
Chapter 8

A General Framework for Contour

Extraction

In the previous chapter, we described an efficient search framework for convex contour extrac-

tion. The framework is based on a simple measure of affinity between line segments, and relies

on local affinity normalization to increase robustness. We described a search control technique

that allows the algorithm to avoid searching through a potentially large number of variations

of the same contour, and presented a robust procedure for evaluating contour quality. We then

showed that the algorithm can efficiently extract convex shapes in complex imagery; in par-

ticular, it achieves a reduction of several orders of magnitude in the amount of search that has

to be carried out to extract salient contours when compared to a search framework based on a

boundary coverage threshold.

In this chapter, we will extend the constrained search framework to handle non-convex con-

tours. We will describe alternate constraints that can be used in place of convexity to keep the

search for contours under control, even in the presence of texture and significant amounts of

clutter. We will show experimental results that indicate that the extended search framework is

capable of extracting salient non-convex contours efficiently. Finally, we will propose exten-

sions that allow for the incorporation of additional cues such as colour and texture, providing

159



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 160

increased robustness, and a more comprehensive evaluation of contour quality.

8.1 General Constraints for Contour Search

In the previous chapter we successfully used convexity to constrain the formation of contours.

Convexity is advantageous because it removes from consideration many possible search paths

at each step of contour growth, and because it biases contour growth toward closure. Without

the convexity constraint, the search framework we described in the previous chapter is rendered

impractical for images with moderate clutter and texture.

Observation of the behavior of such an unconstrained grouping method reveals that there

are two potential combinatorial holes that the search can get drawn into. First, an unconstrained

search procedure will find exponentially many possible paths to try in regions with texture or

clutter, most of these paths lead to open chains, and a large number of the remaining ones

describe shapes with irregular boundaries that wind their way through textured regions, and

do not correspond to salient image contours. Second, the lack of a bias for closure causes the

algorithm to explore paths that are on average much longer than those explored when convexity

was used. Even a well constrained search will become impractical if it has to visit nodes deep

down the search tree too often.

To restore search efficiency, we must achieve a large reduction in search complexity using

only general constraints. We must reduce the total number of combinations of edges that need

to be explored at each step. Affinity normalization goes a long way in this direction, but for

non-convex contours this reduction alone is not sufficient to avoid the combinatorial sink-hole.

We must also find a way to bias the search toward closure, thereby avoiding the large number

of arbitrary open chains that can be generated on a typical line-set, and reducing the average

depth the algorithm has to explore in the search tree.

Recall that our original affinity measure is based on proximity, and on the geometric con-



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 161

figuration of a pair of line segments:

T affinity(l1, l2) = G affinity(l1, l2) + κ, (8.1)

where the geometric affinity term G affinity(l1, l2) depends on the length of the gaps or tails

between each segment and the intersection point, and incorporates a measure of confidence

about the location of the intersection; and κ is a suitable constant.

We expand this affinity measure so that it includes a term based on the angle difference

between the segments

AFl1,l2 = (cos(θl1→l2) + 1)/2 (8.2)

where θl1→l2 is the angle between the segments when traveling in the direction l1 → l2. This

term effectively encourages grouping into smooth boundaries whenever the choice exists, and

is useful in keeping the contour search algorithm from wandering into textured objects. The

angle term multiples the geometric affinity term in (8.1)

T affinity(l1, l2) = (G affinity(l1, l2)AFl1,l2) + κ. (8.3)

The spatial distribution of affinities given by the above formula is similar in shape to the

stochastic completion field of Williams and Jacobs [113], and the tensor voting field of Guy

and Medioni [40].

We use the same affinity normalization procedure described in the previous chapter to gen-

erate a set K that contains the best groups that can be formed with every segment of the line-set,

sorted in decreasing order of normalized affinity. Figure 8.1 shows a line-set, and the corre-

sponding histogram of normalized affinities. The histogram shows that the shape of the distri-

bution of normalized affinities is similar to the one for the original affinity measure, this means

that the properties of normalized affinities discussed in the previous chapter still hold for the

new affinity measure, and thus we can expect the same benefits of using a normalized affinity

threshold to constrain the search for contours.

The second change we make to our previous search framework is that instead of convexity,

we use compactness as a grouping constraint. Compactness is defined as the ratio of a contour’s



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 162

0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

350

400

450

Normalized Affinity Histogram

Normalized Affinity

C
ou

nt

Figure 8.1: Distribution of normalized affinities for the extended affinity measure that includes

the smooth continuation term. The red line corresponds to the value of 1/k with k = 20.

Notice that the distribution of normalized affinities is similar to the distributions we obtained

in the previous chapter, using the original affinity measure.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 163

a) b)

Figure 8.2: The Gestalt principle of compactness of shape. a) Compact shape, the area bounded

by the contour (dark gray) is a large fraction of the area of the convex hull (dark gray plus light

gray). b) Non-compact shape, in this case the area of the convex hull is much greater than the

area bounded by the contour.

area to the area of the convex hull of the contour, this is illustrated in Figure 8.2. Saund [93] has

previously demonstrated the use of compactness in the context of contour grouping, here we

follow the same formulation, and impose a minimum threshold τc on compactness that every

chain of edges must satisfy to avoid being pruned. For partial chains, we consider the area of

the closed contour formed by joining the first and last vertices of the chain with a straight line.

Compactness is an attractive constraint for grouping because it keeps contours from forming

complicated, twisting shapes, and because it encourages closure (though not as strongly as

convexity).

We have found that with the above modifications, our framework is capable of keeping the

search for closed contours under control, even for images with moderate clutter and texture.

The updated search algorithm is the same as the method described for convex groups, but with

compactness instead of convexity, and using the modified affinity measure:



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 164

1 - For each segment i in the line-set, generate an initial group containing i, set τ = τ0.

2 - Find the set K with the best k junctions for the last segment in the group (sorted by

decreasing normalized affinity).

3 - For each segment j in K

– If N affinity(i, j) < τ end loop, otherwise add j to the group.

– Check whether j is covered by a previously found group, if so, try the next j.

– Test for compactness, if compactness < τc try the next j.

– Test for simplicity (no self-intersections, no spiral shapes), if test fails try the next

j.

– Check for closure, if the group is closed, compute its saliency and report it.

– Increase τ = τ + ετ .

– Go to step 2.

4 - Report the extracted polygons sorted in order of decreasing saliency.

Contour saliency is estimated using Qualitative Probabilities with the same procedure used

for the convex contour case. However, the task of ranking the extracted contours becomes more

difficult given that there is a substantially larger number of shapes that can be generated on any

line-set, and many of these correspond to variations of a few salient shapes. With convex

contours, we reduced the number of such shapes by testing each contour for similarity against

previously extracted shapes. Two polygons were considered similar if the endpoints of one

contour were closer than some small distance from an edge in the other, and vice versa. This

simple test was sufficient to establish similarity for convex shapes, but it can fail for general

contours in cases such as the one illustrated in Figure 8.3.

To remove variations of the same shape in the new framework, we test for overlap between

the areas enclosed by the contours. If the overlapping area is greater than some threshold



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 165

Figure 8.3: Our old equivalence test is not sufficient to detect similar shapes anymore. The

image above shows two distinct contours (blue and red) that pass the old similarity test (all the

vertices of each polygon are within a small distance of the other contour). We determine that

the contours are different by computing the ratio of the overlapping area (gray) to the area of

each polygon, we say the contours are equivalent if both ratios are above .9.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 166

(relative to the area of each shape), we say the contours are equivalent, and keep only the one

with the highest QP rank. We can check for overlap efficiently by first computing the overlap

between the bounding boxes of the contours, and only performing a complete overlap test if

the bounding boxes have more than 75% overlap. For shapes that satisfy this condition, a

complete overlap computation is performed using a fast polygon scan-conversion routine. This

procedure successfully eliminates many of the repeated contours found by the algorithm.

8.2 Experimental Results

Here we show contour extraction results on several images, we use a threshold on compact-

ness of .75, an overlap threshold (for equivalence testing) of .9, and the same values for the

parameters of the affinity function that we used for convex polygons, namely: σgap = 20,

σtail = σgap/2 = 10, σu = 15, κ = .25. Once more, we set k = 20 to be the number of groups

to consider for normalization for each segment, and set the normalized affinity threshold to

1.2/k. These single set of parameters results in efficient contour extraction on a variety of

images, which agrees with the observation made for convex groups that the use of normalized

affinities provides excellent robustness to variation in the input line-set.

Figures 8.4-8.9 show some of the contours extracted from several line-sets. There are sev-

eral observations to be made here, first, that many of the contours found by the algorithm

correspond to salient image structure, though ranking the contours is now more complicated,

which means that salient contours now appear further down the list of extracted shapes. Sec-

ondly, though we introduced a bias for smooth continuation, the algorithm is capable of finding

contours with sharp bends, this is a result of the affinity normalization procedure. Whenever a

sharp turn offers the best possible choice for grouping within the local neighborhood of a seg-

ment, the normalized affinity for the group will be large, regardless of the fact that the absolute

affinity value may be low because of the angle component.

For all our tests, the number of nodes searched, the number of contours extracted, and



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 167

Lineset All contours Rank=1

Rank=2 Rank=3 Rank=5

Rank=7 Rank=8 Rank=13

Rank=16 Rank=21 Rak=26

Figure 8.4: Beetle line-set with 591 segments, and several of the extracted contours (the QP

rank is noted below each image). The algorithm explored 4.2 × 105 nodes, found 87 distinct

contours, and took 28 seconds to complete.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 168

Lineset All groups Rank=1

Rank=2 Rank=4 Rank=5

Rank=7 Rank=10 Rank=15

Rank=17 Rank=18 Rank=23

Figure 8.5: Snoopy4 line-set with 432 segments, and several of the extracted contours. The

algorithm explored 5.0 × 105 nodes, found 94 distinct contours, and took 58 seconds to com-

plete.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 169

Lineset All groups Rank=1

Rank=2 Rank=3 Rank=4

Rank=5 Rank=6 Rank=7

Rank=8 Rank=9 Rank=10

Figure 8.6: Boxes2 line-set with 829 segments, and several of the extracted contours. The al-

gorithm explored 8.9×105 nodes, found 92 distinct contours, and took 35 seconds to complete.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 170

Lineset All groups Rank=1

Rank=2 Rank=3 Rank=4

Rank=6 Rank=7 Rank=10

Figure 8.7: Snoopy7 line-set with 506 segments, and several of the extracted contours. The

algorithm explored 5.2 × 105 nodes, found 141 distinct contours, and took 45 seconds to com-

plete.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 171

Lineset All groups Rank=1

Rank=5 Rank=6 Rank=7

Rank=9 Rank=11 Rank=15

Rank=19 Rank=22 Rank=23

Figure 8.8: X-ray line-set with 726 segments, and several of the extracted contours. The algo-

rithm explored 3.7× 105 nodes, found 136 distinct contours, and took 30 seconds to complete.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 172

Lineset All groups Rank=1

Rank=2 Rank=3 Rank=4

Rank=5 Rank=6 Rank=7

Rank=8 Rank=9 Rank=10

Figure 8.9: Fruits line-set with 797 segments, and several of the extracted contours. The algo-

rithm explored 8.1× 105 nodes, found 102 distinct contours, and took 77 seconds to complete.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 173

the run-times are comparable to those obtained for convex groups (run-times were measured

on the same P4, 1.9GHz machine used for testing the convex group extraction algorithm).

This is particularly important because it indicates that the use of compactness and smooth

continuation within our search framework reduces search complexity to the point of making the

general contour extraction problem comparable to the significantly more constrained problem

of detecting convex groups.

Though the algorithm described above can successfully extract salient contours for objects

that are not heavily textured, without additional information the contour grouping algorithm

may wander into textured regions and generate a multitude of groups that do not represent

object boundaries, Figure 8.10 illustrates this situation. On such line-sets, the information

provided by the segments is ambiguous in that there are too many paths through the textured

regions of the image that lead to closed contours. Though the search itself can be carried

out efficiently, the extracted contours are unlikely to represent salient image structure. In fact,

determining contour saliency in such cases becomes problematic. The Qualitative Probabilities

framework shows a preference for contours that wind their way through texture, because such

contours can account for more of the observed segments in the line-set.

However, we will show that it is possible to bring additional information into the search

framework to guide contour growth, this information is used to favour the grouping of contours

that are more likely to correspond to object boundaries. In particular, we will show that colour

information can be used to bias contour growth, and that the search framework allows for a

dynamic bias that may depend on accumulated statistics that change as the contour grows.

8.3 Cue Integration for Enhanced Contour Extraction

Up to this point, we have only used gestalt grouping principles to decide which groups look

better. However, our search framework can easily be extended to incorporate other sources

of information. In this section, we will extend our algorithm to use colour information from



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 174

LinesetOriginal Image All groups

Rank=1 Rank=2 Rank=4

Rank=6 Rank=7 Rank=9

Figure 8.10: Beliris image and line-set, 784 segments, and several of the extracted contours.

On this image, the algorithm generates many contours that wind through the textured region.

These contours receive a high QP score because they account for many of the observed line-

segments. The algorithm explored 8.9 × 105 nodes, found 232 distinct contours, and took 66

seconds to complete.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 175

the image to guide group formation, and also to evaluate the saliency of output contours. We

will not explore the difficult problem of defining a suitable colour similarity measure, instead,

we use a simple metric based on colour-histograms, and focus on the problem of using the

additional information provided by this metric to bias the search for contours.

There are two ways in which our framework can incorporate additional image cues. We

could add another term to the affinity function just like we did in the previous section to bias

the contours toward smooth continuation. The colour metric we propose here could be incor-

porated in this fashion, however, we want to illustrate the fact that a search-based algorithm

offers the possibility of modifying the affinity values at search-time.

This is important because it means the search can be biased using non-local cues and ac-

cumulated statistics that depend on the shape of a partially completed contour. We will incor-

porate colour information in this fashion as a proof of principle, and leave the exploration of

other useful cues for future work.

8.3.1 Local Colour Histograms

For our purposes, we will represent colour information in the form of local colour histograms,

these histograms are computed over neighborhoods of 25 × 25 pixels centered at a particular

image location (x, y). Each histogram contains 20 bins, and three layers corresponding to three

colour components. The colour values at each pixel within the neighborhood are accumulated

onto the histogram, with contributions weighted by a 2-D Gaussian with σx = σy = 8 centered

at (x, y). The choice of σ is determined by the window size, so that at least 1.5σ fit within

the window on either side. The window size and the number of bins were set experimentally,

and were found to yield good results. We will therefore use these values in all our tests.

Determining the optimal values for these parameters on an arbitrary image is a difficult problem

we will not explore here.

Since the 2-D Gaussian used to weight the contribution of each pixel to the histogram has

unit area, each layer of the resulting histograms will also have unit area. However, we know that



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 176

the RGB values in the image are highly correlated, so instead of computing RGB histograms,

we use the opponent color model [106]

L = R + G + B, Y B = R + G − (2 ∗ B), RG = R − G, (8.4)

where L is the luminance channel, Y B represents yellow minus blue, and RG represents red

minus green. These colour components are less correlated, so their histograms are more infor-

mative. In practice, we normalize the values on each channel to be within [0, 1], that is

L =
R + G + B

3
, Y B =

R + G − (2 ∗ B) + 2

4
, RG =

R − G + 1

2
. (8.5)

Figure 8.11 shows a small image region, a 25× 25 window selected for analysis, the Gaussian

mask that determines the weight of each pixel’s contribution to the histograms, and the RGB

and L − Y B − RG histograms for the window.

Before the search phase begins, we compute and store local colour histograms over the

complete image using a uniform grid with 3 pixels between neighboring histograms in the

vertical and horizontal directions. Given the size of the histogram windows, we could use a

sparser grid, but we find the denser sampling useful at search time.

8.3.2 Biasing the Search Using Histogram Similarity

Given the local colour histograms, we can bias the growth of a contour by favouring groups

that bound regions of the image with similar colour distributions. More formally, we say that

each partial contour separates the image into two regions: an inside region, which lies to the

right of the contour when traveling in the direction of contour growth, and an outside region

that lies to the left of the contour. We maintain, and update colour histograms for the inside

and outside colour distributions along the partial contour.

We associate each segment along the contour with two local histograms, one for the inside

and one for the outside (depending on the direction of contour growth). To select the appro-

priate local histograms, we look in the direction perpendicular to the segment starting from



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 177

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25
RGB Histograms

Normalized Intensity

C
ou

nt

R
G
B

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18
L−YB−RG Histograms

Normalized Intensity

C
ou

nt

L
YB
RG

a) b) c)

d) e)

Figure 8.11: Colour histogram computation. a) Input image with a 25× 25 region of interested

marked by a white square. b) The selected image window. c) Gaussian weights that determine

each pixel’s contribution to the histograms. d) RGB histograms. e) Y-LB-RG histograms.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 178

Figure 8.12: We associate each segment with the local histograms on either side that are lo-

cated at a distance of (window size + 1)/2 pixels, measured perpendicular to the segment,

starting from its midpoint. We don’t compute local histograms at every pixel, so we select

the pre-computed histograms whose center is closest to the expected location of the segment’s

histograms.

its midpoint, and retrieve the pre-computed histograms along the perpendicular direction at a

distance of ±(window size + 1)/2. This ensures that we get the local histograms on either

side of the segment that are closest to the line, but still mostly contained within the inside or

outside regions bounded by the contour. This is illustrated in Figure 8.12.

At search time, we compare the associated inside histograms of possible grouping choices

to the accumulated inside and outside histograms of the current contour. We bias the search to

favour groups whose inside histogram has high similarity with regard to the contour’s inside

histogram, and high dissimilarity with regard to the contour’s outside histogram. To quantify

histogram similarity, we compute the histogram intersection [100], which for two histograms

H1 and H2 is defined as

∩(H1, H2) =
n∑

i=1

min(H1,i, H2,i), (8.6)

where Hj,i is the ith bin of the jth histogram, and the histogram has n bins. For two histograms



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 179

whose area has been normalized to 1, this measure yields a value within [0, 1], with 1 indicating

that the histograms are identical.

To simplify notation, let us define a colour histogram HL,Y B,RG that is formed by concate-

nating the three colour components of the local histograms defined above. We normalize this

concatenated histogram to have unit area. Given the contour’s inside histograms HL,Y B,RG
contour in,

its outside histograms HL,Y B,RG
contour out, and a segment’s inside and outside histograms HL,Y B,RG

segment in,

and HL,Y B,RG
segmentout. We compute the histogram intersections between the two inside histograms,

and between both combinations of inside-outside histograms (inside of segment vs. outside of

contour, and vice versa), we are not interested in the similarity between the outside histograms

since it is assumed that the background may change arbitrarily along the contour.

We use these intersections to estimate the similarity between the colour distributions on

the inside, and the dissimilarities between the colour distributions on opposite sides of the

boundary:

Sin = ∩(HL,Y B,RG
contour in, H

L,Y B,RG
segment in),

Di→o = 1 − ∩(HL,Y B,RG
contour out, H

L,Y B,RG
segment in),

Do→i = 1 − ∩(HL,Y B,RG
contour in, H

L,Y B,RG
segment out),

We define the histogram based colour affinity between a segment l and a partial contour C

as

Colaffinity(l, C) = (Sin · Di→o · Do→i) + κc. (8.7)

The first term in the colour affinity is just the similarity between the inside colour distribu-

tions of the segment and the contour. The second term is the dissimilarity between the colour

distribution on the outside of the new segment, and the inside of the contour; it discourages

grouping with segments that are inside an object (in which case, the inside similarity is high,

but the outside-inside dissimilarity will be low). The last term is the dissimilarity between

the inside of the contour and the outside of the new segment; it is useful when no candidate

segment can be found whose inside colour distribution matches the inside of the contour. In



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 180

this case, we favour the segment whose outside is most dissimilar to the inside of the contour.

Notice that once again we add a constant term κc = .1, this constant puts a lower bound on the

value of the colour affinity, and ensures that the affinity measure behaves appropriately after

normalization.

Incorporating the colour affinity into the search framework is straightforward. Given the

set K that contains the best k grouping choices for the last segment in the contour, we compute

the colour affinity of each of these k segments with regard to the current contour’s inside

and outside colour distributions, and multiply the segment’s normalized affinity by the colour

affinity value. We then re-normalized the affinities of the k segments to add up to 1.

Once a segment has been chosen for grouping, it is added to the contour, and its inside and

outside histograms are accumulated onto the contour’s inside and outside histograms, which

are then re-normalized to have unit area. The process is repeated with the new set K of the

latest segment added to the contour. In general, this procedure will change the order in which

segments are tried out for grouping. Some grouping choices that would have been explored

before may not be tried once colour is taken into consideration, similarly, segments that might

not have been considered before will be given a chance to form groups if their colour distribu-

tions are favorable. These effects balance out after re-normalization, so the addition of colour

information should not increase the amount of search performed. In the extreme cases when

the colour affinity is uninformative (either because it is equally high, or equally low for all

segments), the original search ordering provided by the normalized line-segment affinities will

persist. Our extended algorithm for contour extraction is summarized below.

1 - For each segment i in the line-set, generate an initial group containing i, set τ = τ0.

Initialize the inside/outside histograms for the contour to be local histograms of i (this

will depend on the direction toward the next segment).

2 - Find the set K with the best k junctions for the last segment in the group (sorted by

decreasing normalized affinity).



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 181

3 - Compute the colour affinity for each segment in the set K, and multiply it with the

segment’s normalized affinity.

4 - Re-normalize the affinities of the k segments to sum to 1.

5 - For each segment j in K

– If N affinity(i, j) < τ end loop, otherwise add j to the group.

– Check whether j is covered by a previously found group, if so, try the next j.

– Test for compactness, if compactness < τc try next j.

– Test for simplicity, if test fails try the next j.

– Check for closure, if the group is closed, compute its saliency and report it.

– Accumulate j’s inside/outside histograms onto the contour’s inside/outside his-

tograms, and re-normalize the contour’s histograms to have unit area.

– Increase τ = τ + ετ .

– Go to step 2.

5 - Report the extracted polygons sorted in order of decreasing saliency.

8.4 Using Colour to Determine Saliency

We discussed above that our original ranking procedure using Qualitative Probabilities tends to

favour contours that wind through texture because such contours account for a larger number

of the observed segments. Here we define a measure of saliency that depends on how well

the complete image is modeled by the colour histograms for the inside and outside of a closed

contour. This metric is based on the assumption that a good contour should separate two

reasonably distinct colour distributions.

Given the colour histograms HL,Y B,RG
R for image region R, we compute the cost of en-

coding a pixel ~p = (pL, pY B, pRG) ∈ R, as the probability of drawing the pixel’s colour



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 182

components from the colour distributions specified by the region’s histograms. Assuming in-

dependence between colour components, we have

cost(~p|HL,Y B,RG
R ) = HL

R,bin(pL) · H
Y B
R,bin(pY B) · H

RG
R,bin(pRG). (8.8)

If we treat each pixel as an independent sample from R’s colour distribution, we can compute

the encoding cost for all pixels within the region as

Region cost(R) = Π~p∈R cost(~p|HL,Y B,RG
R ). (8.9)

Finally, we take the negative log of (8.9) to obtain the region’s encoding cost,

Encoding cost(R) = −
∑

~p∈R

log(cost(~p|HL,Y B,RG
R )), (8.10)

which will be small for regions with homogeneous colour distributions.

For each contour C, we compute colour histograms HL,Y B,RG
in and HL,Y B,RG

out for the inside

and outside of the region R bounded by the contour (notice that these are different from the

accumulated inside and outside histograms used during search, which only include data from

the local histograms near the segments that form the contour). From these histograms we

compute the encoding cost for the image

Encoding cost(I|C) = −
∑

~p∈R

log(cost(~p|HL,Y B,RG
in )) −

∑

~p/∈R

log(cost(~p|HL,Y B,RG
out )). (8.11)

We expect the encoding cost to be small when the inside region is homogeneous in appearance,

and distinct from parts of the image that lie outside the contour. This encoding cost favours

larger regions as long as the inside histogram for such regions does not become too flat. To

account for this effect, and to further enhance the saliency of contours that bound homogeneous

image regions, we compute a contour saliency score as

saliency = α

∑
l∈C −log(Colaffinity(l, C))

N
+ (1 − α)Encoding cost(I|C) (8.12)

where l is a segment that forms part of the contour, N is the number of segments in the contour,

and the first term represents the average log-colour affinity along the contour. The parameter α



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 183

controls how much weight we give to each of the terms in the saliency equation, and we set it

to α = .1 for all our tests.

The saliency value defined above is computed for every polygon in the final contour list,

and the extracted shapes are sorted in decreasing order of saliency. To speed up saliency com-

putation, we pre-compute a colour histogram for the complete image. The inside histogram for

a region is computed for each contour, but we generate the outside histogram by subtracting

the inside histogram from the pre-computed full image histogram.

8.5 Experimental Results Using Colour Information

Figure 8.13 shows contour extraction results on the same image used in Figure 8.10, notice

that this time the algorithm manages to recover a more reasonable boundary, and that the top

groups are less irregular than before. Figures 8.14 and 8.15 show contour extraction results on

two other images. We used the same normalized affinity threshold and algorithm parameters

described before. For these figures we used a normalized affinity threshold of 1.4/k, and

the same parameters for all other algorithm parameters. We can use a larger threshold on

normalized affinity because the bias introduced by the colour affinity increases the normalized

affinity of good boundary groups.

In general, the use of colour information leads to contours that better capture salient image

structure. The ranking of the contours is also improved, with polygons that capture interesting

image structure closer to the top of the list. The increased overhead of computing colour affini-

ties, re-normalizing and re-ordering the list of grouping candidates, and computing contour

saliency increases the run-time of the algorithm, but the increase is not significant given the

large computational savings achieved during the search phase.

More importantly, the above images show the feasibility of integrating other image cues

into the search framework. Additional cues can be integrated to the affinity measure computed

before the search begins, or they can be incorporated at search-time, by modifying and re-



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 184

Original Image Lineset Rank=1

Figure 8.13: Contour extraction using colour information. Original image, line-set with 784

segments, and top-ranked contour (all the remaining contours describe small, closed poly-

gons within the textured region). The algorithm explored 3.3 × 105 nodes, found 104 distinct

contours, and took 42 sec. to complete. Compare these results with the contours shown in

Fig. 8.10.

normalizing the affinity values according to accumulated statistics or non-local cues.

It is illustrative to consider which paths within the line-set are being explored by the al-

gorithm, Figure 8.16 shows four images, the corresponding line-sets, and traces of the search

paths explored by the algorithm on each line-set. The paths that were traced most often agree

well with salient image contours, which indicates that the majority of the search effort is tak-

ing place along interesting image boundaries. This provides further evidence that the search

framework is capable of efficiently and robustly selecting search paths that are likely to lead to

salient contours.

8.6 Discussion

In the previous chapters, we have presented a framework for contour extraction based on the

use of normalized, pairwise affinities between line segments. We have demonstrated the algo-

rithm first on convex contours, for which we showed that the algorithm is robust, and provides

a reduction in search complexity of several orders of magnitude, compared to a competing

convex group detection method based on the prior state-of-the-art. We then showed that the



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 185

Original Image Lineset Rank=1

Rank=2 Rank=3 Rank=4

Rank=6 Rank=8 Rank=12

Figure 8.14: Original beetle image, line-set with 591 segments, and several of the extracted

contours (ranking based on the colour saliency metric described in the text). The algorithm

explored 2.9 × 105 nodes, found 41 distinct contours, and took 47 seconds to complete.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 186

Original Image Lineset Rank=1

Rank=2 Rank=4

Rank=5

Rank=13 Rank=14

Rank=6

Rank=3

Rank=12

Rank=20

Figure 8.15: Original fruits image, line-set with 797 segments, and several of the extracted

contours. The algorithm explored 4.9 × 105 nodes, found 53 distinct contours, and took 78

seconds to complete. Image courtesy of Mr. Peter N. Lewis.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 187

Figure 8.16: Traces of the search paths followed by the algorithm. From left to right: orig-

inal images, input line-set, and traces of the search paths explored by the algorithm on the

corresponding line-set. Brighter contours correspond to partial paths that were explored more

often.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 188

framework can be extended to deal with non-convex contours without a significant increase

in search complexity, making it possible to find such contours efficiently even in the presence

of texture and clutter. Finally, we demonstrated that the framework can be easily extended

to incorporate other image cues, which can be simple local measurements, or more complex

cues based on non-local properties of partial contours. Along the way, we explored the closely

related issue of determining the saliency of a contour, and proposed two techniques for ranking

the polygons output by the algorithm. One of these is based on the Qualitative Probabilities

framework [48], and the second is based on accumulated colour statistics of the inside and

outside of a particular contour.

The proposed framework was successful in detecting salient contours on a variety of line-

sets showing significant variation in size, complexity, and amount of clutter and texture. From

our experimental results, we conclude that the search framework is robust, and accomplishes

the goal of performing contour extraction efficiently. It should be noted that while all the

experimental results shown in the previous two chapters were produced with a standard set of

parameters, the algorithm may be tuned to extract contours that are better suited to particular

tasks or image domains. For example, the influence of each of the components of the affinity

measure (length of gaps and tails, smooth continuation term, and colour affinity) can be tuned

to obtain contours with particular characteristics. Additionally, the ranking stage can be easily

extended to give higher weight to the desired contour characteristics, or to include domain

specific information.

This concludes the part of this thesis that explores the problem of closed contour extraction,

the main contributions of out work in perceptual grouping are:

• A general contour extraction procedure that is efficient and robust in the presence of

clutter and texture.

• A search control technique based on normalized, pairwise affinities between lines.

• Showed that the framework can easily be extended to incorporate different image cues.



CHAPTER 8. A GENERAL FRAMEWORK FOR CONTOUR EXTRACTION 189

• Showed that the search can be biased using non-local cues, or accumulated statistics that

depend on partial contours.

• Demonstrated the use of Qualitative Probabilities for contour saliency estimation.

• Proposed an alternative saliency measure based on the colour distributions on the inside

and outside of a contour.

In the final chapter of this thesis, we will briefly describe opportunities for future work,

including possible means to incorporate the information provided by the segmentation and

grouping algorithms to achieve better figure-ground segmentation. We will then conclude this

work with a summary of our contributions to the fields of image segmentation and perceptual

grouping.


