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Unit 4
Reinforcement Learning

Context:

The techniques we have applied up to this point have relied on variations of search – to to things
that range from path finding and scheduling to playing competitive adversarial games. We will now
turn to a different class of AI techniques. These are concerned with training agents to perform specific
tasks by repetition coupled with a system that rewards the agent for carrying out the right actions to
solve the task, and penalties when the agent’s actions move the agent away from the goal or are in some
way detrimental to the agent’s performance.

This class of methods is known as reinforcement learning, and they comprise a wide variety of
methods within AI. Indeed, in a sense, neural networks and their most advanced deep learning versions
are at their heart reinforcement learning machines. 

It should be noted that in this section we will only be looking at a specific class of reinforcement
learning methods,  this  is  by no means the whole of  RL,  nor does it  represent  the most  advanced
methods – but it is a solid introduction that contains many of the relevant ideas that make RL work in
its different formulations.

Problem definition

The kind of problems we will be studying in this section is characterized as follows:

- We do not have a precise definition of the goal, no objective function or heuristic function to
   guide the agent.
- The agent can observe (measure, get the value of) variables that provide information about
   the state of the environment.
- The problem evolves in discrete time steps: At each step, the agent(s) choose(s) an action to
   perform, then the results of this action are observed.
- Based on the outcome, the agent receives a reward (if the action helped the agent achieve its
   goal), or a penalty (if the action was detrimental to the agent in achieving its goal)

The  specific  goal  need  never  be  communicated  to  the  agent,  all  the  agent  receives  is  the
reinforcement signal that indicates whether the outcome of an action was positive or detrimental. The
procedure will involve allowing the agent to  train  by attempting to solve the given task repeatedly,
accumulating statistics that relate specific states and actions to rewards. 

Assumptions:

There is a set of state variables that fully describe the state of the problem being solved. The state
space corresponds to all possible combinations of values for these variables. You will notice that this is
only  manageable  if  the  variables  themselves  have  a  limited  set  of  possible  values.  A specific
combination of values for the state variables uniquely defines a specific state for the problem. 
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Problem setup: At each time step -

- The agent receives or measures the values of the state variables, this identifies the state s for the
  problem.
- The agent chooses and carries out an action a that results in a change of the value(s) of state
   variables. This results in a new state s’.
- The agent receives a reinforcement signal r, as a result of the combination <s,a,s’>
   the reinforcement signal will be positive if the new state is better for the agent than the
   previous one, and negative otherwise. The magnitude of r can represent the amout of 
   change for the better or for the worse.

Model:

We will  model the problem described above as a  Markov Decision Process (MDP).  An  MDP
consists of:

- A set of states S that contains all possible states specified by the combinations of values of the
  state variables.
- A set of actions A that defines the possible ways in which the agent can effect a change in the
   state of the problem.
- A reinforcement signal r, with a specified domain.

The agent’s job is to find a  policy   mapping states to optimal actions. We assume that state
transitions are non-deterministic. The last component of an MDP is a transition function T(s,a,s’) that
specifies,  for  every  state  s and  action  a,  the  probability  that  the  resulting  state  will  be  s’.  State
transitions  are  assumed  to  be  non-deterministic  due  to  uncertainty  in  the  environment,  real  world
behaviour (agent choices do not always have the intended affect in real life), and hidden variables that
are either not observable, or not included in our model of the problem.

Importantly,  we will assume the environment is stationary. This is important because dynamic
environments have to be represented by larger sets of state variables and quickly become impossible to
handle computationally.

Key principle 

The  fundamental  principle  behind  this  reinforcement  learning  framework  is  that  the  agent’s
ultimate goal is to maximize the expected sum of rewards over time that result from the actions chosen
by the agent at each time step. Specifically, our goal will be to maximize:
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This is an important formula – it summarizes the goal of the agent in the context of MDPs. The
constant   serves to discount the rewards the agent receives over time – future rewards (for larger
values of t) are worth less – so in effect the infinite sum above becomes manageable. 

The expectation E[x] is required because the state transitions are non-deterministic, so the reward
we need to accumulate is the expected or average reward for each state/action combination.

Learning Framework

Given the set of states S – estimate a quantity  defined as

this is the expected reward of starting at state s and following the optimal policy. States with high
value are considered good for the agent, because if the agent finds itself at any of those states, the agent
can expect to receive a large reward by acting in an optimal way. States with a large negative value are
considered bad for the agent – if the agent finds itself there, the future is bleak even if the agent takes
the best possible actions.

The value for a state can be rewritten as

The above is a neat trick – it allows us to replace the infinite sum with two terms, one that is the
reward obtained by taking action a from state s, and one that is the discounted expected reward due to
the possible resulting states s’ that could result from action a and initial state s.

Example:

Suppose we have the following very tiny problem.  S has 10 states, the values for the states are
shown below. The agent has four possible actions, numbered 0-3.

V*(0)=15
V*(1)=-4
V*(2)=7 Suppose the agent is at state s=2, it takes an action a=3 that results in reward 
V*(3)=12 R(2,3)=5, and the resulting states can be 3 (with T(2,3,3)=.25), 4
V*(4)=-8 (with T(2,3,4)=.25) and 7 (with T(2,3,7)=.5). The equation above would 
V*(5)=3 result in:
V*(6)=0
V*(7)=10

V*(8)=-1
V*(9)=5   
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The definition of the optimal policy follows from the definition of the value of a state. They are
complementary – the value of a state is the expected long-term reward of taking the optimal action
starting from  that state. The policy is simply the index that identifies the optimal action for that state:

Computing optimal state values

The  process  of  estimating  V*(s)  is  in  fact  fairly  straightforward,  though  it  is  computationally
intensive.

For all s in S, 

set V(s)=0

for all a in A,

set Q(s,a)=0

Repeat until policy is good enough

for all s in S
{

for all a in A
{

}

}

At  the  end  of  this  process,  V(s)  approximates  the  optimal  value  for  state  s,  and  the  policy
corresponds to the optimal action that should be taken from each state to maximize rewards. This
method is called  value iteration, and converges over time to the optimal value and policy for each
state. Each iteration has a complexity of O(|A||S|2) – this is because of the sum over states s’ in the inner
loop.

The definition of  good enough for the policy is problem dependent, and involves evaluating the
performance of the agent on the given task – when the agent performs at  an acceptable level,  the
process can be stopped.

Despite its simplicity, the process suffers from its computational cost, and from the need to know
in advance the transition function  T(s,a,s’). The transition function may be unknown or simply too
large to represent in memory. There is an alternate learning algorithm that can be used to estimate the
value for states, and the optimal policy.
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Q-Learning

The Q-Learning algorithm does not require knowledge of the transition table,  or the transition
probabilities between states. Instead, it relies on the training process to allow the algorithm to explore
possible outcomes of different actions taken from each state s, and to arrive at a good policy over time. 

The goal of Q-Learning is to estimate the quantity Q*(s,a), this is the expected reward that results
from taking action a from state s. The Q-Learning method is summarized below:

// Q-Learning – approximates Q*(s,a), V*(s), and the policy for the agent

Initialize the table Q(s,a)=0   for all s and a
Initialize Pi(s)=random action  for all s // Chosen from all valid actions
Determine initial state s for the agent
Set alpha, the learning rate, to a small value (problem dependent!)

For j in 1 to K // Perform K rounds of training
{

p_random = 1-(j/K) // Starts close to 1.0, 
// decreases toward 0 as j approaches K

For i in 1 to M // Each round consists of M training actions
{

Draw a random number c in [0,1]

if c <= p_random
Choose a random action a from the set of valid actions at state s

else
Choose a to be the current known optimal action in Pi(s)

// As a result of the chosen action a the agent will
// - Receive an instantaneous reward value r
// - The state will change to s’ - this is non-deterministic, we don’t
//   need to know what the probability of this happening is, we are
//   just told (or the agent can measure the state variables and figure

 //   this out) the resulting state s’.
           //

// This allows the agent to build an experience tuple  <s,a,r,s’> 
// Update Q(s,a) as follows:

}
Pi(s)=argmaxa Q(s,a) // Update policy at the end of the round!

} 

The algorithm above relies on two key processes:

- Random exploration of the state space, by allowing the agent to choose random actions given
their current state, and updating the Q table based on the result of these actions

- Lots of training trials (each trial corresponds to a single action taken by the agent). We will need a
large  number  of  training  trials  to  allow  the  agent  to  properly  explore  the  state-space.  Remember
transitions are non-deterministic, and we need the agent to have explored each state many times in
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order to have a chance of discovering as many possible outcomes as we can given the available actions
at each state.

-  The parameter  p_random is  important,  it  controls  the  agent’s  behaviour.  At  the  start  of  the
training process, this value is close to 1.0, and the agent is choosing random actions all the time (notice
we initialized the policy Pi(s) to also contain random actions for each state). This allows the agent to
widely explore the state space.

- After each  round  of trials, the policy is updated with whatever action has (thus far) proven to
yield the highest reward from each state.

- As the round number approached K, the value of p_random decreases toward 0. This means the
agent is choosing more and more often the action that the current policy dictates is optimal at each
state.  This is  critical  – it  allows the agent to  refine  a good policy by mostly using the policy but
inserting random actions every now and then in the hopes of discovering an even better one.

-  The  learning  rate  is  important,  and  should  be  tuned  carefully  for  each  problem.  Roughly
speaking, if this is too small the process will take a very long time to converge to a good policy. If it is
too large, the process may not converge properly. A reasonable starting point is a value in [.01, .1] – but
this is only a guideline.

Given reasonable values for the learning rate  alpha and the future rewards discount rate  gamma
the Q-learning process will produce a good policy. Depending on the size of the state space and the
number of actions available to the agent, training may take a long time – but this can be done offline. A
caveat  of the process is  that  we depending on the problem, we may have to  simulate the training
process entirely – it is not possible to train a robot to cross the street by having the actual robot explore
random actions millions of times (likely, the first attempt will result on the robot being run over – end
of training!).

Q-learning allows us to come up with a good policy on reasonably complex problems, and without
having to worry about state transition probabilities. Even so, for many problems the state space is so
large that it becomes impractical to carry out the amount of training that would allows us to find a good
policy – indeed, for some problems the state space is so large we can’t even store the table Q(s,a).

An additional problem is that because of the dependence of the process on  specific state/action
combinations, the resulting policy does not generalize well.

Suppose you trained a robot to move around a room with certain furniture and objects in it. We
could  do  this  using  Q-learning  under  the  assumption  that  the  furniture  and  objects  don’t  change
position much – but our policy will be specific to the room and configuration we trained on. Move the
robot to a different room, and the policy is not much use.

One option is to add variables to the state space so we can specify the possible configurations for
changing elements of the environment,  but this makes the state space much, much larger and thus
results in the training process becoming impractical and eventually impossible.
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A better approach to handling larger problems, and to achieve some amount of generalization, is to
get rid of our dependence on specific states.

Feature Based Q-Learning

This is a variation of the Q-learning algorithm intended to help us deal with problems that have a
larger state space than can comfortably be handled with standard Q-learning, and also to allow us to
build a policy that is more likely to generalize to similar problems than the one we trained on.

The idea is to try to learn  abstracted features  from a set of configurations seen in training, and
apply what we learned to never-seen configurations that have similar abstracted features.

The process relies on the extraction of useful features from the state variables – what exactly is a
useful feature is, of course, problem dependent,  and the key problem in implementing this type of
learning process. As an example, consider the problem of the mouse in the maze full of cats, trying to
find and eat a chunk of cheese.

Useful features may be:

- Some form of distance to a cat (or cats)
- Some form of distance to the cheese
- Some form of information regarding the configuration of the maze around the mouse.

Notice that none of these are specific to a particular configuration – many similar configurations
may have the same features, so a learning process that relies on them instead on the specific locations
of agents and walls will likely be able to handle variations and to be more useful in allowing the mouse
to deal with a new maze, or with changes in the number of cats and/or cheese from whatever it trained
on.

Designing the features to be used for a given problem is the harder task we need to solve. Given
the set of features, the training process is straightforward:

The Q-table is replaced by a function

This function evaluates the features fi at state s, each of them multiplied by a weight wi, and allows
us to estimate whether being at state s is a good thing or a bad thing for the agent. 

The goal of the training process is to estimate the weights  for the features so that Q(s) does indeed
provide us information about how good or bad a specific state s is – importantly, since we don’t have a
table for all s, we don’t care any more about the size of the state-space! And our policy will not
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depend on specific configurations we trained on, but rather, on the learned weights for features that
apply to any state we have encountered, or may encounter in the future.

// Feature-based Q-learning

Initialize the table w_i=random in [-.5, .5] with w_i!=0 for all i

For j in 1 to K // Perform K rounds of training
{

p_random = 1-(j/K) // Starts close to 1.0, 
// decreases toward 0 as j approaches K

For i in 1 to M // Each round consists of M training actions
{

Draw a random number c in [0,1]

if c <= p_random
Choose a random action a from the set of valid actions at state s

else
Choose a to be the current known optimal action in Pi(s)

// As a result of the chosen action a the agent will
// - Receive an instantaneous reward value r
// - The state will change to s’ - this is non-deterministic, we don’t
//   need to know what the probability of this happening is, we are
//   just told (or the agent can measure the state variables and figure

 //   this out) the resulting state s’.
           //

// This allows the agent to build an experience tuple  <s,a,r,s’> 
// Update each w_i as follows:

}

}

The process above is a form of gradient descent! It will iteratively approximate the weights that
allow the agent to maximize its expected reward. However, notice that the process above does not
actually state how to determine the policy.

In order to figure out the optimal action for a given state s (and remember this may be a state we
never  saw  before  during  training)  we  rely  on  our  features  and  the  function  Q(s)  with  the  (now
optimized) weights:

Given state s
Evaluate each possible action a_i 

Determine the feature values after action a_i has been taken
Compute Q(s_i) – the resulting state after action a_i 

Choose the action a_i which results in the largest Q(s_i)

So in effect, the policy is a matter of evaluating how actions will change the feature values, and
choosing actions that make those feature values maximize the estimated Q(s) for the resulting state.
Note that this may not simple – the change in feature values resulting from a particular action may not
be easy to determine. Nevertheless, because the process is intended to generalize well, as long as we
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can produce a reasonable estimate of what those features values will be, the agent will do the right
thing.

You should be aware of  the  fact  there is  a  tradeoff  in  terms of  ability  to  solve  very  specific
problems, or ability to generalize. For problems that can be handled with standard Q-learning, if the
task is very well defined, and unchanging, we should expect standard Q-learning to perform better than
feature-based.  Conversely,  as soon as variability is  introduced,  or the problem size grows, we can
expect  to  see  feature-based  Q-learning  do better  than  standard  Q-learning  (assuming  the  standard
method can still be applied and the problem has not grown beyond a manageable size).

This closes our unit on reinforcement learning and Markov Decision Processes. Please bear in
mind we have only looked at a small corner of what has been  developed to handle MDPs! This is a
very wide field of study in A.I. and a huge amount of work has gone into it that we won’t be looking at
in this course.

For now, keep in  mind this  is  one form of reinforcement learning, we will  revisit  the idea of
training an agent by providing feedback on its performance when we study neural networks.
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