
CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

7 Basic Ray Tracing
At this point we have a good understanding of the image formation process. We can set up a scene
using geometric primitives and transformations, we know how to set up a camera at a specific
location and orientation, and we can determine the projection from points on object surfaces to
points on the image plane. We also know how to approximate object surface colours based on the
lightsources in the scene and the material properties of the objects using the Phong illumination
model.
This is sufficient to build a rendering engine that simulates the image formation process and that
is able to realistically render a scene. The steps such a rendering engine would carry out are
straightforward:

Forward Ray Tracer

1.0 Cast a ray from the lightsource (in a valid direction
w.r.t. lightsource type)

2.0 Trace the ray - determine if it hits an object or the
camera’s aperture

3.0 If the ray hits an object

3.1a Determine whether the ray is bounced
or refracted

3.2a Determine the direction of the bounced
or refracted ray

3.3a Update the ray’s colour depending on
the surface material

3.4a Trace the new ray

If the ray hits the aperture

3.1b Determine the coordinates of the point
where the ray hits the image plane

3.2b Update the colour at that location by
adding the ray’s colour to whatever value
is currently at that location

else
Stop tracing this ray, go back to 1.0

The above process describes a Forward Ray Tracer. It is a ray tracer because the core of the method

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 69

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

involves tracing the path of light rays from their origin point (which is either a light source or an
object surface from where it has been bounced or refracted) checking whether the ray hits any
object(s) in the scene, or the camera’s lens. It is called a forward ray tracer because the tracing
starts at the lightsource and follows rays as they make their way through the scene and into the
camera.
The only tricky part of the above method is what happens when a ray hits an object. At this point,
depending on how accurately we model the material of the object’s surface, there could be a large
number of possible outcomes for the ray. But leaving that aside for now, we can still render visually
rich images using approximations such as the Phong model. The scene below is the output of a
forward ray tracer, running on a simple scene with five walls and two spheres (the back wall is a
mirror).

Render created with a forward ray tracer

Even with such a simple geometry, the forward ray tracer can render complex lighting effects such
as transparency, reflections, caustics (light that is concentrated due to refracting objects), colour
bleeding (notice the blue and red hues where the gray walls meet the colour ones), area light
sources, and soft shadows. All of these effects are difficult to render with simple local models such
as the Phong illumination model.
The downside of the forward ray tracer is its inordinate computational cost. The scene below
required 50 billion light-source rays to be cast. This figure does not include all the rays generated
from bouncing, refracting, and reflecting these 50 billion rays as they travel through the scene.
The computational cost is this high because most of the rays being traced will not end at the
camera. The likelihood that a ray that has been randomly bounced off some object in the scene
will happen to have such a direction that it will end up at the camera’s lense is tiny. In order to
capture enough light rays to produce an image, we have to trace huge quantities of rays. Most of

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 70

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

the work done in tracing these rays is wasted. Despite the huge computational burden, the final
scene still looks noisy and black speckles are visible in what should be smooth-coloured surfaces.
These are locations for which no light rays were captured.

Due to their computational expense, forward raytracers are not used in practice for rendering com-
plex scenes (they have some applications in real-time rendering that we will study later on). In-
stead, state-of-the-art rendering uses reverse ray tracing - which we will simply call ray tracing to
produce very high quality images at a reasonable computational expense.

A scene rendered with a modern ray tracer. [Source: Wikipedia, author: Gilles Tran]

In this section we will examine in detail the process of ray tracing a scene. The ray tracer will
use the Phong illumination model, and incorporate global illumination effects such as reflections,
refraction, and shadows, that are not considered by local illumination models such as Phong.

7.1 The Ray Tracing Process
Assuming a pinhole camera, the colour at a pixel corresponds to a unique ray of light, arriving at
the camera in a direction given by the line through the pixel and the center of projection as shown
below.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 71

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

Basic ray-tracing process. The colour at each pixel is the colour of the ray of light through that pixel and
the center of projection

Therefore, to render a scene the ray tracer must figure out for each pixel in the image what the
direction of the corresponding ray is, and the colour of that ray. The colour of the ray depends
on where it originates. If the ray comes directly from the light source, it will have the colour of
that lightsource. If it has been bounced off, reflected, or refracted by an object in the scene, then
the colour will depend on the object’s surface properties as well as the scene’s lightsources, and
may be affected by secondary illumination (light that has been reflected off other surfaces in the
scene). The basic ray tracing algorithm, also known as Whitted ray tracing after its inventor, Turner

Whitted, consists of the following:

For each pixel:
1.1) Cast a ray from the eye of the camera through the pixel,

and find the first surface hit by the ray.
1.2) Determine the surface radiance at the surface intersection

with a combination of local and global models.

1.2.1) The local component is given by the Phong illimination
model, evaluated at the surface in question.

1.2.2) To estimate the global component, trace rays from
the surface point to possible incident directions
to determine how much light comes from each direction.

The above formulation leads to a recursive algorithm that follows rays of light from the camera
back to a lightsource. In Whitted ray tracing, the global component involves only two additional

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 72

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

rays, one for handling perfect reflections, and one for handling refraction. We will now examine
each of the steps involved in the raytracing process.
Computational Issues

• Forming rays

• Finding ray intersections with objects

• Finding the closest object intersection

• Determining surface normals at the intersection

• Evaluating reflectance models at the intersection

7.2 Ray Casting
We want to find the ray from the eye through pixel (i, j). First we must determine the loction of
this pixel in world coordinates. All further computations will take place in the world coordinate
frame in which objects and light sources are defined.

Geometry of ray casting. We need to determine the origin in world coordinates p̄i,j , and direction ~di,j of a
ray through the pixel at (i, j)

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 73

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

• Camera Model
ēW is the origin of the camera, in world space.
~u, ~v, and ~w are the world space directions corresponding to the ~x, ~y, and ~z axes in eye space.
The image plane is defined by (p̄− q̄) · ~w = 0, or q̄ + a~u+ b~v, where q̄ = ēW + f ~w.

• Window
A window in the view-plane is defined by its boundaries in camera coordinates: wl, wr, wt,
and wb. (In other words, the left-most edge is the line (wl, λ, f).)

• Viewport
Let the viewport (i.e., output image) have columns 0...nc − 1 and rows 0...nr − 1 (i.e. the
image size is nr × nc pixels). (0, 0) is the upper left entry.
The camera coordinates of pixel (i, j) are as follows:

p̄Ci,j = (wl + i∆u,wt + j∆v, f)

∆u =
wr − wl
nc − 1

∆v =
wb − wt
nr − 1

In world coordinates, this is:

p̄Wi,j =

 | | |~u ~v ~w
| | |

 p̄Ci,j + ēW

• Ray: Finally, the ray is then defined in world coordinates as follows:

r̄(λ) = p̄Wi,j + λ~di,j

where ~di,j = p̄Wi,j − ēW . For λ > 0, all points on the ray lie in front of the viewplane along a
single line of sight.

7.3 Intersections
We now have a ray through some pixel in our image, the next step is to figure out whether that
ray hits any of the objects or light sources in the scene. This means that we need to check for
intersection between the ray, denoted by r̄(λ) = ā + λ~d, λ > 0, and each object or area light
source. The intersection test will depend on the type of object. Here we develop intersection tests
for the most common primitive shapes. We will then show how to apply these simple tests to
affinely deformed shapes so we can handle generalized versions of graphics primitives and thus
render a scene of arbitrary complexity.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 74

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

7.3.1 Triangles

Complex shapes in computer graphics are very often modelled as triangle meshes. Therefore,
solving for the intersection between a ray and a triangle should be our first task.
Define a triangle with three points, p̄1, p̄2, and p̄3.

Testing for intersection between a ray and a triangle

Here are two ways to solve for the ray-triangle intersection.

• Intersect r̄(λ) with the plane (p̄− p̄1) · ~n = 0 for ~n = (p̄2 − p̄1)× (p̄3 − p̄1) by substituting
r̄(λ) for p̄ and solving for λ. That is:

(ā+ λ~d− p̄1) · ~n = 0

λ∗ =
(p̄1 − ā) · ~n

~d · ~n
The intersection point p̄i = r̄(λ∗).

Aside:
What does it mean when ~d · ~n = 0?
What does it mean when ~d · ~n = 0 and (p̄1 − ā) · ~n = 0?

Once the intersection is found, test whether it happens inside the triangle. To do this, we
check against each edge as follows: Take the edge ~e1,2 = p̄2−p̄1, and the vector ~v1,i = p̄i−p̄1.
The intersection point is inside with respect to edge ~e1,2 if (~e1,2 × ~vi,1) · ~n ≥ 0. Similarly for
the remaining two edges.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 75

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

• An alternate method is to solve for α and β where p̄(α, β)p̄1 + α(p̄2 − p̄1) + β(p̄3 − p̄1), i.e.
r̄(λ) = ā+ λ~d = p̄1 + α(p̄2 − p̄1) + β(p̄3 − p̄1). This leads to the 3x3 system | | |

−(p̄2 − p̄1) −(p̄3 − p̄1) ~d
| | |

 α
β
λ

 = (p̄1 − ā)

Invert the matrix and solve for α, β, and λ. The intersection is in the triangle when the
following conditions are all true:

α ≥ 0
β ≥ 0

α + β ≤ 1

7.3.2 Spheres

Define the unit sphere centered at c̄ by ||p̄− c̄||2 = 1.

A ray can intersect a sphere at two different points

Substitute a point on the ray r̄(λ) into this equation:

(ā+ λ~d− c̄) · (ā+ λ~d− c̄)− 1 = 0

Expand this equation and write it in terms of the quadratic form:

Aλ2 + 2Bλ+ C = 0

A = ~d · ~d
B = (ā− c̄) · ~d

C = (ā− c̄) · (ā− c̄)− 1

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 76

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

The solution is then:

λ =
−2B ±

√
4B2 − 4AC

2A
= −B

A
±
√
D

A
,D = B2 − AC

If D < 0, there are no intersections. If D = 0, there is one intersection; the ray grazes the sphere.
If D > 0, there are two intersections with two values for λ, λ1 and λ2.

When D > 0, three cases of interest exist:

• λ1 < 0 and λ2 < 0. Both intersections are behind the view-plane, and are not visible.

• λ1 > 0 and λ2 < 0. The p̄(λ1) is a visible intersection, but p̄(λ1) is not.

• λ1 > λ2 and λ2 > 0. Both intersections are in front of the view-plane. p̄(λ2) is the closest
intersection.

7.3.3 Cylinders and Cones

A right-circular cylinder may be defined by x2 + y2 = 1 for |z| ≤ 1. A cone may be defined by
x2 + y2 − 1

4
(1− z)2 = 0 for 0 ≤ z ≤ 1.

• Find intersection with “quadratic wall,” ignoring constraints on z, e.g. using x2 + y2 = 1 or
x2 + y2 − 1

4
(1 − z2) = 0. Then test the z component of p̄(λ∗) against the constraint on z,

e.g. z ≤ 1 or z < 1.

• Intersect the ray with the planes containing the base or cap (e.g. z = 1 for the cylinder).
Then test the x and y components of p̄(λ∗) to see if they satisfy interior constraints (e.g.
x2 + y2 < 1 for the cylinder).

• If there are multiple intersections, then take the intersection with the smallest positive λ (i.e.,
closest to the start of the ray).

7.3.4 Affinely Deformed Objects

Given our set of intersection tests for simple 3D primitive shapes. We will now see how we can use
these same tests to handle any affinely transformed version of our basic shapes, therefore enabling
us to render any scenes that can bee created by combining suitably transformed shapes with ease.
Proposition: Given an intersection method for an object, it is easy to intersect rays with affinely
deformed versions of the object. We assume here that the affine transformation is invertible.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 77

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

A canonical objects defined by the equation f(x̄) = 0 and its affinely transformed version F (ȳ) = 0. We
can compute the intersection point between a ray and the deformed object by using the intersection test for

the canonical shape with a suitably transformed ray.

• Let F (ȳ) = 0 be the deformed version of f(x̄) = 0, where ȳ = Ax̄+ ~t.
i.e. F (ȳ) = f(A−1(ȳ − ~t)) = 0, so F (ȳ) = 0 iff f(x̄) = 0.

• Given an intersection method for f(x̄) = 0, find the intersection of r̄(λ) = ā + λ~d and
F (ȳ) = 0, where λ > 0.

• Solution: Substitute r̄(λ) into the implicit equation f = F (ȳ):

F (r̄(λ)) = f
(
A−1

(
r̄ (λ)− ~t

))
= f(A−1(ā+ λ~d− ~t))
= f(ā′ + λ~d′)
= f(r̄′(λ))

where
ā′ = A−1(ā− ~t)
~d′ = A−1~d

i.e. intersecting F (ȳ) with r̄(λ) is equivalent to intersecting f(x) with r̄′(λ) = ā′ + λ~d′

where λ > 0. The value of λ at the intersection point is the same in both cases.

• Exercise: Verify that, at the solution λ∗, with an affine deformation ȳ = Ax̄ + ~t, that
r̄(λ∗) = Ar̄′(λ∗) + ~t.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 78

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

7.4 Surface Normals at Intersection Points
Once we have found intersection between a ray and the closest object in the scene along its di-
rection, we need to know the surface orientation at the intersection point. This will be needed to
perform the shading computations that will determine the surface colour. In short: We cast a ray
out from a pixel and find the first surface hit, and then we want to know how much light leave the
surface along the same ray but in the reverse direction, back to the camera.
Toward this end, one critical property of the surface geometry that we need to compute is the
surface normal at the intersection point.

• For mesh surfaces, we can interpolate smoothly from face normals. This assumes the under-
lying surface is smooth.

• Otherwise we can just use the face normal.

• For smooth surfaces (e.g. with implicit forms f(x̄) = 0 or parametric forms s(α, β)), take

~n =
∇f(x̄)

||∇f(x̄)||
or

~n =

∂s
∂α
× ∂s

∂β

|| ∂s
∂α
× ∂s

∂β
||
.

as the case requires.

7.4.1 Normals for affinely-deformed surfaces

Let f(x̄) = 0 be an implicit surface, and let F (ȳ) = Ax̄+ ~t be an affine transformation, where A
is invertible. The affinely-deformed surface is

F (ȳ) = f(Q−1(x̄)) = f(A−1(x̄− ~t)) = 0 (1)

A normal of F at a point q̄ is given by

~n =
A−T~n′

||A−T~n′||
(2)

where A−T = (A−1)T and ~n′ is the normal of f at p̄ = Q−1(q̄).

1Derivation:
Let s̄ = r̄(λ∗) be the intersection point, and let (p̄− s̄) · ~n′ = 0 be the tangent plane
at the intersection point. We can also write this as:

(p̄− s̄)T~n′ = 0 (3)

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 79

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

Substituting in q̄ = Ap̄+ ~t and solving gives:

(p̄− s̄)T~n′ = (A−1(q̄ − ~t)− s̄)T~n′ (4)
= (q̄ − (As̄+ ~t))TA−T~n′ (5)

In other words, the tangent plane at the transformed point has normal A−T~n′ and
passes through point (As̄ + ~t). After normalization to ensure the normal has unit

length, we thus obtain ~n = A−T ~n′

||A−T ~n′|| .

Ray casting and intersection procedure: finds the closest
intersection between a ray and any objects in the scene.

1.1) Form ray through the pixel at (i,j).

1.2) Initialize closest_lambda=Inf, closest_normal=[0 0 0],
closest_intersection=[-Inf -Inf -Inf]

1.3) For each object in the scene:

1.3.1) Compute transformed ray using the inverse object’s
transformation

1.3.2) Compute the intersection between the transformed
ray and the corresponding canonical object. Obtain
the smallest value of lambda > 0, and the corresponding
intersection, get the normal at the intersection point

1.3.3) If (lambda < closest_lambda)

1.3.3.1) Substitute the lambda obtained in 1.2.2 in the
equation for the original ray to find the intersection
with the deformed object, update closest_intersection

1.3.3.2) Compute the normal for the deformed object and update
closest_normal

1.3.3.3) Update closest_lambda=lambda

7.5 The Scene Signature
Ray casting and intersection testing are the fundamental ray tracing operations. In order to verify
they are working correctly, we generate what is called a scene signature.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 80

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

Scene signature for a scene composed of a fractal arrangement of spheres, a ground plane, and a back
plane. The colour for each object was chosen randomly. If the ray casting and intersection code is correct,

all objects will appear at the right location, and have the correct size and shape. There should be no
unexpected breaks, holes, or corrupted image regions.

We first design a scene for which the expected layout of the objects in the corresponding image
is easy to verify. We then assign each object a fixed, constant colour (preferably unique). At this
point we use the ray casting and intersection procedure described above to render an image in
which the colour at each pixel is the constant colour assigned to the closest object intersected by
the corresponding ray (or a background colour if the ray does not intersect any object in the scene).
If the scene signature is correct, we can proceed to implement the shading component of the ray-
tracer which will assign an actual colour to each object based on its material properties and the
scene’s illumination.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 81

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

7.6 Shading
Once we have deetermined the scene surface that is closest to the camera in the direction of the ray,
we need to deyermine the colour and intensity of the light that leaves that surface in the direction
of the pixel.
This is a complex task. The colour and intensity of light along the ray is determined by the proper-
ties of the material, and the light arriving at that specific surface point from any other location in the
scene. This includes direct illumination from lightsources, as well as indirect illumination result-
ing from light reflected off other scene surfaces. Additionally, if the surface has any transparency,
we must consider light refracted by the object as well.
As we saw before, we can approximate the local appearance of a surface via the Phong illumination
model. We will now develop the simplest model of shading for ray tracing, also known as Whitted
ray tracing. It uses the Phong illumination model, and adds to it global illumination effects that
include shadows, secondary specular reflection, and refraction.

7.6.1 Basic (Whitted) Ray Tracing

In Whitted ray tracing we assume that that the light reflected from the surface is a combination
of the intensity computed by the Phong model, along with one component due to perfect specular
reflection. That is, we know that the only incoming light at p̄ that will be reflected in the direction
−~di,j will be that coming from the corresponding mirror direction (i.e., ~ms = −2(~di,j ·~n))~n+ ~di,j).
We can find out how much light is incoming from direction ~ms be casting another ray into that
direction from p̄ and calculating the light reflected from the first surface hit.
Note that this secondary specular reflection is different from the specular component of the Phong
model which gives you specular highlights only and does not require ray casting but depends
exclusively on local properties of the surface.
Because of the need to cast additional rays in the specular direction (and later on we will need to do
a similar thing also for refraction) the ray tracing process becomes recursive: In order to compute
light colour and intensity at a point, we must first determine the same quantities for other scene
points that reflect light onto it.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 82

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

Geometry of Whitted ray tracing. All vectors are unit length, and can be determined from the geometry of
the surface at the intersection point. The colour and intensity of light traveling back to the camera along ray
r̄i,j(λ) is computed using the Phong illumination model, plus the intensity of light arriving at point p̄ from

the direction of r̄spec(λ) which is obtained via a recursive call to the raytracing procedure.

In summary, for basic (Whitted) ray tracing, the reflectance model calculation comprises:

• A local model (e.g., Phong) to account for diffuse and off-axis specular reflection (highlights)
due to light sources.

• An ambient term to approximate the global diffuse components.

• Cast rays from p̄ into direction ~ms = −2(~di,j · ~n)~n+ ~di,j to estimate ideal mirror reflections
due to light coming from other ojects (i.e., secondary reflection).

For a ray r(λ) = ā + λ~d which hits a surface point point p̄ with normal ~n, the reflectance is given
by

E = raIa + rdId max(0, ~n · ~s) + rsIs max(0,~c · ~m)α + rgIspec

where ra, rd, and rs are the reflection coefficients of the Phong model, i.e. they define the surface’s
reflectance properties as far as the ray tracer is concerned; Ia, Id, and Is are the light source
intensities for the ambient, diffuse and specular terms of the Phong model (typically Id and Is are
the same, and correspond the intensity of a light source in the scene); ~s is the light source direction
from p̄, ~c = −~di,j is the direction from p̄ to the camera, and ~m = 2(~s ·~n))~n−~s is the perfect mirror
direction with respect to the lightsource.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 83

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

Local components of the shading model. From left to right: Diffuse component, specular component, and
full Phong illumination.

Finally, Ispec is the light obtained from the recursive ray trace call for a ray from p̄ travelling in
direction ~ms and gives the model some ability to account for secondary illumination. The amount
of secondary reflection is controlled by rg - an additional material property.

Local Phong model plus secondary reflections

Note:

As was previously discussed, we handle colour by representing both light sources
and materials in terms of their RGB colour values. Therefor, in practice, we need

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 84

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

to evaluate the shading equation above 3 times, once for each colour component.
The light intensities and albedos will be defined as RGB triplets. For example, Id =
[IdR IdG IdB], rd = [rdR rdG rdB], and the remaining quantities are defined in an
analogous way.

For multiple light sources, the final value for radiance returning along the ray from p̄
to the camera is computed as the sum of the contributions from each light source to
the total light intensity in direction ~c. That is, for a scene with L lightsources:

E = raIa+
∑L

k=1 (rdId,k max(0, ~n · ~sk) + rsIs,k max(0,~c · ~mk)
α) + rgIspec

where ~sk is the unit vector pointing from p̄ to lightsource k, ~mk is the corresponding
direction of mirror reflection, Id,k is the diffuse albedo for this lightsource, and Is,k
is the corresponding specular albedo.

7.6.2 Shadows

The next step in building the ray tracer is to correctly account for shadows. Shadows occur wher-
ever lightsources are blocked from illuminating a surface by other objects in the scene. Therefore,
shadows can easily be implemented by casting a ray from p̄ in the direction of the lightsource:

r̄shade(λ) = p̄+ λ(l̄ − p̄)

where l̄ is the lightsource’s position. Note that the direction vector for this ray ~dshade = (l̄ − p̄)
is not unit length. We test for intersection between this shadow ray and any objects in the scene
other than the object that contains point p̄. If the closest object intersection for the shadow ray
occurs for 0 < λ < 1 then there is an object between the surface point p̄ and the lightsource. If that
is the case, we turn off the diffuse and specular components of the Phong model, which reduces
the shading equation for point p̄ to

E = raIa + rgIspec

For a scene with multiple light sources, we must cast L shadow rays and zero-out the diffuse and
specular contributions of any lightsources that are blocked from the point of view of p̄.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 85

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

Shadows implemented via ray-casting of shadow rays.

7.6.3 Transmission/Refraction

The final component of our basic raytracer handles transparent or partially transparent objects.
When light encouters a transmissive medium, it is refracted, meaning it changes direction of travel.

From left to right: Light refraction through a plastic block, in a glass of water, and simulated refraction for
transparent objects in the Tantalum renderer. [Source: Wikipedia, authors: ajizai, Meganbecket27,

Benedikt Bitterli

In order to simulate refraction, let’s briefly review how light changes direction when it encounters
a different, transmissive medium. The constant c which we normally think of when we speak of
the speed of light, is actually the speed of light in vacuum. In any other medium (including air),
light travels at a slower speed. The change in direction when light transitions from one medium to
a different one is the result of this change in velocity.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 86

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

Refraction of light at the boundary between two media with different refraction indexes

The precise amount of bending is described by Snell’s law:

sin θ1
sin θ2

= c1
c2

Here c1 and c2 represent the speed of light in the corresponding medium. If c2 < c1, light bends
towards the normal (e.g. from air to water or glass). If c2 > c1, light bends away from the normal
(e.g. from water or glass to air). This has some interesting consequences. In particular, for light
travelling from a slower to a faster medium Snell’s law dictates that for c2 > c1 there exists a
critical angle θc such that any light arriving at the boundary at an angle greater than θc is reflected
in full back into the first medium (no transmission occurs). This phenomenon is called total internal
reflection, and is what allows materials such as fiber optics to conduct light despite bends and turns
in the material.

Total internal reflection when c2 > c1. Beyond θc light is reflected back into the first medium

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 87

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

In order to account for refraction effects in our basic ray tracer, we extend the shading model to
include one component from light refracted through the object. The colour and intensity of light for
this transmissive component is obtained via a recursive raytrace call for a ray along the direction
of the transmitted light. There are several ways to incorporate the transmission component to our
shading model, one such model is given by:

E = γ(raIa + rdId max(0, ~n · ~s) + rsIs max(0,~c · ~m)α) + (1− γ)rtIt + rgIspec

Where now we have an additional component rtIt for the transmitted light, and a constant γ that
controls how transparent the object. For γ = 1 the object is completely opaque and the equation
above reduces to the familiar Whitted ray tracing shading model, for γ = 0 the object is completely
transparent and its appearance is completely determined by light transmitted through it (though
notice that the material can change the colour of transmitted light via rt). For other values of
γ, appearance becomes a mixture of the Phong local illumination with light from the transmitted
component. Note that the global specular component is not affected by γ in this model.
The direction for the transmitted ray is given by:

~dt = r~b+

(
rc−

√
1− r2(1− c2)

)
~n

Where ~b is the direction of the incident ray, c = ~−n · ~b, and r = c2/c1 = n1/n2 and relates the
speed of light or index of refraction of the two materials. With the above, our ray tracer can handle
fairly complex scenes consisting of objects with visually interesting properties.

Complete shading model for basic ray tracing, including local Phong illumination, global specular
reflections, and transparency

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 88

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

Note:
Normally, materials are described not in terms of the speed of light within the mate-
rial, but in terms of their index of refraction. The index of refraction for a material
is usually represented by the letter n (be careful not to confuse this with the surface
normal), and corresponds to the ratio between the speed of light in vacuum and that
of the medium. For example, in the diagram above the index of refraction for the first
material is n1 = c/c1. Indices of refraction for specific materials can be found easily
online.

A consequence of this is that the terms c2/c1 in the equation for the direction of the
transmitted ray become n1/n2. The ray tracing code must keep track of the speed of
light or the index of refraction for the medium a ray is travelling through.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 89

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

Note:
Pseudo-Code: Recursive Ray Tracer

for each pixel (i,j)
< compute ray ~rij(λ) = p̄ij + λ~dij where ~dij = p̄ij − ~e >

I = rayTrace(p̄ij, ~dij, 1);
setpixel(i, j, I)

end for

rayTrace(ā, ~b, depth)
findFirstHit(ā, ~b, output var obj, λ, p̄, ~n)
if λ > 0 then

I = rtShade(obj, p̄, ~n, −~b, depth)
else

I = background;
end if
return(I)

findFirstHit(ā, ~b, output var OBJ, λh, p̄h, ~nh)
λh = −1;
loop over all objects in scene, with object identifiers objIDk

< find λ∗ for the closest legitimate intersection of ray ~rij(λ) and object >
if (λh < 0 or λ∗ < λh) and λ∗ > 0 then

λh = λ∗

p̄h = ā + λ∗~b;
< determine normal at hit point ~nh >
OBJ = objIDk

end if
end loop

rtShade(OBJ, p̄, ~n, ~de, depth)
/* Local Component */
findFirstHit(p̄,~lw − p̄, output var temp, λh);
if 0 < λh < 1 then

Il = ambientTerm;
else

Il = phongModel(p̄, ~n, ~de, OBJ.localparams)
end if
/* Global Component */
if depth < maxDepth then

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 90

CSC418 / CSCD18 / CSC2504 Basic Ray Tracing

if OBJ has specular reflection then
< calculate mirror direction ~ms = −~de + 2~n · ~de~n >
Ispec = rayTrace(p̄, ~ms, depth+1)
< scale Ispec by OBJ.specularReflCoef >

end if
if OBJ is refractive then

< calculate refractive direction~t >
if not total internal reflection then

Irefr = rayTrace(p̄, ~t, depth+1)
< scale Irefr by OBJ.refractiveReflCoef >

end if
end if
Ig = Ispec + Irefr

else
Ig = 0

end if
return(Il + Ig)

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 91

	Basic Ray Tracing
	The Ray Tracing Process
	Ray Casting
	Intersections
	Triangles
	Spheres
	Cylinders and Cones
	Affinely Deformed Objects

	Surface Normals at Intersection Points
	Normals for affinely-deformed surfaces

	The Scene Signature
	Shading
	Basic (Whitted) Ray Tracing
	Shadows
	Transmission/Refraction

