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Unit 6
Decision Making Under Uncertainty – Bayes Nets

So far, we have been dealing with AI problems where we assume the values we sense or measure
for state variables are all reliable and accurate. Unfortunately, outside of simulated environments, the
AI problems we may need to solve will typically involve some amount of uncertainty.

A few possible sources of uncertainty include:

- Noise – this will affect the values of the state variables the agent uses to plan and take actions
- Imperfect model of the problem – Variables that are either not measurable, or have not been

included in the state representation the agent has access to
- Limitations in sensors or in the ability of the agent to observe certain state variables
- Incorrect assumptions about the world – e.g. assuming a static environment where in reality the

environment may be changing.

The question that concerns us is – how can we make optimal decisions under uncertainty.

As it happens, the optimal tool for this  is  Probability.  We will formulate our decision making
process as a probabilistic inference process, in which:

- Given all the available (and likely noisy) information we can obtain about the environment
- We attempt to infer the most likely state for the variables we are interested in

Decision making then uses these inferred states to take suitable actions.

In order for us to understand how this process works, first we have to review a few probability
concepts we will need:

- A Random Variable – it’s a variable whose value depends on the outcome of a random event. E.g. the
current temperature in Toronto which will depend on the current, variable, and hard to predict weather.

* Random variables have a domain, and are represented by probability distributions. A PDF for
   continuous variables, and a PMF for discrete variables. Here we will focus on discrete random 
   variables.
   The probability distribution tells us what is the likelihood of the random variable taking on any
   of the values in its domain.

* Most problems of interest will involve multiple random variables interacting in some way, so
   we need a way to represent the probability of observing that at any given time these variables
   have specific values.

- Joint Distribution –   the joint probability distribution gives 

the likelihood that the set of variables in our problem takes on a specific set of values. Recall that our 
variables are discrete, so the joint probability distribution is given by a table with k dimensions, in this 
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table there’s an entry for each possible combination of values for the variables in our problem, and this 
entry gives the probability of that specific combination happening.

Example: Suppose we have two very simple random variables – T (temperature), and W (weather).
T can take the values {‘hot’,’cold’}, and W can take values {‘sunny’,’rainy’}. A joint probability table 
would for these two variables would look like:

p(T,W) W=’sunny’ W=’rainy’

T=’hot’ .4 .1

T=’cold’ .2 .3

Notice that,   and  

The first statement simply says that all probabilities are positive or zero, and the second implies
that all possible outcomes are accounted for – the sum of probabilities over the entire table adds up to
1. 

One  important  factor  to  keep  in  mind  is  that  the  size  of  the  joint  probability  table  grows
exponentially  with the number of variables.  For a  problem with  k  variables,  each of which has a
domain of size d, the joint probability table contains  entries.

- Events – These are possible outcomes (specific values for variables in our problem). We are typically
interested in the probability of specific outcomes happening. E.g.  ‘What is  the probability that the
mouse will get eaten if it chooses to move to the right’.

In the example above, we could come up with a number of events we may find relevant:

Notice  that  we do not  necessarily  care  about  specifying  the  value  of  all  the  variables  in  the
problem. We may not care about whether it’s hot or cold outside, just whether or not it’s likely to be
rainy (in which case we may need an umbrella). 

The probabilities for events can be computed directly from the joint probability table – by adding
up  the  probabilities  of  all  entries  that  match  the  event  we  are  interested  in.  This  is  called
marginalization. In the example above, to obtain the probability that the weather is rainy, we go to the
table and add up the probabilities for ‘rainy and hot’,  and ‘rainy and cold’ -  we marginalize over
temperature since we don’t care about its value. 
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- Conditional Probability – Most of the time, the kind of events we are interested in results from
having some information about the state of the world – as noted earlier, the information we have may
be noisy, or incomplete, and there may be variables we can’t observe.

We are interested in estimating the value of  unobserved  variables  given the observed values for
other variables involved in our problem. We are in effect, trying to estimate the conditional probability

Notice that we can estimate this probability if we have access to the joint probability table. In the
earlier example:

Notice that this 60% probability that the weather is rainy  given that we have observed it’s cold
outside is not in the joint probability table.

- Probabilistic Inference – Observe (measure) values for a subset of the variables in our problem. Then
compute  conditional  probabilities  for  the  remaining variables  from the  joint  distribution.  As more
information becomes available (more variables have been measured, or more accurate measurements
have been made) the conditional probabilities are updated accordingly.

- Product Rule – We can factor the joint distribution for a set of variables as follows:

The factorization is not unique – we can factor the joint in any order we please. 

- Conditional Independence – As noted above, the joint probability table grows exponentially with the
number of variables in our problem. In practice it’s often very difficult to fill this table.

In order to make the inference process more manageable, we often  model  specific dependencies
between variables in our problem, and take advantage of conditional independence relationships that
will allow us to factor the joint probability into smaller/easier to manage conditional probability tables.

A classic example of this idea is a problem containing three variables

S – Smoke has been detected in a room (True/False)
F – There is a fire in the room (T/F)
A – A smoke alarm is ringing (T/F)

The joint probability for this problem can be factored as

P(S,F,A)=p(S)p(F|S)p(A|F,S)
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Clearly, the state of the alarm depends on both the smoke and the fire variables. That makes sense,
the presence of a fire would increase the likelihood a smoke alarm is sounding, likewise, the presence
of smoke would increase the likelihood of the smoke alarm going off.

However, suppose we observe smoke (that is, we know that S=True). This has the effect of de-
coupling the state of the alarm from the value of the F (fire) variable. The presence of smoke has the
effect of increasing the likelihood that the alarm will go off, whether or not there is a fire in the room!

We say that the value of A (alarm) is conditionally independent of F (fire), given the value for S
(smoke). This may not seem like a very big change – but in a problem with many variables, conditional
independence can greatly simplify our factorization of the joint probability. 

Bayes Nets

Bayesian Networks (also called Belief Networks, or more succinctly Bayes Nets) are graphical
models used to represent the dependencies between variables in a probabilistic inference problem, with
the goal of allowing us to take advantage of conditional and marginal independence relationships so as
to simplify the inference process.

The building blocks of Bayes Nets are triplets of variables in specific configurations:

Indirect cause – The fire alarm example above fits this category, F (fire) causes S (smoke) which
triggers an A (alarm). 

The joint probability for the triplet of variables above is factored as 

p(A,B,C)=p(A)p(B|A)p(C|B)

Common cause – Models two variables whose state depends on a single common cause. Classic
example is a pair of symptoms of a disease known to cause both

A B C

A

B C



CSC D84 – Artificial Intelligence – Winter 2020. F. Estrada

The joint probability for the triplet of variables above is factored as

p(A,B,C)=p(A)p(B|A)p(C|A)

Common effect – A single variable whose state could be explained by two possible causes. An classic
example is a specific symptom (e.g. fever) which could be explained by two different illnesses

The joint probability for the triplet of variables above is factored as

p(A,B,C)=p(A)p(B)p(C|A,B)

Bayes Nets consist of larger groups of variables related by one of the three types of relationships
shown above.

Here’s a sample Bayes Net showing how it models relationships between variables, how we would
need  to  specify  conditional  probability  tables  for  each  variable  involving  only  the  variables  the
respective template indicates are relevant, and how the structure of the network results in a simpler
factorization of the joint probability for the set of variables.

A B

C
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Inference in Bayesian Nets

Once we have a model for our problem in the form of a Bayes Net, we can use it to perform 
inference. The kind of questions we wish to ask are of the type:

- What is the most likely value of variables  A, B, ... X
   (for an arbitrary subset of variables in our problem)
- If I have observed values for certain variables, how does that change the most likely
   value for the rest?
- If I have to make a decision based on my current observations, what is the optimal decision
  I can make?

To answer these questions, we go back to the structure of the Bayes Net, and perform inference on 
it given any observations we have, and the structure of the network telling us how variables relate to 
each other.

The simplest process for performing inference on a given Bayes Net is to do sampling. In 
particular, we will random sample possible values for all the unobserved variables in the network using
the associated conditional probability tables at each node in the net. 

Bayes Net Sampling:

For N samples (with N suitably large)
- Randomly draw values for each of the unobserved variables in the network
- Determine the weight of each sample (more on this below)

For each variable
- Create a histogram of possible values (by counting how many times each
  possible value was observed in our random samples, multiplied by the
  corresponding weight for each sample).
- Normalize the histogram to obtain a probability distribution of values

   for that variable
- Determine the most likely value from the histogram

Example:

Consider the Bayes Net shown below

cloudy
(C)

sprinkler
(S)

rain
(R)

wet grass
(W)
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This network could be used to answer questions such as:

- If the grass is wet, what’s the probability the sprinklers were on?
- If it’s cloudy, what’s the probability it will rain?
- If the grass is wet, what’s the probability it’s cloudy?

And so on. Let’s assume that each of these four variables is Boolean, it can be TRUE, or FALSE.
To fully determine the possible outcomes for variables in the network, we need four probability tables:

P(C) -  Which depends on nothing else on the network
P(S|C) -  Sprinkler being on depends on whether it’s cloudy or not
P(R|C) -  Whether it is rainy or not depends on whether it’s cloudy or not
P(W|S,R) -  Whether the grass is wet will depend on both rain and sprinklers

Let’s put values in these tables (it’s just an example, I didn’t get stats from anywhere)

How do we get a random sample from these tables and the structure of the network?

* Start with variables that do not depend on anything (in this case, C)
- We get a random number  r , if r<=.7,  C=0, otherwise C=1

e.g.  r=.46271,  C=0

Our sample at this point looks like so:

C=0 S=? R=? W=?

* Now sample variables that depend on only one other variable (in this case, S and R which
   depend on C).

- For sampling S, get a random number r. Then look in the CPT for P(S|C) and find the
     column for C=0 which is the value we got from our random sample for C.
     There we find that if  r<=.8, S=0, otherwise S=1.
     e.g.  r=.9231,  so  S=1

Our sample at this point looks like so:
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C=0 S=1 R=? W=?

- For sampling R, get a random number r. Then look in the CPT for P(R|C) and find the
     column for C=0 which is the value we got from our random sample for C.
     There we find that if  r<=.99, R=0, otherwise R=1.
     e.g.  r=.1231,  so  R=0

Our sample at this point looks like so:

C=0 S=1 R=0 W=?

* Now sample any variables that depend on two other variables, in this case, W.

- Get a random number r. Then look in the CPT for P(W|S,R) and find the
     column for S=1, R=0 which are the current values for these variables in our

  sample. We see that if  r<=.05, W=0, otherwise W=1.
     e.g.  r=.31415,  so  W=1

And we have a complete sample! It has values

C=0 S=1 R=0 W=1

The weight for this sample is 1.0 because all variables were randomly sampled from the 
corresponding tables.

We repeat the process above until we have obtained N random samples for possible assignments to 
variables in our network, we’ll have a table that looks like so:

Suppose we have a few hundred thousand samples, or a couple million. Then we can approximate 
very closely the actual probability of any arbitrary setting for any subset of variables in the network 
from this table. 

For example, say we want to know p(R=1), this is just:
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Say we want to find out P(C=1, W=0), this is just:

It becomes a simple matter of counting how often the outcome we’re interested in actually happens
in our random sample! 

Of course this is just an approximation, and how good it is depends on how much time we want to
spend doing random sampling. But with current computers, drawing millions of samples for even a
large network is not unreasonable.

Still, there may be outcomes which are unlikely, and if we don’t do enough sampling we may
never actually observe them in our random sample set. So for some networks, and in some cases, it
may require a fairly large amount of sampling to get accurate probabilities for low-probability events.

Note:  We can also  ask  questions  about  conditional  probabilities  –  by  using  the  identity  P(A|
B)=P(A,B)/P(B). We can also use Bayes rule, together with the conditional probability definition, to
infer posterior probabilities as needed.

What about observed variables?

If you pay attention to the samples above, you’ll see that we have a weight column with all weights
equal to 1.0. This is because in all our random samples, all variables were randomly sampled from their
corresponding probability tables.

This  is  wasteful  when  we  have  observations  about  any  of  the  variables  in  our  network.  For
instance, say we have observed R=1. In other words, we actually know it’s raining.

We can follow the random sampling process above, now, suppose we want to find out what’s the
probability of C=1.

Before observing that it is rainy, we would have counted every row in which C=1, and divided by
the total number of rows.

After observing that R=1, we have

This follows from the conditional probability definition, since we are now given the knowledge
that R=1. 
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Inference still works exactly the same as we did before, and we could continue to use our regular
sampling process, with equal weights for all samples, just like before. 

However, notice that a large proportion of the samples in our table will now go unused – they
contribute nothing to our probability estimate because they happen to have R=0, the value of R we
know not to be correct.

This can get pretty bad if the  observed values for variables given to us  have low probability of
occurring.  In  this  case,  most  of  the  entries  in  our  sample  table  could  be  useless  –  they  do  not
correspond to the observed values we have.

So, either we sample a whole lot, or we get smart about sampling!

Importance sampling for networks with observed variables

Let’s do things smartly – we will modify (slightly) our sampling process to  not generate any
samples that correspond to the wrong values of observed variables. Simply put, we will not sample
the observed variables, using instead their observed value. 

That means every sample in our table will now have the correct values for observed variables, and
no samples are wasted – we will be able to obtain a much better estimate of any probabilities we’re
interested in for the remaining variables.  But, the samples are no longer  fair. We are not sampling
certain variables, so we need to account for the probability of these observed variables having the value
they have, given the rest of the variables in the network.

We will do this by computing a weight for each sample that accounts for how likely the observed
variable values are given all the values that were randomly sampled.

Let’s see an example of how this would work in the case above. Suppose we observe R=1

We use random sampling (as described above) to get random assignments for C, S, and W (note
that for W we will use R=1). Suppose we obtain the following sample:

C=0 S=0 R=1 W=1
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The value for R is shown in red because it was not sampled, it’s fixed for all our samples because
it was observed.

The sample above is a perfectly possible sample, however, we need to weight it by the probability
that R=1 given the values for C, S, and W in that specific random sample.

R depends only on C, so we head over to the probability table for P(R|C), and we look at the
column for C=0  (which is  the value in this  specific random sample),  there we find that  P(R=1 |
C=0)=.01.

So the weight for this sample is:

weight = 1.0  *  P(R=1 | C=0)  = 1.0 * .01 = .01

The 1.0 corresponds to the weight of a standard sample, in which all variables were randomly
sampled. Then we multiply that for the conditional probability of R=1 given the sample’s other values.
The final weight is .01 which reflects the fact that there’s a very low chance of observing rain if it’s not
cloudy!

Let’s do another sample:

C=1 S=0 R=1 W=1

From P(R|C) we see that P(R=1|C=1)=.8

So the weight for this sample would be:

weight = 1.0 * P(R=1 | C=1) = 1.0 * .8 = .8

This weight is telling us the sample above is a lot more likely as a possible assignment to the
variables in our network.

We would repeat this process N times, obtain N total samples all of which has R=1, and each of
which has an appropriate weight, and then we can infer probabilities for any specific assignment of
variables in the network by slightly modifying what we had before so it accounts for the weights of
samples. For example, say we want to know P(C=0):

That  is,  instead  of  simply  counting  and  dividing  by  the  total  number  of  samples,  now  we
accumulate the weights for all rows with C=0, and divide that by the sum of the weights of all the rows
in the table.

Similarly, you can compute the probability of any other possible outcome by adding up the weights
of the rows with that specific outcome, and dividing by the sum of the weights of all the rows.
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Conditional probabilities and Bayes rule can be applied like before!

The  advantage  of  this  process  is  that  we  do  not  waste  samples  on  assignments  that  do  not
correspond to the observed values of variables. This means we’ll obtain an accurate estimate of the
probabilities  we  care  about  with  far  less  sampling.  But,  we  should  be  able  to  obtain  the  same
probability estimates using the regular sampling process (random sampling all variables) if we sample
enough!

In summary: Inference in Bayes Nets can be carried out by random sampling and counting – it’s a
general procedure, works for any network, and requires us only to have enough computing power/time
to obtain enough samples that our probability estimates are meaningful. We can also use importance
sampling to obtain good estimates with less sampling by using the observed values of some variables,
and weighting the samples accordingly.

Now go and try it out!

Problems:

1) Figure out what the sampling process would need to do for the examples above, if we observe
W=1, R=0. What would be the weight of a sample  C=0, S=1, R=0, W=1?

2) Write a little program to estimate the probability of specific events in the network above. It has to
carry out the random sampling process, and provide you with a table from which you can compute the
corresponding probabilities.

You can do this in your favorite language :) - I don’t have enough time at this point to give you
Matlab starter, so off you go to do it however you prefer – but do it! Then you’ll fully understand the
sampling process and the probability estimation process.


