
CSC D84 – Artificial Intelligence - UTSC

Unit 3
Adversarial Games

Context:

An important category of AI techniques is dedicated to the study of  adversarial games.  These
encompass  well  known  problems  such  as  playing  chess  and  Go,  but  beyond  games,  the  general
problem of finding a winning strategy in a competitive task has wide applicability. 

Problem definition

We will focus for the time being on 2-player games (the methods we cover can be generalized to
multi-player games).

- Both players are trying to ‘win’ at some pre-defined task with a well defined set of rules
- Players take turns making ‘moves’, that is, they decide upon, and carry out some action during
  their turn that is intended to help them win the game.
- The game is competitive, if one player wins, the other one must lose

Classic  algorithms  for  adversarial  games  formulate  the  above  as  a  special  type  of  search
problem. 

Each state in this search problem is a  possible configuration for the game,  and the game itself
forms  a  tree with  the  initial  configuration at  the  top,  and  each  successive  level  shows  possible
configurations that can be reached via different combinations of moves of the two players.

As an example, the tree below illustrates the game tree for the very simple game tic-tac-toe:

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

Suppose we are player 1, the problem we are faced with is finding which move to make for the
first play of the game so as to maximize our chance of winning. 

In order to do this, we need to look  down the tree and find  paths that lead to configurations in
which we win the game. If possible, we would like to bring the game to a point from which there is no
way for player 2 to win! In tic-tac-toe, if your opponent plays well, this is impossible to do, but for
other games, with a suitable strategy, it may be possible for a player to know they will win the game
several moves before this actually happens (or even from the start of the game!).

Of course, life is not so easy – while player 1 is busily trying to build a path toward a configuration
in  which  player  1  wins,  player  2  is  attempting  to  do exactly  the  opposite:  build  a  path  toward  a
configuration in which player 2 wins.

This allows us to formalize our problem.

- We define a utility function that evaluates game configurations in terms of how good they are
   for each player. A very simple one for the tic-tac-toe game above could be:

+1  for a configuration in which player 1 wins
              -1   for a configuration in which player 2 wins
               0   for any configuration that is not a win for either player

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

 this may be enough for a simple game like tic-tac-toe, but for more complex games the utility
function should be able to evaluate how close a partial game configuration is to a win
by either of the players, giving positive values to configurations favourable for player 1, and
negative values to configurations that are good for player 2.

- The search process is called MiniMax – when it’s player 1’s turn to play, player 1 will choose
   a move that maximizes the value of the utility function. When it’s player 2’s turn, they will
   choose a move that minimizes the value of the utility function.

- Because players alternate turns, the maximization and minimization steps are also alternated,
   thus minimax.

But what does it mean to choose a move that maximizes (or minimizes) utility for a specific move?

Naive Strategy:

- During its turn, each player evaluates all possible moves it can make using the utility function
          and chooses the move that maximizes (or minimizes) this value according to its goal.

It’s a trivial process, and relies entirely on the utility function doing a good job of evaluating partial
configurations. It, sadly, won’t do very well for complex games like chess (can you think of a utility
function that can tell you reliably what is the best possible opening move across all possible games that
could be played?) .

The utility function, however good, can not capture the complexity of a game or account for the
actions  of  the  opposing  player.  Therefore,  we  need  a  stronger  method  for  developing  a  winning
strategy.

MiniMax process

Played 1 needs to determine the move that maximizes its utility, but the utility of the moves that
are open to player 1 depends on what player 2 will do.

So here’s what the process looks like:

(A) Player 1 turn:
Look at every possible move it can make

For each move, figures out what player 2 would do to win the game if
player 1 makes that move. 

This means looking at all possible ways player 2 could move and assuming
player 2 will choose the one that minimizes utility.

To do this, player 2 needs to figure out what player 1 would do to
win if player 2 chooses a particular move... and we’re back to (A)!

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

This leads to a MiniMax game tree that looks a lot like the tree shown above for tic-tac-toe, but
with the addition of utility values based on the minimax process described above. Let’s see how that
works with an example:

This corresponds to a very short game! Only three moves, one by player 1, and one by player 2,
and one more for player 1 which results in the game ending. Most games we care about will have a lot
more moves! But this is just an example so you can see how things work.

Note that each level corresponds to one of the players. Level 1 is made up exclusively of  MAX
nodes for player 1, level 2 has exclusively MIN nodes for player 2. Level 3 has all MAX nodes again,
and if there were more levels they would keep alternating.

Player  1 needs to choose the move that maximizes its  chance to  win among its  four possible
opening moves. However, the value of each possible move depends on what player 2 will do.

Initially, player 1 has no real way to choose. But player 1 can do a search in the minimax tree.
The search will expand every node in the tree up to either the bottom of the tree, or some maximum
pre-specified depth. In this case, this is a shallow tree, so player 1 can look all the way to the bottom of
the tree. 

Once the search reaches a terminal node, we can evaluate which player won, by how much, and
assign a value to the terminal node. Let’s see how the search process works for the tree above:

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

 

Let’s look at Player 1’s first move, and let’s look at its choices from right to left. The rightmost
node is a MIN node, but we don’t know how much it’s worth (because we don’t yet know what Player
2 would choose at that level). So we have to expand the children of this node and find out.

We expand the  rightmost  possible  move  for  this  MIN  node,  it’s  another  MAX  node  with  no
assigned value (yet). We need to look at its children! 

The first node we expand from there is a terminal node, we can evaluate who won, and by how
much. For this example, let’s assume it’s a win for Player 1, with a value of 3 (Positive since player 1
wins).

We still can’t assign a value to the MAX node, we have to look at its other children. There’s one
more, it’s a terminal node, and let’s imagine that in this ending, Player 2 wins, and the value of the node
is -5.

We now have values for all the children of the MAX node. So we can assign a value to the MAX
node itself.  Which value should this node take? Given the options available to them, Player 1 will
always choose the node with the  highest value.  So given the choice between -5 and +3, Player 1
chooses +3. Therefore, the value for this MAX node is also +3: If we ever end up in this configuration,
we know Player 1 will choose the move corresponding to its right child, and win the game.

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

We still can’t assign a vale to the rightmost  MIN node, we need to keep expanding its children.
Let’s see what happens once we have expanded all of the children of the rightmost MIN node:

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

We now know how the game ends if Player 1 chooses its rightmost move. Player 1 needs to repeat
this process with all its children to determine the best move. If we carry the search process for every
possible move for player 1 we will find:

Notice that the actual process is a variation of DFS – we expand nodes downward until we find a
terminal node. Then the information propagates back up the tree with each player choosing according
to its preference (MIN or MAX) until we have enough information at the top of the tree to make a
move.

Note that once we determine the value for the root node (+2 in the case above), we know even
before the first move is made that Player 1 wins this game! Even if Player 2 plays the best possible
game! (to see this, go back to the fully expanded tree above, and see what happens if Player 2 makes a
mistake during its turn – things can only get better than +2 for Player 1!).

That seems boring right? Knowing the whole outcome of the game before we start? Does this
search process seem intelligent to you?

Regardless of our opinion, for a game where you can expand the MINIMAX tree all the way to the
terminal nodes, it is possible to determine the optimal move for either player, at any point in the game.
A properly implemented MINIMAX search for such a game will play optimally. 

 Of course, life is not so easy – interesting games have a search tree that is too big to expand
completely during a reasonable amount of time allowed to decide a move. So in practice, we often find
we reach the maximum search depth before hitting terminal nodes that have a definite score.

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

What happens if we reach the maximum expansion depth but the node there is  not a terminal?
This is where we need a good utility (scoring) function : We use this function to evaluate how good a
partial game configuration is for either player, and assign a value to the node right there. 

The strength of a MINIMAX playing algorithm depends then on two factors:

- The available computing power (more computing power means we can expand more levels of
          the tree in the same amount of time) – each aditional level corresponds to looking one more
          move ahead to see what happens.

- The scoring function used to evaluate partial (non-terminal) configurations.

Even with a powerful computer, and a good scoring function, some games are just too complex
(the  possible  outcomes  and  moves  make  the  tree  grow  too  fast)  to  be  played  well  by  a  simple
MINIMAX search. 

In a moment we will see how we can use a bit of cleverness to reduce the amount of computation
required by MINIMAX, thus allowing us to search deeper into the tree. But first,  here’s a concise
pseudocode description of the standard MINIMAX procedure.

MiniMax(C) // Returns the MINIMAX value of node C

// Check if we have to terminate the search and return a value
// eval(C) is the utility function that return a value for a game
// configuration, either partial, or terminal.
if C is a terminal node, or max-depth reached, return eval(C) 

// Get the value of node C by checking all its children
for each child i of C

v[i]=MiniMax(i) // Get MiniMax value for each child node

if  C  is a MAX node, return max(v[i])
else  return  min(v[i])

Alpha-Beta Pruning

The standard technique for reducing the amount of work that needs to be done to decide on a good
move is called  alpha-beta pruning.  It is part  of a class of methods known as  branch and bound.
Alpha-beta pruning is based on the following idea:

Suppose I am trying to establish the utility value of a max node.

The node has 5 children, and each of them is a min node.

Explore the subtree around child #1, that subtree returns a value of 5
(this already tells me that my parent max node will have a utility of at least 5).

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

Explore the subtree around child #2

But now we have information we didn’t have before! We know the
parent node has the option to choose a move with utility 5 (from child #1).

Child #2 is a min node – to evaluate its utility we start exploring its children.

The moment any of the children return a value <= 5 we can stop!

That is because since this is a min node, whatever else is returned by other
children, this node can and will choose a value that is at most 5. Since the
parent node already found a move with utility 5 – there’s no chance this
subtree will return a move that is better than what the parent already has.

Therefore – no need to explore this subtree any further, we can return early!

The same reasoning applies if the parent node is a  min node, with children that are  max nodes,
except now we stop searching when the children find at least one path with utility >= to what the parent
has already found from other child nodes.

To formalize this idea, each node will now have two values attached to them:

alpha and beta – which are passed on by the parent node when we start exploring their subtree.

For the root node,  alpha has an initial value that is a very large negative number, beta has an
initial value that is a very large positive number.

As we carry out the MiniMax search process:

If the node we’re expanding is a MAX node

- When a child node returns a utility value > current alpha value, update the
   current alpha value
- if alpha >= beta, return alpha (we stop search right now!)

If, on the other hand, the node we’re expanding is a MIN node

- When a child node returns a utility value < current beta value, update the
   current beta value
- if beta <= alpha, return beta (we stop search right now!)

Let’s see how this works with an example:

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

It’s important to stop for a second at this point and think about what happened. Why does it make
sense to stop here? there’s a -1 and a -7 yet to be explored, and those are better options for Player 2!

Yes,  but their  parent  is  a  MAX  node.  It  will  never pick -1 or -7 since it  already found a +4.
Meanwhile, its parent, the  MIN node already knows a move with utility +3 which is better than the
current +4 its leftmost child just discovered – therefore we already know that the min node will not
select the leftmost child as its optimal move. We can stop!

Doesn’t look like we saved a lot – but remember this is just a little example, in a real MiniMax
tree, the subtrees under the -1 and -7 could be huge! In the general case, not expanding a subtree will
be a significant amount of work saved!

Let’s keep going...

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

The end result  of  the  MiniMax search  with  alpha-beta  pruning is  that  we discover  the  same
optimal choice we would find without the alpha-beta pruning, but with far less search. This allows us
to look further down into the tree (i.e. look forward a larger number of moves) before deciding which
move to make, compared with regular MiniMax.

What about games with chance?

Often, we may find adversarial games where there is an element of randomness or chance – for
example, any game where after making a choice about what they want to do, players have to roll dice
to figure out the result of their actions. 

We can apply MiniMax to these types of games as well, though we have to be careful how we set
up the utility evaluation process – it depends on chance. The critical insight here is that we can perform
exactly the same type of MiniMax search if we replace the  utility  of our standard formulation with
expected utility – that means, the weighted average of the utilities for all the possible outcomes of a
given choice – weighted by the probability they occur.

For example, suppose I choose a specific move which could result in 3 different outcomes:

a) Utility = +10,  p=.1     (10% of the time we obtain a utility of +10)
b) Utility = -5, p=.5         (50% of the time we obtain a utility of -5)
c) Utility = +1, p=.4        (40% of the time we obtain a utility of +1)

The expected utility for this move is =  (10*.1)+(-5*.5)+(1*.4)= -1.1

This process would be applied for each possible move, at each level of the tree. It makes for a
somewhat bushy tree (each move now has several possible outcomes), but we can apply exactly the
same process to this  tree as we did above for deterministic games.  Because we’re using  expected
utility, we call this process Expecti-MiniMax.

(c) 2020 – F. Estrada



CSC D84 – Artificial Intelligence - UTSC

MiniMax  is not the only strategy for playing adversarial games well – many games proved too
difficult  to  handle  with  MiniMax,  and  have  required  entirely  different  techniques.  Reinforcement
Learning is one domain of AI that has been applied to game playing, and that is where we are heading
next. 

(c) 2020 – F. Estrada


