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Abstract particularly useful for the visually impaired; au-
tomatic translation has also been considered (e.g.,
Cell phone text messaging users expressthem- Ay, gt al., 2006). For texting language, given the
selves briefly and colloquially using avariety o ngance of creative forms, and the wide-ranging
of creative forms. We analyze a sample of cre- N . ' -
possibilities for creating new forms, normalization

ative, non-standard text message word forms ! - ) -
to determine frequent word formation pro- is a particularly important problem, and has indeed

cesses in texting language. Drawing on these
observations, we construct an unsupervised
noisy-channel model for text message normal-

received some attention in computational linguistics
(e.g., Aw et al.,, 2006; Choudhury et al., 2007,
Kobus et al., 2008).

ization. On a test set af03 text message
forms that differ from their standard form, our
model achieve§9% accuracy, which is on par
with the best supervised results reported on
this dataset.

In this paper we propose an unsupervised noisy
channel method for texting language normalization,
that gives performance on par with that of a super-
vised system. We pursue unsupervised approaches
to this problem, as large collections of text mes-

. sages, and their corresponding standard forms, are
1 TextMessaging not readily availablé. Furthermore, other forms of

Cell phone text messages—or SMS—contain mar§jPmputer-mediated communication, such as Inter-
shortened and non-standard forms due to a varieBgt messaging, exhibit creative phenomena similar
of factors, particularly the desire for rapid text entryfO text messaging, although at a lower frequency
(Grinter and Eldridge, 2001; Thurlow, 2008)Fur-  (Ling and Baron, 2007). Moreover, technological
thermore, text messages are written in an inform&hanges, such as new input devices, are likely to
register; non-standard forms are used to reflect thigave animpact on the language of such media (Thur-
and even for personal style (Thurlow, 2003). TheskW, 2003)® An unsupervised approach, drawing
factors result in tremendous linguistic creativity, an@®n linguistic properties of creative word formations,

hence many novel lexical items, in the language d#as the potential to be adapted for normalization of
text messaging, dexting language. text in other similar genres—such as Internet dis-

Normalization of non-standard forms— cussion forums—uwithout the cost of developing a

converting non-standard forms to their standartfrge training corpus. Moreover, normalization may
forms—is a challenge that must be tackled beforB€ particularly important for such genres, given the

other types of natural language processing can 2one notable exception is Fairon and Paumier (2006), al-
take place (Sproat et al., 2001). In the case ahough this resource is in French. The resource used in our
text messages, text-to-speech synthesis may E}égy, Chpudhury et al. (2007), is quite small in corlnp.ar.ison
The rise of other technology, such as word prediction, could
1The number of characters in a text message may also bbeduce the use of abbreviations, although it's not cleah suc
limited to 160 characters, although this is not always the case.technology is widely used (Grinter and Eldridge, 2001).



Formation type Freq. Example senting sounds phonetically. Subsequence abbrevi-

Stylistic variation 152  betta (better) ations, also very frequent, are composed of a sub-
Subseq. abbrev. 111 dng (doing) sequence of the graphemes in a standard form, of-
Prefix clipping 24 hol (holiday) ten omitting vowels. These two formation types ac-
Syll. letter/digit 19 neway (anyway) count for approximately56% of our development
G-clipping 14 talkin (talking) data; the remaining formation types are much less
Phonetic abbrev. 12  cuz (because) frequent. Prefix clippings and suffix clippings con-
H-clipping 10 €lo (hello) sist of a prefix or suffix, respectively, of a standard
Spelling error 5 darliog (darling) form, and in some cases a diminutive ending; we
Suffix clipping 4 morrow (tomorrow) also consider clippings which omit jusgaor h from
Punctuation 3 b/day (birthday) a standard form as they are rather freqieAt sin-
Unclear 34 mobs (mobile) gle letter or digit can be used to represent a syllable;
Error 12 gal (*girl) we refer to these as syllabic (syll.) letter/digit. Pho-
Total 400 netic abbreviations are variants of clippings and sub-

sequence abbreviations where some sounds in the
Table 1: Frequency of texting forms in the developmenstandard form are represented phonetically. Several
set by formation type. texting forms appear to be spelling errors; we took

the layout of letters on cell phone keypads into ac-
need for applications such as translation and quegount when making this judgement. The items that
tion answering. did not fit within the above texting form categories

We observe that many creative texting forms arwere marked as unclear. Finally, for some expres-

the result of a small number of specific word for-sions the given standard form did not appear to be
mation processes. Rather than using a generic @ppropriate. For examplejrl is not the standard
ror model to capture all of them, we propose a mixform for the texting formgal; rather,gal is an En-
ture model in which each word formation process i§lish word that is a colloquial form ofirl. Such
modeled explicitly according to linguistic observa-cases were marked as errors.

tions specific to that formation. No texting forms in our development data corre-
_ . spond to multiple standard form words, eganna
2 Analysis of Texting Forms for want t0.% Since such forms are not present in our

To better understand the creative processes presgﬁf’ elopment data, we assume that a texting form al-
in texting language, we categorize the word forma\fvay_S c_orresponds to a single standard form word.
tion process of each texting form in our development !t 1S important to note that some text forms have
data, which consists @0 texting forms paired with Properties of multiple categories, e.gak (back)
their standard form$. Several iterations of catego- cOUld be considered a stylistic variation or a subse-
rization were done in order to determine sensiblduénce abbreviation. In such cases, we simply at-
categories, and ensure categories were used condfITIPt t0 assign the most appropriate category.
tently. Since this data is only to be used to guide TNe design of our model for text message normal-
the construction of our system, and not for formalZation, presented below, uses properties of the ob-
evaluation, only one judge (a native English speai&erved formation processes.
ing author of this paper) categorized the expressions. . .
The findings are presented in Table 1. 3 An Unsupervised Noisy C_)hannel Model
Stylistic variations, by far the most frequent cat-  [OF Text Message Normalization
egory, exhibit non-standard spelling, such as rPrget S be a sentence consisting stBndard forms

“Most texting forms have a unique standard form; howeversy ss...S5,; in this study the standard forms are reg-
some have multiple standard forms, ewgl] andwell canboth
be shortened tal. In such cases we choose the category of the >Thurlow (2003) also observes an abundance of g-clippings.
most frequent standard form; in the case of frequency ties we °A small number of similar forms, however, appear with a
choose arbitrarily among the categories of the standarddor  single standard form word, and are therefore marked asserror



ular English words. Lef” be a sequence aéxting graphemes w i th ou t
forms tyts...t,,, which are the texting language real- phonemes w 1 0 au t
ization of the standard forms, and may differ from
the standard forms. Given a sequence of texting
formsT, the challenge is then to determine the cor-

responding standard forn _ subsequence abbreviations. We do not model syl-
Following Choudhury et al. (2007)—and vari-|apic |etters and digits, or punctuation, explicitly; in-

ous approaches to spelling error correction, sucfieaq, we simply substitute digits with a graphemic
as, e.g., Mays et al. (1991)—we model text MeSppresentation (e.g4 is replaced byfor), and re-

sage normalization using a noisy channel.  Wg,oye punctuation, before applying the model. The
want to find argmaxP(S|T). We apply Bayes giner less frequent formations—phonetic abbrevia-
rule and ignore the constant terdi(T’), giving ons, spelling errors, and suffix clippings—are not
argmax; P(T'|5)P(S). Making the independence mqgeled: we hypothesize that the similarity of these
assumption that eadih depends only oR;, and not o mation processes to those we do model will allow

on the context in which it occurs, as in Choudhurxhe system to perform reasonably well on them.
et al., we expres®(T|S) as a product of probabili-

ties: argmay ([, P(t:]s:)) P(S). 3.1.1 Stylistic Variations
We note in Section 2 that many texting forms are We propose a probabilistic version of edit-
created through a small number of specific word fordistance—referred to here as edit-probability—
mation processes. Rather than model each of thesspired by Brill and Moore (2000) to model
processes at once using a generic modePf@g|s;),  P(t;|s;, stylistic variatior). To compute edit-
as in Choudhury et al., we instead create several suphobability, we consider the probability of each edit
models, each corresponding to one of the observegberation—substitution, insertion, and deletion—
common word formation processes. We thereformstead of its cost, as in edit-distance. We then sim-
rewrite P(t;[s;) as ), P(ti|s;, wf)P(wf) where ply multiply the probabilities of edits as opposed to
wf is a word formation process, e.g., subsequencimming their costs.
abbreviation. Since, like Choudhury et al., we focus In this version of edit-probability, we allow two-
on the word model, we simplify our model as belowcharacter edits. Ideally, we would compute the edit-
probability of two strings as the sum of the edit-
argmax, Zp(ti|8i’ wf) P (wf)P(s:) probability of each partitioning of those strings into
wf one or two character segments. However, following
We next explain the components of the modelBrill and Moore, we approximate this by the prob-
P(t;|s;, wf), P(wf), and P(s;), referred to as the ability of the partition with maximum probability.
word model, word formation prior, and languageThis allows us to compute edit-probability using a

Table 2: Grapheme—phoneme alignmentithout.

model, respectively. simple adaptation of edit-distance, in which we con-
sider edit operations spanning two characters at each
3.1 Word Models cell in the chart maintained by the algorithm.

We now consider which of the word formation pro- We then estimate two probabilitie®(g.|gs, pos)
cesses discussed in Section 2 should be capturisdthe probability of texting form graphemg given
with a word modelP(¢;|s;, wf). We model stylis- standard form graphemg at positionpos, where
tic variations and subsequence abbreviations simppps is the beginning, middle, or end of the word;
due to their frequency. We also choose to moddP(h;|ps, hs, pos) is the probability of texting form
prefix clippings since this word formation process igraphemes; given the standard form phonemgs
common outside of text messaging (Kreidler, 197%nd graphemes, at positionpos. h;, ps, andh, can
Algeo, 1991) and fairly frequent in our data. Al-be a single grapheme or phoneme, or a bigram.
though g-clippings and h-clippings are moderately We compute edit-probability between the
frequent, we do not model them, as these very spgraphemes ofs; and t;. When filling each cell
cific word formations are also (non-prototypical)in the chart, we consider edit operations between



segments o§; andt; of length0-2, referred to as
andb, respectively. Ifz aligns with phonemes ig;,
we also consider those phonemgsin our lexicon,

more, when they do end in a vowel, it is often
of a regular form, such atly for televison and
breaky for breakfast. We therefore only consider

the graphemes and phonemes of each word af¥i;|s;, prefix clipping) if ¢; is a prefix clipping ac-
aligned according to the method of Jiampojamargording to the following heuristics:t; is mono-

et al. (2007).
without is given in Table 2. The probability of

For example, the alignment fomsyllabic after stripping any word-final vowels, and

subsequently removing duplicated word-final con-

each edit operation is then determined by thresonants (e.gelly becomegel, which is a candidate

properties—the length af, whetherqa aligns with
any phonemes ig;, and if so,p—as shown below:

la|=0 or 1, not aligned wis; phonemesP (b|a, pos)
la|= 2, not aligned wis; phonemeso
la|= 1 or 2, aligned w/s; phonemesP(b|p, a, pos)

3.1.2 Subsequence Abbreviations

prefix clipping). Ift; is not a prefix clipping accord-
ing to these criteriaP(¢;|s;) simply sums over all
models except prefix clipping.

3.2 Word Formation Prior

Keeping with our goal of an unsupervised method,
we estimateP(wf ) with a uniform distribution. We

We model subsequence abbreviations accordir@jso consider estimating®(wf) using maximum

to the equation below:

¢ if t; is a subseq of;

P(t;|s;,subseq abry= ]
(tifs q abry {0 otherwise

wherec is a constant.
Note that this is similar to the error model for

spelling correction presented by Mays et al. (1991),

in which all words (in our terms, alk;) within
a specified edit-distance of the out-of-vocabular
word (; in our model) are given equal probability.

The key difference is that in our formulation, we

only consider standard forms for which the textin
form is potentially a subsequence abbreviation.

In combination with the language model,
P(t;|s;, subseq abbrgv assigns a non-zero prob-
ability to each standard forms; for which t; is
a subsequence, according to the likelihood spf

(under the language model). The models interac
in this way since we expect a standard form to be

recognizable relative to the other words for whigh
could be a subsequence abbreviation
3.1.3 Prefix Clippings

We model prefix clippings similarly to subse-
guence abbreviations.

if ¢; is possible
pre. clip. ofs;
0 otherwise

C
P(t;|s;, prefix clipping) =

likelihood estimates (MLES) from our observations

in Section 2. This gives a model that is not fully

unsupervised, since it relies on labelled training
data. However, we consider this a lightly-supervised
method, since it only requires an estimate of the fre-
guency of the relevant word formation types, and not
labelled texting form—standard form pairs.

3.3 Language Model

%Zhoudhury et al. (2007) find that using a bigram lan-

guage model estimated over a balanced corpus of
English had a negative effect on their results com-

gpared with a unigram language model, which they

attribute to the unigue characteristics of text messag-
ing that were not reflected in the corpus. We there-
fore use a unigram language model fofs; ), which

also enables comparison with their results. Never-
tltweless, alternative language models, such as higher
grder ngram models, could easily be used in place of

our unigram language model.

4 Materials and Methods

4.1 Datasets

We use the data provided by Choudhury et al. (2007)
which consists of texting forms—extracted from a

collection of 900 text messages—and their manu-
ally determined standard forms. Our development
data—used for model development and discussed in
Section 2—consists of thé00 texting form types

Kreidler (1979) observes that clippings tend to béhat are not in Choudhury et al.’s held-out test set,

mono-syllabic and end in a consonant.

Furthermand that are not the same as one of their standard



forms. The test data consists 113 texting forms We create the substitution rules by examining ex-
and their corresponding standard forms. A subset aimples in the development data, considering fast
303 of these texting forms differ from their standardspeech variants and dialectal differences (e.qg., voic-
form.” This subset is the focus of this study, but weéng), and drawing on our intuition. The derived
also report results on the full dataset. forms are produced by applying the substitution
rules to the words in our lexicon. To avoid con-
sidering forms that are themselves words, we elimi-
We construct a lexicon of potential standard formsate any form found in a list of approximatelg0K
such that it contains most words that we expect twords taken from SOWPODI¥%nd the Moby Word
encounter in text messages, yet is not so large assts!? Finally, we obtain the frequency of the de-
to make it difficult to identify the correct standardrived forms from the Web 1T 5-gram Corpus.
form. Our subjective analysis of the standard forms To estimate P(h|ps, hs, pos), we first esti-
in the development data is that they are frequentate two simpler distributionsP (7 |hs, pos) and
non-specialized, words. To reflect this observationl(h|ps, pos). P(h|hs, pos) is estimated in the
we create a lexicon consisting of all single-word ensame manner aB(g;|gs, pos ), except that two char-
tries containing only alphabetic characters found iacter substitutions are allowe®(h|ps, pos) is es-
both the CELEX Lexical Database (Baayen et altimated from the frequency ops, and its align-
1995) and the CMU Pronouncing Dictiond&yWe ment with 4, in a version of CELEX in which
remove all words of length one (exceptandl) to the graphemic and phonemic representation of each
avoid choosing, e.g., the lettens the standard form word is many—many aligned using the method of
for the texting formr. We further limit the lexicon Jiampojamarn et al. (200#. P(h|ps, hs, pos)
to words in the20K most frequent alphabetic uni- is then an evenly-weighted linear combination of
grams, ignoring case, in the Web 1T 5-gram Corpu®(h|hs, pos) and P(h|ps, pos).  Finally, we
(Brants and Franz, 2006). The resulting lexicon corsmooth each oP(g;|gs, pos) and P(h|ps, hs, pos)
tains approximately 14K words, and excludes onlysing add-alpha smoothing.
three of the standard formseannot, email, andon- We set the constant in our word models for
line—for the 400 development texting forms. subsequence abbreviations and prefix clippings such
that) . P(ti]si, wf)P(si) = 1. We similarly nor-
malize P(t;|s;, stylistic variation P(s;).
MLEs for P(g:|gs,pos)—needed to estimate We use the frequency of unigrams (ignoring case)
P(t;|s;, stylistic variation—could be estimated in the Web 1T 5-gram Corpus to estimate our lan-
from texting form-standard form pairs. Howeverguage model. We expect the language of text mes-
since our system is unsupervised, no such datadaging to be more similar to that found on the web
available. We therefore assume that many textinghan that in a balanced corpus of English.
forms, and other similar creative shortenings, occur
on the web. We develop a number of charactet.4 Evaluation Metrics
substitution rules, e.gs,= z, and use them to create 14 evaluate our system, we consider three accuracy
hypothetical texting forms from standard wordsmyetrics: in-topt, in-top-10, and in-top20.22 In-
We then compute MLEs foP (g, |gs, pos) using the  1qn., considers the system correct if a correct stan-
frequencies of these derived forms on the web.  gard form is in then most probable standard forms.
"Choudhury et al. report that this dataset contazes tex- 1 he in-topd accuracy shows how well the system

ting forms. We found it to contaii213 texting forms cor- determines the correct standard form; the in-10p-
responding tol228 standard forms (recall that a texting form
may have multiple standard forms). There were similar incon  °http: // en. wi ki pedi a. or g/ wi ki / SONPODS
sistencies with the subset of texting forms that differ fribvair ©http://icon. shef. ac. uk/ Moby/
standard forms. Nevertheless, we do not expect these sifaalld  We are very grateful to Sittichai Jiampojamarn for provid-
ferences to have an appreciable effect on the results. ing this alignment.

8ht t p: / / www. speech. cs. crru. edu/ cgi - bi n/ 12These are the same metrics used by Choudhury et al.
crmudi ct (2007), although we refer to them by different names.

4.2 Lexicon

4.3 Model Parameter Estimation



Model % accuracy Formation type Freq. % in-top-acc.

Top-1 Top-10 Top-20 n =303 Specific  All
Uniform 59.4 83.8 87.8 Stylistic variation 121 62.8 67.8
MLE 55.4 84.2 86.5 Subseq. abbrev. 65 56.9 46.2
Choudhury etal. 59.9 84.3 88.7 Prefix clipping 25 44.0 20.0
G-clipping 56 - 911
Table 3: % in-topt, in-top-10, and in-top20 accuracy Syll. letter/digit 16 - 50.0
on test data using both estimates f&fwf). The results Unclear 12 - 0.0
reported by Choudhury et al. (2007) are also shown. Spelling error 5 - 80.0
Suffix clipping 1 - 00
and in-top20 accuracies may be indicative of the Phonetic abbrev. 1 - 00
usefulness of the output of our system in other tasks Error 1 - 00
which could exploit a ranked list of standard forms,
such as machine translation. Table 4: Frequency (Freq.), and % in-tb@ccuracy us-
ing the formation-specific model where applicable (Spe-
5 Results and Discussion cific) and all models (All) with a uniform estimate for

~ P(uwf), presented by formation type.
In Table 3 we report the results of our system using

both the uniform estimate and the MLE &f wf).

Note that there i_s no meaningful random b_aseline We first examine the top panel of Table 3 where
to compare_' agalnst_ here;_ randomly ordering thﬁ/e compare the performance on each word forma-
14K words in our IeX|con_ gIves very low aceuracy.tion type for both experimental conditions (Specific
The results using the uniform estimate Bfwf)—  jnq All). We first note that the performance using

a fully uns_upervised system—are very similar Qe formation-specific model on subsequence abbre-
the supervised results of Choudhury et al. (Zoonliations and prefix clippings is better than that of

Surprisingly, when we estimaté(wy) using MLEs the overall model. This is unsurprising since we ex-

from the development data—resulting i.n a Iighﬂy'pect that when we know a texting form’s formation

supervised system—th_e results_ are sllgh'_[Iy Worsﬁrocess, and invoke a corresponding specific model,
“??‘” when using the uniform estimate of this prObac')ur system should outperform a model designed to
bility. Moreover, we observe the same trend on dqﬁandle a range of formation types. However, this is

velppmentﬂgata where lwe exp(;ct to have in ac%uraﬁ‘at the case for stylistic variations; here the over-
estimate of’(wyf) (results not shown). We hypothe- all model performs better than the specific model.

size thatthe ambiguity of_the categories oftextformwe observed in Section 2 that some texting forms
(see Section 2) results in poor MLEs fét(wf), do not fit neatly into our categorization scheme; in-

thus making a uniform distribution, and hence fully-yeeq  many stylistic variations are also analyzable
unsupervised approach, more appropriate. as subsequence abbreviations. Therefore, the subse-
Results by Formation Type We now consider in- guence abbreviation model may benefit normaliza-
top-1 accuracy for each word formation type, in Tation of stylistic variations. This model, used in iso-
ble 4. We show results for the same word formalation on stylistic variations, gives an in-tdpaccu-

tion processes as in Table 1, except for h-clippinggcy 0f33.1%, indicating that this may be the case.

and punctuation, as no words of these categories areComparing the performance of the individual
present in the test data. We present results using ti@rd models on only word types that they were de-
same experimental setup as before with a uniforgigned for (column Specific in Table 4), we see that
estimate ofP(wf) (All), and using just the model the prefix clipping model is by far the lowest, in-
corresponding to the word formation process (Spgticating that in the future we should consider ways
cific), where applicablé? of improving this word model. One possibility is

3| this case our model then becomes, for each word formd® incorporate phonemic knowledge. For example,
tion processuf, argmax P (t:]s;, wf)P(s:). bothfriday andfriend have the same probability un-



der P(t;|s;, prefix clipping) for the texting formfri, Model % in-topd accuracy

which has the standard forfriday in our data. (The Stylistic variation 51.8
language model, however, does distinguish between  Subseq. Abbrev. 44.2
these forms.) However, if we consider the phonemic  Prefix clipping 10.6

representations of these wordisgday might emerge

as more likely. Syllable structure information mayTable 5: % in-topt accuracy on th803 test expressions
also be useful, as we hypothesize that clippings wiltsing each model individually.

tend to be formed by truncating a word at a syllable

boundary. We may similarly be able to improve ouipwn gives results comparable to those of the over-
estimate ofP(t;]s;, subseq. abrre). For example, all model 69.4%, see Table 3). This indicates that
bothtext andtaxation have the same probability un- the overall model successfully combines informa-
der this distribution, but intuitivelyext, the correct tion from the specific word formation models.
standard form in our data, seems more I|ke|y We Each model used on its own gives an accuracy
could incorporate knowledge about the likelihood ofjreater than the proportion of expressions of the
omitting specific characters, as in Choudhury et a{yord formation type for which the model was de-
(2007), to improve this estimate. signed (compare accuracies in Table 5 to the num-

We now examine the lower panel of Table 4, irber of expressions of the corresponding word forma-
which we consider the performance of the overallion type in the test data in Table 4). As we note in
model on the word formation types that are not exSection 2, the distinctions between the word forma-
plicitty modeled. The very high accuracy on g-tion types are not sharp; these results show that the
clippings indicates that since these forms are alsoghared properties of word formation types enable a
type of subsequence abbreviation, we do not need godel for a specific formation type to infer the stan-
construct a separate model for them. We in fact alsgard form of texting forms of other formation types.
conducted experiments in which g-clippings and h-

clippings were modeled explicitly, but found these Il Unseen Data Until now we have discussed re-

extra models to have little effect on the results. sults on our test data 803 texting forms which dif-

Recall from Section 3.1 our hypothesis that syfier from their standard forms. We now consider the
fix clippings, spelling errors, and phonetic abbreviagerf?rman%i;f ?urh_syr?tem %n atm:sl ;Jnfﬁe.n tfx-
tions have common properties with formation type§Ing orms, orwhich are identical to their stan-

that we do model, and therefore the system will perc-jard form. Since our model was not designed with

form reasonably well on them. Here we find pre—su_Ch expressions in mind, we slightly adapt it for
is new task; ift; is in our lexicon, we return that

liminary evidence to support this hypothesis as t:F

accuracy on these three word formation types (co orm afhsi' otr_}erwse ‘t’_Ve aippg;our mogﬁ_l as_usual,
bined) is57.1%. However, we must interpret this using the uniform estimate (wf)' IS gves
n in-top4 accuracy of88.2%, which is very sim-

result cautiously as it only considers seven expres-

sions. On the syllabic letter and digit texting formg & to the results of Choudhury et al. (2007) on this

0,
the accuracy i$0.0%, indicating that our heuris- data 0f89.1%. Note, however, that Choudhury et al.

tic to replace digits in texting forms with an ortho-lOnly report rzs;lljits.on this dataset using Ia uniform
graphic representation is reasonable. anguage model, Sincé we use a unigram language

: odel, it is difficult to draw firm conclusions about
The performance on types of expressions th ) .
. . S e performance of our system relative to theirs.
we did not consider when designing the system—

unclear and error—is very poor. However, this hag Related Work

little impact on the overall performance as these ex-

tion as translation from the texting language into the

Results by Model We now consider in-top-ac- 4Choudhury et al. do use a unigram language model for their

curacy using each mOd(_‘:‘l on the3 test expres- _experiments on tha03 texting forms which differ from their
sions; results are shown in Table 5. No model on itstandard forms (see Section 3.3).
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