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Figure 1: Object shape modeling. Notice that the polygons that define the shape have their vertices along
smooth curves. All of these smooth curves can be easily defined and manipulated using the corresponding
parametric form. [Source: Wikipedia, author: Unknown]

2 Curves and Geometric Primitives in 2D
Modeling objects for computer graphics involves being able to represent the shape of the object’s
surface in a way that enables us to manipulate it, transform it, and interact with it. This means
we need a mathematical representation of the object’s surface. Parametric curves are a powerful
means for representing, manipulating, and analyzing simple shapes. In this section we will study
parametric curves, their mathematical form, and their geometric properties. While the shape of
these curves may appear to be too simple to model realistic objects, in practice they allow us
to define a small set of geometric primitives; that is, simple geometric shapes such as spheres,
ellipsoids, planes, and a few other simple 3D shapes that can be combined to represent objects
with a much more complex shape.
In general, we can represent objects of arbitrary shape with collections of geometric primitives, be
they curves, or simple surfaces (see Figure 1 as an example). Polygon meshes, which we will later
see are used to represent complex objects, are also generated from the mathematical formula for
the different surfaces that make up an object.
Finally, light rays, one of the most important components of computer graphics, are modeled and
manipulated via their parametric representation. So let’s have a look at how parametric curves
define shape, and at how their shape can be manipulated.
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2.1 Parametric Curves
There are multiple ways to represent curves in two dimensions, each with particular properties
that make them suitable for handling specific instances of curves, or for performing particular
manipulations on point along the curve:

• Explicit: y = f(x), given x, find y.

Example:
The explicit form of a line is y = mx + b. There is a problem with this
representation–what about vertical lines?

• Implicit: f(x, y) = 0, or in vector form, f(p̄) = 0.

Example:
The implicit equation of a line through p̄0 and p̄1 is

(x− x0)(y1 − y0)− (y − y0)(x1 − x0) = 0.

Intuition:
– The direction of the line is the vector ~d = p̄1 − p̄0.
– So a vector from p̄0 to any point on the line must be parallel to ~d.
– Equivalently, any point on the line must have direction from p̄0 perpendic-

ular to ~d⊥ = (dy,−dx) ≡ ~n.
This can be checked with ~d · ~d⊥ = (dx, dy) · (dy,−dx) = 0.

– The vector ~n = (y1 − y0, x0 − x1) is called a normal vector.
– So, putting it all together, for any point p̄ on the line, we know that (p̄− p̄0) ·
~n = 0. This is the general form for a line through p̄0 that is perpendicular
(normal) to ~n. If you then substitute ~n = (y1−y0, x0−x1) into this implicit
equation and simplify the dot product, you get the implicit equation above.

Example:
The implicit equation for a circle of radius r and center p̄c = (xc, yc) is

(x− xc)2 + (y − yc)2 = r2,

or in vector form,
‖p̄− p̄c‖2 = r2.
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• Parametric: p̄ = f̄(λ) where f̄ : R→ R2, may be written as p̄(λ) or (x(λ), y(λ)).

Example:
A parametric line through p̄0 and p̄1 is

p̄(λ) = p̄0 + λ~d,

where ~d = p̄1 − p̄0.
Note that bounds on λ must be specified:

– Line segment from p̄0 to p̄1: 0 ≤ λ ≤ 1.
– Ray from p̄0 in the direction of p̄1: 0 ≤ λ <∞.
– Line passing through p̄0 and p̄1: −∞ < λ <∞

Example:
What’s the perpendicular bisector of the line segment between p̄0 and p̄1?

– The midpoint is p̄(λ) where λ = 1
2
, that is, p̄0 + 1

2
~d = p̄0+p̄1

2
.

– The line perpendicular to p̄(λ) has direction parallel to the normal of p̄(λ),
which is ~n = (y1 − y0,−(x1 − x0)).

Hence, the perpendicular bisector is the line `(α) =
(
p̄0 + 1

2
~d
)

+ α~n.

Example:
Find the intersection of the lines l̄(λ) = p̄0 + λ~d0 and f(p̄) = (p̄− p̄1) · ~n1 = 0.

Substitute l̄(λ) into the implicit equation f(p̄) to see what value of λ
satisfies it:

f
(
l̄(λ)

)
=

(
p̄0 + λ~d0 − p̄1

)
· ~n1

= λ~d0 · ~n1 − (p̄1 − p̄0) · ~n1

= 0

Therefore, if ~d0 · ~n1 6= 0,

λ∗ =
(p̄1 − p̄0) · ~n1

~d0 · ~n1

,

and the intersection point is l̄(λ∗). If ~d0 · ~n1 = 0, then the two lines are parallel
with no intersection or they are the same line.
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Example:
The parametric form of a circle with radius r for 0 ≤ λ < 1 is

p̄(λ) = (r cos(2πλ), r sin(2πλ)).

This is the polar coordinate representation of a circle. There are an infinite
number of parametric representations of most curves, such as circles. Can you
think of others?

An important property of parametric curves is that it is easy to generate points along a curve
by evaluating p̄(λ) at a sequence of λ values.

2.1.1 Tangents and Normals

Two vectors related to curves and surfaces are of special interest. The direction that is perpendic-
ular to the curve or surface, and the tangent direction. These vectors will be required for figuring
out how an object interacts with light, how bright it will look, and how it reflects or refracts light.
The tangent to a curve at a point is the instantaneous direction of the curve. The line containing
the tangent intersects the curve at a point. It is given by the derivative of the parametric form p̄(λ)
with regard to λ. That is,

~τ(λ) =
dp̄(λ)

dλ
=

(
dx(λ)

dλ
,
dy(λ)

dλ

)
.

The normal is perpendicular to the tangent direction. Often we normalize the normal to have unit
length. For closed curves we often talk about an inward-facing and an outward-facing normal.
When the type is unspecified, we are usually dealing with an outward-facing normal.

tangent
normal
n(λ)

τ(λ)

p(λ)

curve

We can also derive the normal from the implicit form. The normal at a point p̄ = (x, y) on a curve
defined by f(p̄) = f(x, y) = 0 is:

~n(p̄) = ∇f(p̄)|p̄ =

(
∂f(x, y)

∂x
,
∂f(x, y)

∂y

)
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1Derivation:
For any curve in implicit form, there also exists a parametric representation p̄(λ) =
(x(λ), y(λ)). All points on the curve must satisfy f(p̄) = 0. Therefore, for any
choice of λ, we have:

0 = f(x(λ), y(λ))

We can differentiate both side with respect to λ:

0 =
d

dλ
f(x(λ), y(λ)) (1)

0 =
∂f

∂x

dx(λ)

dλ
+
∂f

∂y

dy(λ)

dλ
(2)

0 =

(
∂f

∂x
,
∂f

∂y

)
·
(
dx(λ)

dλ
,
dy(λ)

dλ

)
(3)

0 = ∇f(p̄)|p̄ · ~τ(λ) (4)

This last line states that the gradient is perpendicular to the curve tangent, which is
the definition of the normal vector.

Example:
The implicit form of a circle at the origin is: f(x, y) = x2 +y2−R2 = 0. The normal
at a point (x, y) on the circle is: ∇f = (2x, 2y).

Exercise: show that the normal computed for a line is the same, regardless of whether it is com-
puted using the parametric or implicit forms. Try it for another surface.

2.2 Ellipses

• Implicit: x2

a2
+ y2

b2
= 1. This is only for the special case where the ellipse is centered at the

origin with the major and minor axes aligned with y = 0 and x = 0.

a

b

• Parametric: x(λ) = a cos(2πλ), y(λ) = b sin(2πλ), or in vector form

p̄(λ) =

[
a cos(2πλ)
b sin(2πλ)

]
.
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The implicit form of ellipses and circles is common because there is no explicit functional form.
This is because y is a multifunction of x.

2.3 Polygons
A polygon is a continuous, piecewise linear, closed planar curve.

• A simple polygon is non self-intersecting.

• A regular polygon is simple, equilateral, and equiangular.

• An n-gon is a regular polygon with n sides.

• A polygon is convex if, for any two points selected inside the polygon, the line segment
between them is completely contained within the polygon.

Example:
To find the vertices of an n-gon, find n equally spaced points on a circle.

r

θ

In polar coordinates, each vertex (xi, yi) = (r cos(θi), r sin(θi)), where θi = i2π
n

for
i = 0 . . . n− 1.

• To translate: Add (xc, yc) to each point.

• To scale: Change r.

• To rotate: Add ∆θ to each θi.
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