
CSC418 / CSCD18 / CSC2504 Transformations

3 Transformations
We have seen how to define simple curves, however, these canonical curves or primitives are not
by themselves sufficiently rich to describe the complex shapes of everyday objects. We could
attempt to find the particular parametric equations that define the shape we are modeling, but this
can become cumbersome very quickly, and if the shape changes then we would require different
equations.
Fortunately, there is a powerful and simple way to increase the expressive power of our primitive
shapes so that they can describe objects of arbitrary complexity: Transformations. Simply stated,
we will define a family of operations we can apply to our geometric primitives, such as changing
their size, rotating them, or moving them around. We will then use combinations of transformations
in order to give our primitive curves the shape and location we want in our scene. In what follows,
we look at how these transformations are handled mathematically. Initially we will look at the 2D
case, but in the next Section we will see that generalizing this process to 3D objects and surfaces
is straightforward.
Given a small number of graphical primitives, we can use transformations to build shapes of arbi-
trary complexity easily.

3.1 2D Transformations
Given a point cloud, polygon, or sampled parametric curve, we can use transformations for several
purposes:

1. Change coordinate frames (world, window, viewport, device, etc).

2. Compose objects of simple parts with local scale/position/orientation of one part defined
with regard to other parts. For example, for articulated objects.

3. Use deformation to create new shapes.

4. Useful for animation.

There are three basic classes of transformations:

1. Rigid body - Preserves distance, angles, and orientation.

• Examples: translation and rotation.

2. Conformal - Preserves angles and orientation.

• Examples: translation, rotation, and uniform scaling.

3. Affine - Preserves parallelism. Lines remain lines.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 14



CSC418 / CSCD18 / CSC2504 Transformations

• Examples: translation, rotation, scaling, shear, and reflection.

Examples of transformations:

• Translation by vector ~t: p̄1 = p̄0 + ~t.

• Rotation counterclockwise by θ: p̄1 =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
p̄0.

• Uniform scaling by scalar a: p̄1 =

[
a 0
0 a

]
p̄0.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 15



CSC418 / CSCD18 / CSC2504 Transformations

• Nonuniform scaling by a and b: p̄1 =

[
a 0
0 b

]
p̄0.

• Shear by scalar h: p̄1 =

[
1 h
0 1

]
p̄0.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 16



CSC418 / CSCD18 / CSC2504 Transformations

• Reflection about the y-axis: p̄1 =

[
−1 0
0 1

]
p̄0.

3.2 Affine Transformations
An affine transformation takes a point p̄ to q̄ according to q̄ = F (p̄) = Ap̄ + ~t, a linear transfor-
mation followed by a translation. You should understand the following proofs.

• The inverse of an affine transformation is also affine, assuming it exists.

Proof:
Let q̄ = Ap̄+ ~t and assume A−1 exists, i.e. det(A) 6= 0.
Then Ap̄ = q̄ − ~t, so p̄ = A−1q̄ − A−1~t. This can be rewritten as p̄ = Bq̄ + ~d,
where B = A−1 and ~d = −A−1~t.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 17



CSC418 / CSCD18 / CSC2504 Transformations

Note:
The inverse of a 2D linear transformation is

A−1 =

[
a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
.

• Lines and parallelism are preserved under affine transformations.

Proof:
To prove lines are preserved, we must show that q̄(λ) = F (l̄(λ)) is a line, where
F (p̄) = Ap̄+ ~t and l̄(λ) = p̄0 + λ~d.

q̄(λ) = Al̄(λ) + ~t

= A(p̄0 + λ~d) + ~t

= (Ap̄0 + ~t) + λA~d

This is a parametric form of a line through Ap̄0 + ~t with direction A~d.

• Given a closed region, the area under an affine transformation Ap̄+ ~t is scaled by det(A).

Note:

– Rotations and translations have det(A) = 1.

– Scaling A =

[
a 0
0 b

]
has det(A) = ab.

– Singularities have det(A) = 0.

Example:

The matrixA =

[
1 0
0 0

]
maps all points to the x-axis, so the area of any closed

region will become zero. We have det(A) = 0, which verifies that any closed
region’s area will be scaled by zero.

• A composition of affine transformations is still affine.

Proof:
Let F1(p̄) = A1p̄+ ~t1 and F2(p̄) = A2p̄+ ~t2.
Then,

F (p̄) = F2(F1(p̄))

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 18



CSC418 / CSCD18 / CSC2504 Transformations

= A2(A1p̄+ ~t1) + ~t2

= A2A1p̄+ (A2
~t1 + ~t2).

Letting A = A2A1 and ~t = A2
~t1 + ~t2, we have F (p̄) = Ap̄ + ~t, and this is an

affine transformation.

3.3 Homogeneous Coordinates
Homogeneous coordinates are another way to represent points to simplify the way in which we
express affine transformations. As shown juat above, compositing transformations becomes cum-
bersome because of the need to carry two terms with each transformation.
With homogeneous coordinates, affine transformations become matrices, and composition of trans-
formations is as simple as matrix multiplication. In future sections of the course we exploit this in
much more powerful ways.

With homogeneous coordinates, a point p̄ =

[
px
py

]
is augmented with a 1, to form

p̂ =

 px
py
1

 =

 p′x
p′y
pw

,

Notice that, in certain conditions, pw may not be 1.

Given p̂ in homogeneous coordinates, to get p̄, we divide p̂ by its last component and discard the

last component, p̄ =

[
p′x/pw
p′y/pw

]
. Because of this definition, all points

[
αp̄
α

]
represent the same

point p̄ for real α 6= 0.

Example:
The homogeneous points (2, 4, 2) and (1, 2, 1) both represent the Cartesian point
(1, 2). It’s the orientation of p̂ that matters, not its length.

Many transformations become linear in homogeneous coordinates, including affine transforma-
tions: [

qx
qy

]
=

[
a b
c d

] [
px
py

]
+

[
tx
ty

]

=

[
a b tx
c d ty

] px
py
1


=

[
A ~t

]
p̂

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 19



CSC418 / CSCD18 / CSC2504 Transformations

To produce q̂ rather than q̄, we can add a row to the matrix:

q̂ =

[
A ~t
~0T 1

]
p̂ =

 a b tx
c d ty
0 0 1

p̂.
This is linear! Bookkeeping becomes simple under composition.

Example:
F3(F2(F1(p̄))), where Fi(p̄) = Ai(p̄) + ~ti becomes M3M2M1p̄, where Mi =[
Ai

~ti
~0T 1

]
.

With homogeneous coordinates, the following properties of affine transformations become appar-
ent:

• Affine transformations are associative.
For affine transformations F1, F2, and F3,

(F3 ◦ F2) ◦ F1 = F3 ◦ (F2 ◦ F1).

• Affine transformations are not commutative.
For affine transformations F1 and F2,

F2 ◦ F1 6= F1 ◦ F2.

3.4 Uses and Abuses of Homogeneous Coordinates
Homogeneous coordinates provide a different representation for Cartesian coordinates, and cannot
be treated in quite the same way. For example, consider the midpoint between two points p̄1 =
(1, 1) and p̄2 = (5, 5). The midpoint is (p̄1 + p̄2)/2 = (3, 3). We can represent these points
in homogeneous coordinates as p̂1 = (1, 1, 1) and p̂2 = (5, 5, 1). Directly applying the same
computation as above gives the same resulting point: (3, 3, 1). However, we can also represent
these points as p̂′1 = (2, 2, 2) and p̂′2 = (5, 5, 1). We then have (p̂′1 + p̂′2)/2 = (7/2, 7/2, 3/2),
which corresponds to the Cartesian point (7/3, 7/3). This is a different point, and illustrates that
we cannot blindly apply geometric operations to homogeneous coordinates. The simplest solution
is to always convert homogeneous coordinates to Cartesian coordinates. That said, there are
several important operations that can be performed correctly in terms of homogeneous coordinates,
as follows.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 20



CSC418 / CSCD18 / CSC2504 Transformations

Affine transformations. An important case in the previous section is applying an affine trans-
formation to a point in homogeneous coordinates:

q̄ = F (p̄) = Ap̄+ ~t (1)
q̂ = Âp̂ = (x′, y′, 1)T (2)

It is easy to see that this operation is correct, since rescaling p̂ does not change the result:

Â(αp̂) = α(Âp̂) = αq̂ = (αx′, αy′, α)T (3)

which is the same geometric point as q̂ = (x′, y′, 1)T

Vectors. We can represent a vector ~v = (x, y) in homogeneous coordinates by setting the last
element of the vector to be zero: v̂ = (x, y, 0). However, when adding a vector to a point, the point
must have the third component be 1.

q̂ = p̂+ v̂ (4)
(x′, y′, 1)T = (xp, yp, 1) + (x, y, 0) (5)

The result is clearly incorrect if the third component of the vector is not 0.

Aside:
Homogeneous coordinates are a representation of points in projective geometry.

3.5 Hierarchical Transformations
It is often convenient to model objects as hierarchically connected parts. For example, a robot arm
might be made up of an upper arm, forearm, palm, and fingers. Rotating at the shoulder on the
upper arm would affect all of the rest of the arm, but rotating the forearm at the elbow would affect
the palm and fingers, but not the upper arm. A reasonable hierarchy, then, would have the upper
arm at the root, with the forearm as its only child, which in turn connects only to the palm, and the
palm would be the parent to all of the fingers.

Each part in the hierarchy can be modeled in its own local coordinates, independent of the other
parts. For a robot, a simple square might be used to model each of the upper arm, forearm, and
so on. Rigid body transformations are then applied to each part relative to its parent to achieve
the proper alignment and pose of the object. For example, the fingers are positioned to be in the
appropriate places in the palm coordinates, the fingers and palm together are positioned in forearm
coordinates, and the process continues up the hierarchy. Then a transformation applied to upper
arm coordinates is also applied to all parts down the hierarchy. A simple example is shown below.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 21



CSC418 / CSCD18 / CSC2504 Transformations

Example:
Example of hierarchical transformations for articulated objects. Here we have a very
simple robot arm consisting of 3 suitably transformed rectangles as shown below.
Note the global transformations required to set up each shape in the right place.

Because the transformations are global (i.e. each shape’s transform matrix is in-
dependent of all other shapes), changing the configuration of one of the parts (for
example, rotating the middle segment as depicted below) forces us to figure out the
global matrices required for anything else attached to the part that moved. This may
not be a straightforward task, and in any event, is cumbersome to do for complex
objects

Consider now the situation in the following diagram.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 22



CSC418 / CSCD18 / CSC2504 Transformations

Here we define the robot arm as a hierarchical shape consisting of three parts, where
each part is defined in the local reference frame of the part that precedes it.

The first part establishes a local coordinate frame aligned with the global X and Y
axes, but scaled by 2, i.e. a change of one unit in XM1 is equal to two units along the
global X axis, and the same for Y .

We can now define the transformation that puts the middle segment of the robot’s
arm in the right place, but we will do so within M1’s local coordinate frame. First
note that the middle segment is located at the top-right corner of the bottom segment,
so a translation is needed. The right translation in M1’s coordinate frame is T (1, 2)
- the size of the original rectangle shape! We then need to scale the shape by .5 in
each direction because the middle segment is half the size of the first, and we need
to rotate by −θ.

The resulting transform M2 defines a local coordinate frame aligned with the mid-
segment of the robot’s arm. Drawing the end segment within this coordinate frame
is simple: Translate T (1, 2), scale S(.5, .5), and rotate by −φ.

The great advantage of this approach is that all we need to do to specify any config-
uration of the robot’s arm is to set the values for θ and φ. Changing these parameters
no longer forces us to figure out a new global matrix for related parts. Any objects
composed of multiple, articulated parts, are best modeled using hierarchical transfor-
mations of this kind.

Note: When composing the transformation matrices, it’s important to get the order
of the transformations right. As noted above, when using homogeneous coordinates
the composition of affine transforms is simply a matrix multiplication. For two affine
transformations that are performed in sequence, Ti followed by Tj , the final transform

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 23



CSC418 / CSCD18 / CSC2504 Transformations

is obtained by left multyplying Ti by Tj , that is T = Tj · Ti.

With hierarchical transforms, however, the order is inverted. That is, in order to
draw part j whose parent part i has a hierarchical transform matrix Mi, we right
multiply Mi by the local affine transform Tjlocal required to obtain part j in part i’s
local reference frame. The final hierarchical transform matrix in this case is given by
Mj = Mi · Tjlocal.

Caveat: Hierarchical transforms do not work in general with non-uniform scaling.
Because of the order in which the transformation matrices are composited, intro-
ducing non-uniform scaling anywhere along the hierarchy changes the way rotations
behave. Avoid non-uniform scaling if you plan to use hierarchically defined objects.
This is the reason we started with a rectangle in the example above, and not from a
square.

Copyright c© 2017 D. Fleet and A. Hertzmann and F. Estrada 24


	Transformations
	2D Transformations
	Affine Transformations
	Homogeneous Coordinates
	Uses and Abuses of Homogeneous Coordinates
	Hierarchical Transformations


