
CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

Unit 5 - Neural Networks

Neural Nets are the foundation for the currently very strong and growing subfield of Machine
Learning and AI called Deep Learning. In this unit we’ll cover the basic principles that support the
structure and operation of neural networks, and we will cover the fundamental training process called
backpropagation that allows a network to learn a task from training data.

The neural networks covered here are fairly simple, but are easily generalized to the much more
sophisticated and much larger Deep Learning networks used to carry out all kinds of exciting tasks,
such as image classification, speech recognition, automated translation, and much more.

Neural networks are based on the view that the ability of the human brain to learn and carry out
complex tasks depends on the organization and connection of billions of simple processing units
(neurons). The idea being that the processing units themselves don’t perform very complex tasks, but in
their connections and interactions, complex behaviour can arise.

As a reminder, a biological neuron is a cell that consists of the following parts:

(Image credit: Wikipedia, by Egm4313.s12, CC SA 4.0)

A very simplified view of how a neuron operates is as follows:

- Inputs (the dendrites around the cell body) connect to other neurons
- At any give time, if the sum of the impulses arriving at the inputs to the neuron exceeds a
 threshold, the neuron fires (it sends a pulse down its axon, toward the output terminals
 connected to other neurons). Inputs can act as stimulatory or inhibitory signals, so their
 influence is either positive or negative

Of course, this is a very simplified view, in reality, the way a neuron responds is time dependent,
and not entirely well understood.

However, it is a good place to start if we’re interested in building artificial neurons. The simplest
(and still very much in use) model for how an artificial neuron may be implemented is the
McCulloch-Pitts Neuron Model:

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

The McCulloch-Pitts model sees the artificial neuron as a simple unit that:

a) Computes a weighted sum of its input values (this becomes the activation A(I)).
b) Processes the activation through an activation function which in the case above is a simple
 threshold function.
c) Determines the value of the output for the unit from the result of applying the activation

 function to the current value of A(I).

The McCulloch-Pitts model can be turned into a single unit in a neural network by grouping
together the sum operation and the activation function:

I
1

I
2

I
3

.

.

.

.
I
k

w
1

w
2

w
3

w
k

I
1

I
2

I
3

.

.

.

.
I
k

w
1

w
2

w
3

w
k

I
1

I
2

I
3

.

.

.

.
I
k

w
1

w
2

w
3

w
k

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

The output of the neuron is the result of applying an activation function f(x) to the activation A(I).
There are many different types of activation functions, but the operation of the neuron is the same.

A question that immediately comes to mind is what can we do with one of these artificial
neurons? Let’s see a simple example of what a single neuron could be trained to do.

Task: Given a small picture (4x4 pixels) of a text character, determine if the image corresponds to
the letter ‘P’.

Each pixel becomes one input to the neuron. Each pixel is connected with its own weight to the
neuron, and the activation function in this case is a simple threshold.

We want the neuron to fire (output a 1) only if the input pattern corresponds to a ‘P’ such as the one
shown above. How should we set the weights for the pixels?

Our first attempt may be to set the weights to 1.0 for all the weights connected to pixels that should
be ‘on’ (blue in the image above) for the ‘P’ pattern, and we could make the weights 0.0 for all the
remaining pixels. In the image above, the resulting A(I) would be equal to 8. We set the threshold of the
activation function to 8, so the neuron will only fire when all of the pixels in the ‘P’ are set. If even a
single pixel is ‘off’ that should be ‘on’, the neuron won’t fire.

Is this good enough? What happens if a pixel that should be ‘off’ is ‘on’? With the weights set to
1.0 or 0.0, the neuron won’t care about the values of the ‘off’ pixels. It will recognize a fully blue
image as a ‘P’! this is not too great.

What if we set the weight to -1.0 for pixels that should be ‘off’?

Now, if any pixel is ‘off’ that should be ‘on’, or if any pixel is ‘on’ that should be ‘off’, the value of
A(I) will be below threshold and the neuron won’t fire!

With a simple set of +1 and -1 weights, we can get this very simple neuron to recognize an input
pattern perfectly. A larger image is simply a matter of adding more inputs to correspond to the number
of input pixels. The neuron is equally capable of handling an input image of arbitrary size.

I
1

I
2

I
3

I
4

I
5 . . .

I
16

I
1

.

.

I
16

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

The example above shows that a very simple neuron can carry out a pattern recognition task.
However, it should be clear to us that:

- On a realistic example, the pixels that are ‘on’ or ‘off’ for a given pattern won’t be so perfectly
 defined. E.g. in hand-written optical character recognition we have to deal with variation between
 characters written by different people, as well as the differences in the individual characters
 written by the same user.
- The neuron has to learn which pixels should be more often ‘on’ or ‘off’, and which don’t matter,
 and we want to be able to adjust the weights from a set of examples so the neuron can do the
 best possible job for any given pattern.

In what follows, we will look at the types of activation functions we can use to build artificial
neurons, see how to organize a very simple network composed of multiple artificial neuron units, and
learn how to train such a network to carry out a pattern recognition task.

Activation Functions

Several activation functions have been proposed and used in implementing neural networks

a) The threshold activation function:

(Image: Wikimedia Commons, by Lennart Kudling, public domain)

This function is 0 if the input is less than a threshold, and 1 otherwise. It is useful in understanding
the idea of how an artificial neuron works, but not often used in practice – as it turns out, to implement
the learning process we need a differentiable (well, mostly anyway) function.

b) The logistic function:

(Image: Wikimedia Commons, by Qef, public domain)

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

This function behaves like a soft threshold. For values much less than the threshold value, it
outputs zero, for values significantly greater than the threshold, it outputs 1.0, and close to the threshold
the output increases from 0.0 to 1.0.

The logistic function is given by:

c) The hyperbolic tangent function:

(Image: Wikimedia Commons, by Geek3, CC-SA 3.0)

This function has the same general shape as the logistic function, however, its values range from -
1.0 to 1.0, which has advantages for certain tasks. Because of their similar ‘S’ shape, both the logistic
function and the hyperbolic tangent are known as sigmoid functions.

The hyperbolic tangent is given by:

d) The Rectified Linear Unit (ReLU)

(Image: Wikimedia Commons, by Renanar2, CC-SA 4.0)

The rectified linear unit is also known as the soft threshold unit, and consists of two segments. Its
value is 0 if the input is less than the threshold, and increases linearly with x if x is greater than the
threshold. It is an often used function in larger neural networks such as those employed by Deep
Learning.

e) Radial Basis Functions (RBFs)

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

(Image: Wikimedia Commons, by Pac72, public domain)

RBFs are Gaussian-shaped functions used for problems in which the spatial layout or pattern of an
input is important. The width of the RBF is configurable, and can be fixed before the network is
trained, or even tuned as part of the learning process.

The above are common choices of activation functions for neural networks. Other choices exist,
but whatever the form of the activation function, the fundamental architecture of the network and the
training process remain the same. Let’s see how to build and train a simple neural network!

The Single Layer, Feed Forward Neural Network

A single-layer, feed forward network consists of a set of artificial neurons all connected to the
same set of inputs, and all of which have their own output. A sample application for such a network is a
system for recognizing hand-written characters. Each neuron is responsible for one of the characters we
want to recognize, its output should be large when the corresponding character is present in the input,
and small when a different character is shown.

By looking at the outputs of all the neurons, and picking the neuron with the largest output for a
given input, we can identify the input character with high accuracy.

The structure of a single-layer feed-forward network is shown below:

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

Remember: Each connection from an input to a neuron has its own weight so in the network above
we have a total of 16*k weights that need to be adjusted to have the network perform the task we want.
Notice that each neuron is actually independent from each other, there are no connections between
neurons, so what we really have here is a set of independent neurons each of which will be trained to
look for a different pattern. They only form a network in the sense that at the very end, we look at the
output of all neurons to pick the one with the largest output as the ‘correct’ answer to which pattern is
in the input.

The training process for Neural Nets is a type of reinforcement learning. The network’s weights are
adjusted based on the difference between what the network should have output given the input, and
what the network actually output for that sample input. This requires us to have a possibly large
training set comprised of many sample inputs, with the corresponding expected output value for the
task we’re training the network to solve. Such an annotated training set is a pre-requisite for training a
neural network.

Given an input training dataset, the process for training the network is described by the following
short algorithm:

Training Loop

Until error on training set[1] is small

For each input Ii on training[2] set

a) Feed-forward pass: Show the input Ii to the network, and compute outputs for
 all neurons (on a multi-layer network, this is done layer by layer from those

 closest to the input and proceeding toward the output layer).
b) At output layer – compute the error[3] between a neuron’s output and the

 expected output for that neuron.
c) Adjust the network weights so as to reduce error[4] on this training sample.

[1] There are several different measures of error commonly used in training neural networks. Here we
will use squared error: - this is the error for output neuron j on input Ii , and

it corresponds to the difference between the target output for this neuron on this input, and its actual
output, squared.

I
1

.

.

I
16

N
1

N
2

N
3

N
k

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

The error on the training set is defined simply as the sum of the error over all training samples:

There are many other ways to quantify error on the training set, we could use RMS, or use a
probability-based measure, depending on the task. There are also many variations in functions used to
evaluate error for a neuron’s output. For now, keep in mind that the point of this is: we measure (in
some way) the difference between what the neuron should have output, and what it actually output, and
we use that to determine how well the network is doing by accumulating or averaging error across all
output neurons on a set of training samples.

So, when do we stop?

The total error on the training set may never decrease below an arbitrary threshold (the task may be
too hard to solve well by the current network, or the input dataset may not be large enough, or a
combination of both). So instead of setting a threshold on the total squared error, we can:

a) Run the training loop for a pre-specified number of iterations
b) Stop if after K iterations, the total squared error has only decreased slightly (the network is not
 improving a lot anymore)
c) Stop if a separate cross-validation step shows our network is not getting better on new data it
 hasn’t seen during training.

[2] The simplest training procedure loops over every input in the training set each time, and adjusts the
weights after each input is processed. This works, but has a tendency to converge slowly to the network
weights that yield good performance.

This happens because different training samples may adjust the same weight in opposite directions
– training sample A says we should increase that weight’s value, training sample B just after says we
should decrease it.

Over time, the network should converge to reasonable weights, but it may take a while since the
weight update directions oscillate frequently.

One way to improve on this is to batch updates, that is, within the training loop, we group inputs
into subsets of k, accumulate the squared error for each output neuron over the entire subset of k inputs,
and then use this accumulated error to adjust the weights.

Because we’re now computing error over a subset of inputs, not just one, it is expected that the
accumulated error will provide a more reliable estimate of the direction in which weights have to be
adjusted in order to improve network performance.

Batch updating is almost always used in training neural nets. There’s one more improvement to be
made to this process: Each subset of k inputs is chosen randomly, from the training set, each time.
This stochastic batch update has the additional advantage that the network will be resilient to
accidental patterns present in the input training data that occur when inputs are shown in a certain

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

order. In machine learning, this is called over-fitting and is a general problem in which any learning
algorithm starts to learn peculiarities of the training set that do not exist in other data, and because of it,
don’t work so well when new data is shown.

So, we can train the network one sample at a time, or we can use a more advanced training process
such as stochastic batch updates, which will likely help the network converge faster, and converge
toward a configuration that is less likely to overfit.

[3] This is just the squared error for each output neuron, as described in [1], or whatever measure of
difference is being used to train the network.

[4] The process of adjusting the weights is called back propagation, and we will look at it in detail
now.

Adjusting the network’s weights: Error backpropagation

Let’s consider a single-layer network, and let us look at how we would update one weight from an
input to one of the neuron’s in the network. The situation is shown in the image below:

This very simple network has two neurons, two outputs, and a multiple inputs. However, the same
procedure below applies to single-layer networks with any number of inputs, and any number of
outputs.

Adjusting a single weight

Let’s look at weight wab in the network above. This links input a to neuron b. The idea is to look at
the error in the output and determine in which direction we need to change this weight so as to make
the output of the neuron closer to the expected output for this particular input.

As it turns out, the quantity we really want to know is: , in other words, we need to know

how the error for this neuron changes if we change the value of the weight wab.

We can apply the chain rule to break this down into manageable chunks:

I
a

N
bw

ab

N
cI

z

.

.
w

ac

w
zb

w
zc

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

Remember that A(I) is the activation for the neuron:

Since we are using squared error, we have:

Notice that we dropped a sub-index for input j, it is assumed we’re computing this quantity for
whatever current input is being shown to the network. Secondly, we will drop the factor of -2, since the
update equation has its own scalar learning rate as we will see above, and we can account for any
constants and sign changes with this single parameter.

Next, we have the term which tells us how the output of the neuron changes when the

activation for the neuron changes. If you think about it for a moment, you’ll realize we’re just asking
for the partial derivative of the neuron’s activation function with respect to its input. What this term
is, then, depends on what type of activation function we are using, but common examples are:

Logistic activation: , where f(x) is the logistic function on x

Hyperbolic tangent activation:

Finally, we have the term

That’s because the only term that involves wab is the one for Ia.

Putting everything together, for output neurons using the logistic activation function we have:

,

(remember we dropped a factor of -2) and the corresponding weight update is given by

Here, the parameter is the learning rate, and should be a small value for the network to
converge.

For each input sample, or for each batch update we have to update every single weight in the
network using the above update rule. You have seen this equation before in a slightly different form,
it’s just a form of gradient descent! We used it in Q-Learning to update the Q table and the policy. Here
it will help us obtain the optimal network weights.

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

Note: If we are using batch updates, then we are using batch gradient descent, and if in addition
we are using random subsets of inputs during each training round, we’re then using stochastic
gradient descent (SGD). Stochastic gradient descent is a very common optimization method for
parameters in machine learning and AI.

What about multi-layer networks?

Single-layer networks can perform many tasks fairly well – you will train one for your assignment
and see just how well it does in a character recognition task. However, for more complex problems we
need crunchier networks. A general multi-layer network has the following structure:

Now we have introduced one or more ‘hidden layers’, they are called hidden because a network’s
user sees a black-box with only a set of outputs, and doesn’t have access to the network structure so
they can’t tell what’s actually in the box!

Each layer is fully-connected to the next one, that is, the outputs of the neurons in layer 1 act as
input for the neurons in layer 2, and so on. It’s worth thinking a moment about what neurons in hidden
layers are doing:

Layer 1 neurons process input data and respond to patterns of interest in the input

Layer 2 neurons have access to interesting patterns also called features that were output
by Layer 1 neurons, these are likely more informative than the actual inputs!
Layer 2 neurons learn patterns of interest in the patterns of interest output by Layer 1!

Layer 3 has access to even more informative features produced by Layer 2, and so on.

I
1

.

.

I
16

. . .

Output Layer
1 or more hidden layers

input

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

The net effect is each succeeding layer has access to more complex, more informative, and likely
more useful features. The output layer is expected to be able to do a much better job since its input now
consists of more powerful features abstracted by previous levels of the network.

You’ll train a multi-layer network in your assignment, and compare its performance to the single
layer network. It’s important to remark at this point that deep learning refers to multi-layer networks
with (some say 4, some say 6) or more layers. These very large networks require more work in terms of
the numerical algorithms used to compute and apply weight updates, and allow for more complicated
network topologies, but the same principles apply to deep learning nets that apply to 2 layer networks!

Updating weights in a hidden layer

We know how to update weights for a single layer network, it turns out that updating weights in a
multi-layer network is not much more complicated. Let’s look at an example:

We just added a layer to the network we used to study the weight updates for single-layer
networks. The hidden layer has 2 neurons B and C, and the output layer now has two neurons D and E.

The weight updates for weights from the hidden layer to the output layer are identical to the
single-layer weight updates above, except instead of using the input values, we use the output of the
hidden network neurons.

The weight updates for weights from the input layer to the hidden layer are a bit more interesting.
We have the same chain rule as before:

Notice it is identical to the equation we have before! Except, it’s not clear how to obtain the last
term here since neuron B is now not an output neuron so we don’t have a target value for what

its output should be. Furthermore, the output of neuron B now contributes to the inputs to neurons D
and E, which means it somehow contributes to error values for these two neurons.

This means that a change in wab now will cause a change in the error for output neurons D and E!

Happily, we can take the chain rule a bit further, and if we do that, we’ll find that:

I
a

N
bw

ab

N
cI

z

.

.
w

ac

w
zb

w
zc

N
d

N
e

w
bd

w
be

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

Let’s see what this sum is doing:

- The last two terms are the same as we had before for the 1-layer update: The derivative of the
activation function for neuron j, and the difference between the target output for neuron j , and the
actual output for neuron j.

- These are multiplied by the weight joining neuron B to neuron j.

- And we add up the error contributions from all neurons connected to B which will be affected by
 an update to the weight wab.

Can you see in the formula above how we have exactly the same update as for the 1-layer
network?

The update for the weight itself is just like before:

And we compute this for every weight feeding the hidden layer. The same update formula applies
to weights in between any pair of hidden layers, or between the input and the first hidden layer. The
only thing that changes is what is taken as the input for a neuron, and which connected neurons
contribute to the error computation.

This completes the process of training a neural net with one or multiple layers. However there’s a
couple of technical issues that we need to think about:

Technical considerations in training a neural network

a) Initializing the weights

The initial values for the weights in the network are usually small random numbers (both
positive and negative).

Keep in mind that this means there will be differences in the results obtained over different
training runs! But these variations should be fairly small.

b) Weights becoming too large!

This is a problem known as exploding gradient, and is typical of networks trained with vanilla
SGD or regular gradient descent. Some weights tend to grow in magnitude beyond anything reasonable
and once they are huge the network is not working very well.

Keep an eye out for such exploding weights, and nuke them (reset to a small random value) if
found. You may also think of making the learning rate smaller.

CSC D84 – Artificial Intelligence – Winter 2021 F. Estrada

c) Vanishing gradient

The training procedure depends on having a meaningful gradient for all the partial derivatives
involved in the weight updates. The part that comes from the derivative of the activation function can
be particularly problematic.

For the sigmoid functions, tanh() and logistic, once we are at the part of the curve that is flat
(either in the negative infinity direction, or the positive infinity direction), the curve is flat so the
gradient is close to zero. What is happening here is the neurons have become saturated, their output
value is pretty much the same if we change the input by even a significant amount.

The result is that for such neurons, any weight updates will be close to zero and the learning
process becomes stuck.

For learning to happen, the neurons should be operating within the part of their response
curve, away from saturation. We must keep an eye on whether the neurons are becoming saturated and
if so we may want to change the learning rate (make it smaller), and also check for weights that have
become too large.

We should also be careful what target value we want the neurons to achieve. If we ask neurons
with a sigmoidal activation function to output either 1.0 or 0.0 as a target, we are directly encouraging
the neurons to move toward the saturation region of their response curve. Better target values may be .2
and .8, for the logistic function, and -.8 and +.8 for the tanh().

Toward Deep Learning

The principles above apply to networks of any size. However, to build much larger networks with
multiple layers, standard SGD and squared error become insufficient (this is due in part to problems
like the vanishing gradient). The move toward Deep Learning required advances in multiple aspects of
the network training process, including:

- Better methods to keep track of the gradient and to update network weights
- Different activation functions (the ReLU activation function does not saturate!)
- Different error (now usually called loss) functions
- Much larger input datasets (Deep Learning goes hand in hand with Big Data)
- More computing power! (this is an expensive training process, both in terms of computation and
 memory requirements)
- A framework for setting up and training the network (and now we have several, such as Tensor
 Flow, Caffe, and so on).

However, the principles you learned here form the basis of all of those improvements, and
understanding the fundamental structure and training process of the 1 and 2-layer networks we
discussed in these notes will allow you to grasp how much more complex Deep Learning networks are
organized and trained.

Now, let’s go have fun with the assignment training some neural nets!

