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Abstract. Exposure fusion is a well known technique for blending mul-
tiple, differently-exposed images to create a single frame with wider dy-
namic range. In this paper, we propose a method that applies and extends
exposure fusion to blend visual elements from time sequences while pre-
serving interesting structure. We introduce a time-dependent decay into
the image blending process that determines the contribution of individ-
ual frames based on their relative position in the sequence, and show
how this temporal component can be made dependent on visual appear-
ance. Our time-lapse fusion method can simulate on video the kind visual
effects that arise in long-exposure photography. It can also create very-
long-exposure photographs impossible to capture with current digital
sensor technologies.

1 Introduction

The problem of blending visual information from multiple source frames for the
purpose of creating high dynamic range (HDR) images has been studied at great
depth over the past two decades. The seminal work by Debevec and Malik [1]
first proposed a sound framework for recovering a camera’s response curve, for
using this curve to generate a high-dynamic range radiance map from a set of
differently exposed shots of a scene, and for rendering a single image from the
radiance map that more faithfully approximates the perceived visual qualities
of scenes with extreme illumination variations. Since then, a large volume of
research on algorithms and techniques for HDR has been published. Thorough
studies of existing techniques can be found in [2], [3], while [4] provides a sample
of current research.

HDR techniques are typically complex as they are concerned with photomet-
ric accuracy and, in order to produce an image that can be displayed on a typical
computer screen, require an additional and often computationally expensive step
of tone mapping ([5], [6], [7], [8], [9]) during which the HDR information is ap-
propriately compressed into the available dynamic range (typically that of an
8-bit RGB image).

Recently, exposure fusion ([10] and [11]) has been proposed as a faster, sim-
pler alternative to HDR based on the argument that as long as we are interested
only in the final blended image, neither radiance map estimation nor tone map-
ping are required. Instead, exposure fusion produces an image by blending pixels
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Fig. 1. Time-lapse fusion result on a sequence of 219 photographs taken over a period
of 2 hours around sunset. Four of the source frames are also shown. The blended
image contains visual elements and detail from all source frames, while softening the
appearance of moving scene structure.

from all source frames with suitable weighting for each pixel. The weight of each
pixel depends on how valuable its visual information is for the final blend. Ex-
posure fusion results in [11] show that it can yield images of comparable visual
quality to those created from HDR techniques while greatly simplifying the im-
age processing pipeline.

Until now, HDR and image fusion have been concerned with the blending
of multiply-exposed shots to increase the dynamic range of the scene. Here we
propose that image fusion can also be used to blend images taken over a (possi-
bly very long) interval of time, blending visual information from a dynamically
changing scene while preserving detail and interesting structure. We focus on two
problems: Simulating long-exposure effects on motion video, which constrains the
exposure time to be no longer than that allowed by the framerate; and the cre-
ation of very-long-exposure photographs such as that shown in Fig. 1 which are
beyond what is possible to capture in practice with a camera. In what follows,
we describe first the original exposure fusion formulation, then we introduce the
temporal component that is the basis for time-lapse fusion, and finally show
results of the algorithm on video and time-lapse photographic sequences.

2 Exposure Fusion

There is a wide array of existing algorithms that blend multiple images to en-
hance particular aspects of visual structure. Laplacian pyramid blending [12], for
example, demonstrated early on that by properly mixing the coefficients of the
Laplacian pyramids of two images, a single, blended frame could be created that
preserved sharp detail from both source images. In the interval since the pyramid
blending method was introduced, algorithms have been proposed to blend infor-
mation from images taken at different apertures [13], for fusing multi-spectral
data for image enhancement [14], [15], for seamlessly inserting components of
one image into another [16], [17], and for removing undesired image content by
replacing it with suitable regions taken from images in a large database [18].
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These are just a handful of representative examples. In this paper we explore a
specific problem in image blending, namely, that of combining images taken at
different points in time for photographic and video applications.

Our method is based on the exposure fusion algorithm of Mertens et al. [11].
The original exposure fusion method provides an alternative to complicated and
computationally expensive HDR processing. The exposure fusion method takes
as input a set of images {I1, I2, . . . , IK}, and generates a single output image by
computing a weighted sum of corresponding pixel values over the input image
set. The weight of each pixel is based on three properties: Contrast, saturation,
and well-exposedness, and it is assumed that the images are aligned.

Contrast computation is based on local edge energy provided by a Laplacian
pyramid decomposition of the source images. Saturation is defined as the stan-
dard deviation of the RGB colour components of each pixel, and well-exposedness
gives higher weights to pixels away from brightness extremes. Given these com-
ponents, pixel weights are computed as:

Wi,j,k = Cαci,j,k · S
αs
i,j,k · E

αe
i,j,k, (1)

where the indices i, j, k refer to pixel (i, j) in image k, Ci,j,k, Si,j,k, and Ei,j,k
are the pixel’s contrast, saturation, and well-exposedness values respectively, and
the α exponents control the influence of each of these terms. Pixel weights are
normalized to that the weight of pixels at (i, j) across all frames sums to 1:

Ŵi,j,k =
Wi,j,k∑K

k′=1
Wi,j,k′

.

Given the pixel weights for all pixels in all source frames, the simplest expo-
sure fusion algorithm would compute the colour of the final blended pixel R(i, j)
as:

R̂i,j =

K∑
k=1

Ŵi,j,kIi,j,k. (2)

However, this can lead to artifacts around image edges and other fine structures
due to high frequency variations in the weight maps themselves. To avoid this
problem, Eq. 2 is actually implemented using pyramid blending similar to that
described in [12]. Each input image is processed to obtain a Laplacian L{Ik}
pyramid with d levels. The corresponding weight map is processed to obtain a
Gaussian pyramid G{Ŵk} with the same number of levels d. From these Lapla-
cian and Gaussian pyramids, each level l = {d, d − 1, . . . , 1} of the blended
Laplacian pyramid for the result frame is computed as

Ll{Ri,j} =

K∑
k=1

Gl{Ŵi,j,k}Ll{Ii,j,k}. (3)

The result frame R is finally obtained by pyramid reconstruction from L{R}.
Exposure fusion was shown to produce blended images of a visual qual-

ity similar to those produced by more complicated HDR/tone-mapping algo-
rithms. Given its relative simplicity, it has been adopted in applications such as
panoramic imaging, through an open source project called enfuse. It should be
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noted that the exposure fusion algorithm in no way constrains the source images
to be taken under different exposure settings. In fact, if the parameters of the
method are set to ignore the well-exposedness term, standard exposure fusion
can be used to blend any set of aligned photographs of the same scene.

However, for video applications such as video processing we would like to be
able to control the contribution of each pixel not only through its photometric
properties, but also through its relative position within the sequence of frames.
To this end, we expand the original formulation of exposure fusion to include a
temporal decay term. This time decay can be applied in a per-frame manner to
achieve visual effects similar to those in long-exposure photography, or it can be
made structure dependent so that the specific image structure is highlighted in
the blended frames.

3 Time-Lapse Fusion

Exposure fusion provides a way to extend the dynamic range of still photographs.
We are interested in extending the temporal range of the events that can be
recorded in photographs and video. There are two factors that limit exposure
length: First, the need for short exposure times under bright illumination con-
ditions. This applies to both still photography and video, and though it can be
controlled to a certain degree through the use of appropriate filters and small
apertures, it is still technically not feasible to obtain exposure times in the order
of tens of minutes or even hours under daylight. Secondly, for motion video,
the longest exposure achievable using a video camera is limited by the frame
rate. This is an unavoidable limitation of video processing and places a hard
upper-bound on the maximum exposure time for each frame.

Here we introduce time-lapse fusion as a means for artificially extending the
exposure time of both still photography and motion video. The process takes
as input a sequence of frames I1, . . . , IK either from a video, or from a time-
lapse photographic sequence in which photographs are taken at regular intervals
over an arbitrarily long period. We assume the sequence is taken with the camera
mounted on a sturdy tripod so that static structure in the scene remains aligned.

Time-lapse fusion produces an output sequence R1 . . . RK in which image Rt
is produced by blending source frames It, It−1, . . . , It−τ effectively incorporating
visual components from τ previous frames as well as the current one. The value
of τ is set by the user, and controls the length of the virtual exposure time for
each result frame. For motion video the virtual exposure time (VET) of each
frame is given by V ET = τ/framerate. For time-lapse sequences, the virtual
exposure time is dependent on the interval between shots. At first sight, it may
seem reasonable to simply average frames It, It−1, . . . , It−τ into the result frame;
however, averaging over time tends to weaken and blur fast-moving structure,
losing detail and giving a large weight to uniform backgrounds as seen in Fig. 2.
Careful blending is required to preserve detail and produce the desired long-
exposure effects.
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We modify the pixel weight equation 1 to include a time-decay factor that
modulates the overall contribution of pixels to the final blended image Rt:

Wi,j,k = (Cαci,j,k · S
αs
i,j,k · E

αe
i,j,k) · T (k, t). (4)

Here, T (k, t) is a Gaussian-shaped envelope with σ = τ/3

T (k, t) = e−
(t−k)2

2∗σ2 , (5)

with t the index of the current frame. The motivation for a Gaussian envelope
is that it provides smooth transitions between consecutive output frames. A box
window would be simpler, but would result in visible changes between frames
especially for time-lapse sequences with large intervals between shots.

Figure 2 shows the output of time-lapse fusion for two frames from a fire-
works sequence. The output frames clearly show the effects of having a long
virtual exposure. Structure and fine detail are well preserved, and unlike frame
averaging, time-lapse fusion does not create a blurry output that blends heavily
with the black background. Figure 3 shows another example of time-lapse fusion
with different virtual exposure times.

Fig. 2. Left: Original input frames from a movie sequence of fireworks. Middle: Results
of averaging each frame with the previous 25 in the sequence. Right: Time-lapse fusion
results with τ = 25 for a virtual exposure time of .83 seconds. Averaging generates
blur and blends structure with the background. Time-lapse fusion produces a pleasing
long-exposure effect and preserves sharp detail.

For very-long-exposure photography, we follow the same process with the
exception that only the last output frame RK is computed, and we set τ to be
very large so that effectively the entire sequence contributes to the final frame.
The blended image in Figure 1 was produced in this way for a virtual exposure
time of about 2 hours. Very long exposures are thus possible even under bright
daylight conditions. During the process, the photographer retains full control
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over focus, aperture, and hence depth of field. With careful implementation,
it is possible to process pixel weights frame-by-frame, making arbitrarily long
exposures possible. Figure 4, for example, shows long exposure results from long
time-lapse sequences, including a portrait produced by blending photos of the
same person taken over a period of 1 year.

Fig. 3. Left: Original input frame from a movie sequence of waves. Middle: Time-lapse
fusion results for τ = 7 (virtual exposure time .23 seconds). Left: Time-lapse fusion
with τ = 25 (virtual exposure time .83 seconds).

While the use of Gaussian envelope is appropriate for simulating long ex-
posure effects, the time decay factor can be an arbitrary function of relative
frame position. In particular, structure-dependent envelopes that highlight spe-
cific image content are possible. In the following section we show how to make
time-lapse fusion structure dependent, so that the decay time varies spatially
over individual frames.

4 Stretch The Sunset

In the previous section we explored the use of a time decay factor that applies
to entire frames in a sequence. However, the time decay factor can vary spatially
over an image providing control at the pixel level of how long individual pixels
will contribute toward the resulting blend. In this section we show that through
the use of a structure-dependent time decay, computed independently for each
pixel in each frame of the sequence, we can produce images that highlight specific
image structure. The example we use is that of extending the duration of sunset
colours over a time-lapse sequence taken at dusk.

Under this scheme, a time-decay map Di,j,k is computed for each frame k
in the sequence. This map contains at each pixel location (i, j) a constant that
controls how quickly the influence of the pixel will decay over time. To maintain
consistency with the frame-wise time decay discussed in the previous section, we
also model each pixel’s temporal weight as a Gaussian envelope:

T (i, j, k, t) = e
− (t−k)2

2∗D2
i,j,k , (6)
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Fig. 4. Very-long exposure photography. The portrait on the left is the result of blend-
ing images of the same person taken over a period of 1 year. The subject’s face is
carefully aligned in each source frame but the clothing, hair style, and background are
otherwise unconstrained (source images from clickflashwhirr.me). Right side: Ad-
ditional examples of very-long exposures from time-lapse sequences. Virtual exposure
times range in the tens to hundreds of minutes.

where t is the current time index, k is the frame’s time index,Di,j,k ∈ [σmin, σmax]
is the decay constant for the pixel, and the parameters σmin and σmax deter-
mine the minimum and maximum intervals, respectively, over which pixels will
contribute to the blended result.

In order to understand what Eq. 6 is doing, we need to specify how the
time decay map Di,j,k is computed in the first place. This will depend on the
input sequence and what the user wishes to accomplish through the blending.
As a concrete example, here we use the same sequence of 219 images from which
Figure 1 was generated. The sequence includes an interval covering about 2 hours
around sunset.

We will generate an output sequence through time-lapse fusion so that the
duration of the sunset colours is stretched. We also want some temporal smooth-
ing over all other elements of the scene so that the different frames, which were
taken about 30 seconds apart from each other, blend seamlessly. To detect sun-
set colours we rely on a simple measure of saturation. The time decay value for
each pixel is given by: Di,j,k = σmin + (Si,j,k ∗ (σmax − σmin)), where Si,j,k is
the saturation for the pixel in [0, 1], and we set σmin = 7 and σmax = 500 which
in effect means high-saturation pixels contribute all the way through the end of
the sequence.

Figure 5 shows four frames from the sequence as well as their contribution
over time as given by Eq. 6. Here t stands for the age of the frame, so the
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t=1 t=20 t=100 t=210

Fig. 5. The leftmost column shows four frames of the input sequence. Each successive
column then shows the temporal blending weights for pixels in the corresponding image
depending on the age of the frame. For example, the third column shows the blending
weights for pixels once the image is 100 frames old.

images show how strongly different pixels contribute to a blended image as the
frame ages. By the time a frame is 3 ∗ σmin frames old, the contribution of non-
saturated pixels has faded to almost zero. Saturated pixels have large temporal
blending weights all through the sequence. Note that for each frame the regions
that persist change in shape, and that indeed the regions that contain sunset-like
colours fade the slowest.

Figure 6 shows the results of structure-dependent time-lapse fusion compared
against the standard time-lapse fusion described in the previous section (i.e.
using a single time decay value per frame, with a fixed τ = 25). Results are
similar for the earlier parts of the sequence; however, as the sequence moves
along the standard time-lapse fusion method loses the sunset colours in the
clouds. The structure-dependent version, on the other hand, preserves the red
glow in the clouds and the colours reflected in the water for much longer. The
resulting sequence does indeed produce the illusion of a longer sunset full of reds
and oranges.

A final example is shown in Fig. 7 which shows selective smoothing of water-
fall structure. In this case standard time-lapse fusion causes blurring of people
walking through the sequence which is not desirable. A simple threshold on dis-
tance from pure white was used to automatically obtain a coarse segmentation
of the waterfall structure in each frame. Waterfall regions are given σmax = 11
for a virtual exposure time of 1.16 seconds. The rest of the scene is assigned
σmin = .33 so that non-waterfall pixels contribute only while the frame is the
current frame. This effectively renders the moving water smooth while leaving
the rest of the scene untouched. In the above examples no user interaction was
required.
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Fig. 6. Stretched sunset sequence. The top row shows four of the original sequence
frames. The middle row shows the result of applying standard time-lapse fusion (as in
Section 3). The bottom row shows blended results using the structure dependent decay
map described in this Section.

5 Conclusion

In this paper we proposed a time-lapse fusion algorithm that extends the ex-
posure fusion framework to blend images taken at different points in time. We
showed that a simple temporal decay factor with a Gaussian profile can be used
to simulate long exposure effects on video, and that arbitrarily long exposures not
physically realizable with a real camera are possible while allowing the photogra-
pher to maintain control of focus, aperture, and depth of field. We then extended
the method to allow for pixel-level control of time-decay so that specific image
content can be highlighted in the final blend. At the pixel level, time-lapse fu-
sion allows for the creation of video sequences that change the temporal profile
of events in the scene to produce visually striking results. Time-lapse fusion can,
in this way, provide photographers with a tool to expand their ability to create
depictions of the world that are beyond physical or practical limitations.
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