
- What is an object (difference between an object and a class)

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 21

CSC A48 – Introduction to Computer Science - UTSC

9.- Polymorphism and Inheritance

There are two more fundamental component of object-oriented programming that we need to
study before sending you on to your Software Design course next term: Polymorphism and
imheritance.

We call inheritance the ability of an object-oriented language to build and use a hierarchy of
classes representing entities that are related to each other and share some characteristics. This turns
out to be a very common situation that is hard to deal with in non-object oriented languages like C.

To provide a concrete example, consider the problem of implementing a music synthesizer in
your computer - the synthesizer takes in a linked list of musical notes, ordered by their position in a
musical score. Its job is to play these notes by generating the sound corresponding to each. The tricky
part is - it needs to be able to play multiple notes at the same time, and these may belong to different
musical instruments.

In a non-object oriented language, we have a little bit of a problem:

- Musical notes from different instruments have to be handled in different ways. For example,
 for a guitar sound, the sound generating code may have to simulate the guitar string with a

 suitable algorithm, whereas for a piano sound, it may just play a pre-recorded piano sound
 sample. The details don't matter, what matters is each instrument's sound is generated in a
 different way.

- However, other properties of a musical note are shared. Each note will have a frequency,
 and a duration, and a position in the musical score, plus any other information needed by
 the synthesizer to organize and manage the notes it's playing.

Let's see what happens when we try to implement just two different note types in C. We know
we need a compound data type to represent the note data. We need to make sure there is a single data
type that can represent any note, because otherwise we can't put all the notes into a single list to be
played by the synthesizers (can't mix and match pointers to different data types!).

So we start with the things that are shared by every note from every instrument:

typedef struct note_struct
{

double time_position; // Note's position in the musical score
double frequency; // The note's frequency
double duration; // How long the note is played
int volume; // The loudness of the note

double *note_data; // Pointer to the note's data array
} note;

So far so good. Right?

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 22

CSC A48 – Introduction to Computer Science - UTSC

Somewhere in the synthesizer, we will have code that takes a note, and generates the sound
sample corresponding to the note's sound at a given point in time.

double get_sound_sample(note *my_note, double time_index)
{

// Computes and returns the sample of sound to be played for this
// note at the specified time index.

}

Nothing special so far. But here's where we run into trouble: How does the 'get_next_sample()'
function know what type of instrument this note is from, and how to play it?

We don't have a lot of good options here, given what C can do for us. A simple solution is to add
another variable to our 'note' data type:

typedef struct note_struct
{

double time_position; // Note's position in the musical score
double frequency; // The note's frequency
double duration; // How long the note is played
int volume; // The loudness of the note
int instrument_ID // Indicates which instrument this note

// belongs to.
double *note_data; // Pointer to the note's data array

} note;

Simple! we assign to each note the ID of the instrument it belongs to, and we're done, right?
except now we have to have, in every function that handles notes, code that looks like this:

double get_sound_sample(note *my_note, double time_index)
{

// Computes and returns the sample of sound to be played for this
// note at the specified time index.
if (note->instrument_ID==0)
{

// Do what corresponds to instrument ID 0
}
else if (note->instrument_ID==1)
{

// Do what corresponds to instrument ID 1
}
else if ...

// Or you can use a switch statement, but in any case you have one
// different case for each instrument, and the code is unnecessarily

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 23

CSC A48 – Introduction to Computer Science - UTSC

// long, difficult to test and debug, and difficult to read!
}

If you still think the above is not that bad, consider that the typical synthesizer supports
hundreds of different instruments. You can imagine the code for 'get_sound_sample()' is going to be
ugly. The same will happen to other functions that handle notes. For example, the function that
allocates and initializes a new note will likely need to do different things for different instrument types
(for example, initializing the data array for the note, which will happen in different ways for each
instrument). An overview of how our implementation of a note module for the synthesizer looks like
this:

Not a fantastic solution, if we consider all we know about how to write good software! On top
of the code being less than elegant, there is no information hiding. For example, nothing prevents a
user's program from changing the note type while the note is playing, which may sound interesting but
is definitely not intended behaviour, and could easily create bugs or worse.

The problem we have stems from trying to implement a set of closely-related, but not identical
data items using a single compound data type. With object-oriented programming and through the use
of classes, we can find a better way to model, represent, and implement such data items.

Here are the properties we want from our model

- We want to maximize code reuse - Any code that is shared among our classes should be
 implemented only once.
- We want to minimize data duplication - Common variables and data should be declared only
 once.
- We want to be able to extend and/or refine the behavior of any of our classes without
 affecting the rest.
- We want the model be able to show how our classes are organized, and how they relate to

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 24

Note.h

Note.c
#include<Note.h>

note *new_note(double pos, double freq,\
 double len, int vol)
{
 // Ugly code here to
 // initialize every possible
 // type of note
}
double get_sound_sample
{
 // Very ugly code here to
 // handle every possible note
 // we can play.
}

// More ugly code for any other function
// that has to deal with notes.

CSC A48 – Introduction to Computer Science - UTSC

 each other.

This leads to a hierarchical representation of related classes - where common data and
methods are implemented by a parent class, and specific behaviour is implemented by derived
(children) classes - let's see how this would look for the synthesizer example above.

The 'NoteClass' above defines the shared characteristics that all notes our synthesizer plays
must have. This includes the common member variables that every note has, and fundamental methods
needed to handle a note, including a constructor, destructor, and the function that returns a sound
sample for the note.

We have a new access modifier: 'protected', the behaviour of this access modifier will become
clear in a moment.

With object-oriented languages, we can take the 'NoteClass' and create any number of derived
classes (also called subclasses), all of which will inherit the public and protected member variables
and class methods from the parent class (also called the base class). Each derived class can then go on
to add their own member variables and methods, and can also provide implementations of the shared
methods defined by the parent class, but refined to implement behaviour specific to the subclass.

The 'protected' access modifier is used to give derived classes access to a parent class' data that
still must be hidden from user code. Think of it as an extension of the 'private' access modifiers, where
access is now given to derived classes while preserving information hiding. Any member variables or
methods declared 'private' by the parent class are still only accessible within that class!

An illustration of how our class structure would look for the synthesizer notes is shown below.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 25

NoteClass
Member variables:

protected:
 double time_pos;
 double frequency;
 double duration;
 int volume;
 double *note_data;

Class methods:
public:

Note()
~Note()
get_sound_sample();

CSC A48 – Introduction to Computer Science - UTSC

In the diagram above, we have three subclasses: 'PianoNote', 'GuitarNote', and 'DrumNote'.
Each of them inherits the protected and public components of 'NoteClass'. So, they all have
'frequency', 'time_pos', 'duration', 'volume', and 'note_data'. They also inherit the public method
'get_sound_sample()'.

However, each subclass has gone on to declare additional member variables suitable to what
that specific type of note needs. And very importantly they provide their own implementation of
'get_sound_sample()', so now each derived class is responsible only for the implementation of code
specific to that subclass. No more ugly code full of conditionals!

What have we gained?

- There is no un-necessary data or code replication: Any common member variables, and any
 shared methods that are identical for every class in our hierarchy are declared and
 implemented only once, in the base class.
- We can have any number of subclasses, each of which can declare their own member variables
 specific to the subclass.
- Subclasses can re-define common methods declared by the base class, and in this way we
 confine the code that is specific to each derived class to that specific subclass' implementation.
- Finally, and most importantly: Subclasses can be used with any code that handles the base
 class. In simple terms: for our synthesizer application, the user need only implement code to
 create and handle a list of 'NoteClass' objects, and in this list we can insert objects from any
 of the subclasses (we can have piano notes, guitar notes, and drum notes together!). They are,
 after all, musical notes - all of them!

That last item explains the term polymorphism: We have a class of objects (musical notes) that
can have many different shapes - yet they can all be used as musical notes.

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 26

NoteClass

Shared data and methods
defined here.

PianoNote

Member variables:
int pedal_pressed;

Class methods:
get_sound_sample();

GuitarNote

Member variables:
int note_shift;

Class methods:
get_sound_sample();

DrumNote

Member variables:
int sample_ID;

Class methods:
get_sound_sample();

CSC A48 – Introduction to Computer Science - UTSC

How this would look in practice (pseudocode):

Play a few notes:
Initialize a linked list to contain objects of NoteClass
Insert notes to be played into the list (can be of any subclass).

- Insert a few PianoNotes
- Insert a few GuitarNotes
- Insert a few DrumNotes

To play the notes:
Traverse the linked list, and for each 'note' in the list call

note->get_sound_sample()

The linked list knows nothing about the specifics of each subtype of note. It deals only with
pointers to objects of 'NoteClass'. But the language knows the subtype for each note in the list, so
when the 'get_sound_sample()' function is called, the implementation from the right subtype is called
automatically.

We do not need to get into the implementation details here - they are fairly involved, and require
plenty of time to learn well - there will be time for that later. What is important is that you understand
these ideas:

- Inheritance allows us to design and implement a hierarchy or classes so that we can have
 variations (as many as we want) of a base class, each with their own data and methods, each
 able to implement behaviour specific to the subclass, but at the same the user's code only
 needs to worry about handling objects of the base class.
- Subclasses can re-define methods from the base class to implement subclass-specific
 behaviour.
- We have a way to preserve information hiding while allowing subclasses to access variables
 and methods from the base class that are hidden from user code. This is thanks to the
 'protected' access modifier.

Designer beware:

You can create a class hierarchy as complicated as you like - but if you don't think about it
carefully while designing your software it's easy to end up with a mess that is much worse than what
you would have if you had stuck to standard C (with all its limitations).

Therefore, to seriously learn how to design and implement class hierarchies that have been
designed to solve specific use cases, you need to learn and understand design patterns. A good part of
your B07 course will be devoted to exploring and understanding these patterns so you know how to
implement them, what use case they are designed to solve, and why they represent the optimal
organization for classes that solves a particular problem.

If you can't wait to get started learning more about software engineering, I’d suggest having a

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 27

CSC A48 – Introduction to Computer Science - UTSC

look at a well known and extensively used set of principles that guide the design of good software.
These are known as SOLID, and you’ll definitely find it useful to be familiar with what they involve:

https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://deviq.com/solid/

Abstract classes

One final idea worth mentioning: It is possible (and for some problems it is the appropriate
solution) to define a base class that does not implement any of the shared methods. The base class
only declares what methods must be provided by subclasses, and every subclass must provide an
implementation.

Such base classes are called abstract classes - they specify the shape of an object but none of
the implementation details. You'll learn plenty about abstract classes in your B07 course - Java
interfaces work in a similar way and provide powerful tools for building good software.

As an example in the context of our small synthesizer module, you could define an abstract
class for an instrument – this class represents any specific type of musical instrument, but there is no
implementation that can be attached to it. Instead, we would define in this class the shared member
variables every instrument must have, and the methods that each derived class must implement. We
can thereafter implement specific instrument classes that inherit from the abstract instrument class
and provide the implementations for all the methods required to get that specificd instrument to
work.

10.- A few notes to remember

The above is just avery quick introduction to the principles and ideas in good software design
that you will expand upon in your software engineering courses. You should review them before you
begin B07, and place every concept and idea you will learn there in the context provided by having
experienced a non-object-oriented language, and having seen the limitations it has when it comes to
designing and implementing complex software for general use.

At the same time, you should remember that object-oriented programming is just one of the
models for building software, and is not expected to be the best possible model for every application or
every problem. You need to learn to determine when object-oriented design is called for, and when
you're likely to be better off without it.

For example, object-oriented code does have non-negligible overhead compared to
straightforward non-oop code. In performance sensitive applications, you may want to consider the
relative value of flexibility in software design, and the importance of information hiding, against
performance penalties caused by object-based code.

You will learn more about other programming models as you work your way through your

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 28

https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://deviq.com/solid/

CSC A48 – Introduction to Computer Science - UTSC

program. Don't forget what you learned here!

11.- Wrapping it up!

This is also the end of our A48 course. It's been a long road, so you should take a moment to
reflect on all the ground we have covered, and all the fundamental ideas you should carry with you as
you go on to bigger things. You should re-visit your notes in the future, in preparation for covering
related material in higher-level courses. As a quick guide:

For Software Design - CSC B07: Unit 3, Unit 5, Unit 6
For Software Tools and System Programming - CSC B09: Unit 1, Unit 2
For Introduction to the Theory of Computation - CSC B36: Unit 4
For Design and Analysis of Data Structures and Algorithms - CSC B63: Unit 3, Unit 4, Unit 5
For Computer Organization - CSC B58: Unit 2, Unit 3

Some of the fundamental ideas that you should take with you from this course:

- Abstract Data Types and Data Structures - What they are, how they are helpful in thinking
 about the best way for storing, organizing, and manipulating large collections of data.
- Multiple common data structures - Arrays, linked lists, trees, and their variations. What are
 their properties, their advantages and disadvantages, and what kind of data-storage and
 manipulation they are best suited for.
- Computational complexity - As a means of comparing in an implementation independent way
 different algorithms, different data structures, and also as a way for understanding how hard
 particular problems are.
- Tree structures and how we used them to represent information, as well as how they provide
 efficient access to large data collections.
- Graphs and their properties. You should remember how to represent them, and how to use
 them to solve problems like path-finding, as well as for finding answers to interesting
 questions you can ask on connected data items.
- Recursion as a problem solving tool. What the components of recursion are, and how to
 form a recursive solution to a problem. You should also remember the kinds of problems
 that are naturally well suited for recursive solutions - including graph-based data structures
 like trees and nested lists, and hierarchical structures whether they are in computer graphics
 or in operating systems.
- Designing good software. Many of you will spend some part of your professional life
 developing software. It is important that you do this well and that you spend time learning
 and practicing the skill of carrying out good software design.
- And of course: Programming in C - which will be useful to you even if you never program in

 C again, because it will have helped you develop the habit of thinking carefully before you
 code, considering the most appropriate data type for your information, understanding what
 each line of your code is doing, and thinking in terms of what happens in memory when you
 manipulate data.

We hope the course has been useful for you also in terms of acquiring fundamental concepts

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 29

CSC A48 – Introduction to Computer Science - UTSC

that will be needed later on, but also in terms of exercising essential habits and skills:

- Problem solving (all of those exercises and your assignments!).
- Study habits (preparation in advance of the lecture).
- Work habits (starting early and working consistently).
- Testing software (for correctness, not for user-acceptance).
- Seeing how different concepts relate to each other (not learning isolated facts/ideas).
- Asking why until things make sense.
- Knowing that you have really learned something, by being able to explain it to someone else.
- Building a strong and healthy community for yourself and your colleagues.
- Being aware and thinking about social and ethical issues you will face through your career.
Don't lose the skills and habits you've worked so hard to acquire! practice them often, and keep

strenghtening them - they will serve you well through your professional career!

We wish you success with your career going forward, and we thank you for all the hard work
you've done this term without which all the work we poured into making this course really solid would
be worth nothing.

So, good luck, and stay in touch!

(Your friendly neighbourhood course instructors: Paco and Marzieh)

(c) 2019 - Paco Estrada, Marzieh Ahmadzadeh 30

