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1 Basics of a group

1.1 Basic Properties of Groups

Definition 1.1.1 (Definition of a Group). A set G is a group if and only if G satisfies
the following:

1. G has a binary relation - : G x G — G so that Vg,h € G,g-h € G. We write
(g,h) = g - h. (Closure.)

2. Vg, h,k € G,g-(h-k)=1(g-h)-k. (Associative.)
3. dee G, st. eca=a=a-e. eis called an identity element of G.
4. Vge G, g7 €@, st. g-gt=e=g'-g. g'is called an inverse of g.

Definition 1.1.2. If Vg,h € G, we also have g - h = h - g, then we say that G is an
abelian group.

Theorem 1.1.1. Let G be a group. Then,
e Va € G,aG = G = Ga, where Ga = {ga : g € G} and aG = {ag : g € G}
o Ifa,x,y e G, thenar =ay = x =y.
e Ifa,z,y € G, then xza =ya = x =1y.
Theorem 1.1.2. G is a group. Then:
e (& has only one identity element.

e Each ¢ € G has only one inverse ¢~ *.

1.2 Properties of Inverses

Theorem 1.2.1. G is a group.
o If ge G, then (g1t =g.
e If g,h € G, then (gh)™' = h7tg™L.
Theorem 1.2.2. Let GG be a set with the following axioms:
1. Closure: g,h € G = gh € G.
2. Associativity: Vg, h, k € G, g(hk) = (gh)k.
3. de € G,Vg € G,eg = g. (e is a left identity.)
4. Vg € G,3x g € G,*gg = e. (xg is a left inverse.)

Then, G is a group. The same applies for a right inverse and a right identity.



1.3 Direct Product of Groups

Theorem 1.3.1. Let G and H be two groups. Define the direct product of G and H
as G x H=1{(g,h) : g € G,h € H}. Then, G x H is a group with the component-wise
binary operation.

Definition 1.3.1. Let C = R x R = {(a,b) : a,b € R}. We define addition and
multiplication in C as:

e Addition: We want to use the component wise addition from (R, +). Thus, (a,b)+
(¢,d) = (a+b,c+d). Then, 0= (0,0) and (a,b)™* = —(a,b) = (—a, —b).

e Multiplication: Define multiplication by (a,b)(c,d) = (ac — bd, ad + bc). Then,

the multiplicative identity is (1,0). Furthermore, define i = (0,1). Then, the

multiplicative inverse is 27! = ‘z%

Definition 1.3.2. Define H = C x C = {(z,w) : z,w € C}. We define addtion

component-wise and multiplication by (z,w)(u,v) = (2u — wv, zv — wu). The multi-

plicative identity is (1,0) and ™! = %

2 Equivalence Relations and Disjoint Partitions

Definition 2.0.3. Let X be a set and R be a relation on X. R is called an equivalence
relation on X if and only if the following axioms hold:

1. For each x € X, 2Rz (R is reflexive).

2. Vz,y € X, if zRy, then yRzx (R is symmetric).

3. If xRy and yRz, then xRz (R is transitive).
Definition 2.0.4. Vz € X,R[z] = {y € X : yRz} is called an equivalence class.
Theorem 2.0.2. Let R be an equivalence relation on X. Then, R[z] = R[z] <= zRz

Theorem 2.0.3. Let R be an equivalence relation on a set X. Let Dr = {R[z] : x € X}.
Then, Dg has the following properties:

1. R[z] # 0, since xRz — x € R[z].
2. If Rlz] N R[y] # 0, then R[z] = R[y].

3. X = | Rz]

zeX

Definition 2.0.5. Let X be a set. The power set of X is P(X) ={5:5 C X}.

Definition 2.0.6 (Disjoint Partition). A subset ©® C P(X) is a disjoint partition of X
if and only if ® satisfies the following axioms:

1. VD € ©,D # 0.
2.1 D,.De®and DND #0, then D = D.



3.X:UD.

Corollary 2.0.4. If R is an equivalence relation on a set X, then ®z = {R[z] : z € X}
is a disjoint partition of X.

Theorem 2.0.5. Let ® be a disjoint partition of a set X. Define a relation on X, Rgp
as follows:
rRpy <= dD € ® so that z,y € D.

Then, Rp is an equivalence relation.

3 Elementary Number Theory

3.1 GCD and LCM

Axiom 3.1.1 (The Well Ordering Principle). Every non-empty subset of N has a smallest
element.

Theorem 3.1.1 (Division Algorithm). Let a,b € Z,b # 0. Then, Jl¢,r € Z s.t. a =
bg+ 1,0 <r<|b.

Definition 3.1.1. Let a,b € Z, not both zero. Then, ¢ > 0,c € N is a greatest common
divisor of a and b <= ¢ satisfies the following properties (a,b € Z,a # 0 # b):

1. c|a and c|b.
2. If z|a and z|b, then z|c.

Theorem 3.1.2. There exists a GCD of a and b, say ¢, and ¢ = Aa + ub, A\, u € Z.
Furthermore, c is smallest n € N s.t. n = \a + pub.

Definition 3.1.2. Let a,b € Z,a > 0,b > 0. d € Z and d > 0 is a least common multiple
of a and b if and only if d satisfies the folloing properties:

1. ald and b|d.

2. If a|z and b|x, then d|z.

b
Theorem 3.1.3. Assume a,b € Z,a > 0,b > 0. Then, d = % is the LCM of a

ged(a, b)
and b.

3.2 Primes and Euclid’s Lemma

Definition 3.2.1. p € N,pis a prime <= n|p = n=1orn=p.

Theorem 3.2.1. Let p € N. p is a prime if and only if Vn € N,p|n or ged(n,p) = 1
(relatively prime).

Theorem 3.2.2. For a,b,c € N, if a|bc and ged(a,b) = 1, then alc.

Corollary 3.2.3 (Euclid’s Lemma). If p is a prime and p|ab, then p|a or p|b.



4 Exponents and Order

4.1 Exponents

Definition 4.1.1. G is a group and a € G. We define a® = ¢, a! = a and a"*' = a" - a,
for n € N*. Also, if m > 0, define a™™ = (a=!)™.

Theorem 4.1.1 (Properties of Exponents). G is a group and a,b € G and m,n € N.
Then, we have

3. (a™)" = a™

4. Let ab = ba. Then, ab™ = b"a and (ab)" = a™b" = b"a™.

6. If 0 < m <mn, then a"™ = a"a™.

7. (a7ba)" = a"'b"a

4.2 Order

Definition 4.2.1. G is a group and a € G. If there is a positive integer n > 0 s.t. a” = e,
we say a has finite order. If a has finite order, then the smallest n > 0 s.t. a™ = e is
called the order of a. We write o(a) as the order of a. If Vn € N* a" # e, then we say a
has infinite order and we write o(a) = co. If o(a) # oo, then a has finite order.

Theorem 4.2.1. Let GG be a group and a € G, m > 0. Then,
1. If a™ = e, then o(a)|m.
2. Let o(a) = co. If a* = ¢, then k = 0.
3. 0(a) =00 <= a™ =a" = m=n.
4. If o(a) # oo, then o(a*) # oo and o(a*)|o(a).
Theorem 4.2.2. Let G be a group, a € G, o(a) # oo and k € N. Then,
1. If d = ged(o(a), k), then o(a*) = o(a?).

Ey o(a)
2 0l0) = e dlo(@) B



5 Integers Modulo n

5.1 Integers Modulo n

Definition 5.1.1. Let a,b € Z. Define a = b(n) (a is congruent to b modulo n) if and
only if a=b+mnt, t € Z. Or, nla — b.

Theorem 5.1.1. a is congruent to b modulo n is an equivalence relation on Z.

Definition 5.1.2. The equivalence classes of = (n) are denoted as [z],, where [z], =
{z€Z:z=z(n)}. Z, = {[z], : © € Z} is the set of integers modulo n.

Theorem 5.1.2. Z, = {[r], : 0 < r < n} = {[0],, [1]n,...,[n — 1],,}, and all these
elements are distinct (i.e. |Z,| = n).

5.2 Addition and Multiplication of Z,

Definition 5.2.1 (Addition on Z,,). Let [z],, [y]. € Z,. Define [z], @ [y], = [z + y]n.
Lemma 5.2.1. Let a = b(n) and ¢ = d(n). Then, (a + ¢) = (b+ d)(n).

Theorem 5.2.2. 7Z, is an additive group with group operation [z}, @ [y], = [z + Y]..
The identity is [0],, and the inverse of [z], is [—x],. Z, is an abelian group, since 7Z is
abelian.

Theorem 5.2.3. In general, Z,, = ([1],,), where [1]], = [r],.
Definition 5.2.2 (Multiplication on Z,). Define [z], ® [y], = [zy]..
Lemma 5.2.4. If a = b(n) and ¢ = d(n), then ac = bd(n).

Theorem 5.2.5. Z,, under the multiplication [z],®[y], = [zy], satisfies all the properties
of a multiplicative group, except for, in general, the inverse.

Theorem 5.2.6. Z, under ® multiplication has the following property: [z], has a mul-
tiplicative inverse <= ged(x,n) = 1.

Definition 5.2.3. In Z,, define U(n) = {[r], : ged(r,n) = 1,0 < r < n}. U(n) is called
the set of units (multiplicative inverses) of Z,, with respect to multiplication.

Theorem 5.2.7. U(n) is a multiplicative group (abelian) under ©.

6 Subgroups

6.1 Properties of Subgroups

Definition 6.1.1. Let G be a group. A subset S C G is called a subgroup of G if and
only if S is a group under the same group operations as G. We write S < G.

Theorem 6.1.1. Let G be a group and S C GG. Then,
1. If t,s € S, then st € S (Closure).

2. e€S.

3. f s€ S, thenstes.

Corollary 6.1.2 (Second test for subgroups). Let S C G, G is a group. S < G <
S#Qands,tecS = st71eS Vs, tes.



6.2 Subgroups of Z
Theorem 6.2.1. Let SCZ. S<Z < S=mZ, m>0.

Corollary 6.2.2. If m is the smallest integer greater than 0 in S # {0}, S < Z, then
S =ma.

Theorem 6.2.3 (Test for finite subgroups). G is a group and S C G, S finite. Then,
S <G <= S +#0and S satisfies property 1 of subgroups.

6.3 Special Subgroups of a Group G
Definition 6.3.1. Let GG be a group. Then, we define the following:

1. The centre of G is Zg = Z(G) = {z € G : za = az, Ya € G}.
2. If a € G, then C(a) = {7z € G : za = az}, is called the centralizer of a.
3. S ={e} is called the trivial subgroup.
4. S is called a proper subgroup of G <— S # G.
Theorem 6.3.1. If G is a group, then Z is an abelian subgroup of G.
Theorem 6.3.2. In any group G, C(a) < G for each a € G.

Definition 6.3.2. Let G be a group. Then, T'= {g € G : o(g) # oo} is the Torsion
subset of G.

Theorem 6.3.3. Let A be an abelian group. Then, T' < A is called the Torsion subgroup
of A.

6.4 Creating New Subgroups from Given Ones
Theorem 6.4.1. G is a group and P,Q < G. Then,

1. PNQ < G. In fact, if {P,}acr is a collection of subgroups, then ﬂ P, is also a
acl

subgroup.
2. PUQ LG <= P<QorQ<P.
3. PQ <G <= PQ=QP.

Theorem 6.4.2. GG is a group, P, < G. Then every element g € GG can be represented
uniquely as g = pq, where p € P, g € @ if and only if G = PQ and PN Q = {e}.



7 Cyclic Groups and Their Subgroups

7.1 Cyclic Subgroups of a Group
Definition 7.1.1. Let G be a group and let a € G. Define (a) = {a" : k € Z}.
Theorem 7.1.1. Let GG be a group and a € GG. Then, we have:
1. (a) <G.
2. (a) is the smallest subgroup of G containing a. (If S < G and a € S, then (a) C S.)
3. {(a71) = {(a).
4. Let o(a) = n # co. Then, (a) = {a*: 0 < k < n}.
)

. If o(a) = oo, then (a) = {a” : k € Z}, where a" = a® = s=r.

7.2 Cyclic Groups

Definition 7.2.1. Let G be a group. We say G is a cyclic group <= da € G s.t.
G = (a). In this case, a is called a generator of G.

7.3 Subgroups of Cyclic Groups
Theorem 7.3.1. Let G = {a). Then, S < (a) =G < S = (a*), k> 0.

Corollary 7.3.2. If G = (a) and S < G, S # {e}, then S = (a*), where k is the smallest
integer greater than 0 s.t. a* € S.

Theorem 7.3.3. Let G = (a) and o(a) = n # oco. Then, a* is a generator of (a)
(ie. (a*) = (a)) <= gcd(n,k) = 1. Hence, S = (a*) is a proper subgroup of
G < ged(n, k) # 1.

Definition 7.3.1. If GG is a finite group of n elements, we say G has order n and we write
o(G@) = n. For cyclic groups G' = (a), we have o(G) = o({(a)) = o(a).
Theorem 7.3.4. Let G = (a) be a cyclic group. Then,
e Let o(a) = n = o(G). If § < G, then o(S)|o(G). (A special case of Legrange’s
theorem.)
e Let o(a) = co. Then, (a") = (a®) <= r ==s, r,s € Z.

Theorem 7.3.5. Let G = (a) and o(a) = n # oco. If d|n, then there exists exactly one
subgroup S s.t. 0(S) =d. If d # n and d # 1, then S is a proper, non-trivial subgroup.

Definition 7.3.2 (Euler-Phi Function). The function ¢ : Z — N is defined by ¢(n) =
|U(n)|. (The number of positive integers less than or equal to n that are coprime to n.)

Theorem 7.3.6. Let G = (a) with o(a) = n # oo. Then, if d|n, then
{z € G :o(x) =d}| = ¢(d).
Corollary 7.3.7. Let G be a finite group with o(G) = n. Then, ¢(d) | [{x € G : o(x) = d}|.

Theorem 7.3.8. If GG is a cyclic group and Jg € G, s.t. o(g) = oo, then Vz € G, o(x) #
o0 = r=e.



7.4 Direct Product of Cyclic Groups

Theorem 7.4.1. Let Gy, ...,G, be groups and (g1,...,9,) € HGi =G x---xG,. If
i=1

o(gi) =1 # 00, (1 <i<n),then o(gy,...,g,) =lem(o(g1),...,0(gn)) # occ.
Theorem 7.4.2. Let GGy, ...,G, be groups. Then,

o If H G, is a cyclic group with generators (g1, .., g»), then each group G; is a also

i=1
a cyclic group with generators g;.

e 7, x Z is a not a cyclic group even though 7 is!

Theorem 7.4.3. Let G; be finite groups, 1 < i < n. HGi is cyclic with generators
i=1

(91,--y0n) =

1. Each G; is cyclic with generator g;.

2. 0(g1)---0(gn) = lem(o(g1), - ..,0(gn)), or equivalently ged(o(g;),0(g;)) =1, i # j.

8 Subgroups Generated by a Subset of a Group G

Definition 8.0.1. Let G be a group and suppose M C . Then, ﬂ S is the smallest

MCS<G
subgroup containing M. We denote this subgroup by (M).
Theorem 8.0.4. Let G be a group and M C G. Then, (M) = U[M UM,
n=1

Corollary 8.0.5. Let A be an abelian group and M = {m4,...,my} C A. Then,

n

Definition 8.0.2 (Dihedral Group). Let G be a group and M = {o,0}, where o(0) =
2, 0(6) =n, and 06 = 6 lo.

Theorem 8.0.6. ({0,6}) = {e,d',..., 0" '} U{0,00,...,00" '} = D, (Dihedral group
with 2n elements). Note that D,, = (§) U o (d).

9 Symmetry Groups and Permutation Groups
9.1 Bijections
Definition 9.1.1. Let X, Y be sets and f : X — Y a function. Then,

1. If S C X, then f(S) ={f(s) : s € S}

2. T CY, then f1(T)={z € X : f(x) e T}

3. f is injective one-to-one if and only if Vz,y € X, f(x) = f(y) = z=y.

10



4. f is surjective (onto) if and only if Vy € Y, dz € X, s.t. f(z) =v.
5. f is a bijection if and only if f is injective and surjective.
Theorem 9.1.1. Let f: X — Y be a function.

1. f is injective <= dg :Y — X s.t. go f = idyx. In other words, f has a left
inverse.

2. f is surjective <= dh:Y — X s.t. foh =idy. In other words, f has a right
inverse.

3. fisis bijective <= dk:Y — X st. ko f =idy and fok =idy. Le. k is the
inverse of f.

Theorem 9.1.2. Let X be a set with X = {zy,...,2,}. If f: X — X is a function,

then f is injective <= f is surjective.

9.2 Permutation Groups

Definition 9.2.1. Let X be a set. Define Sx = {f | f: X — X is a bijection }.

Theorem 9.2.1. For any set X, Sy is a group under composition of functions, where
the identity is 1 =idx : X — X.

Theorem 9.2.2. If X is a set and |X| > 3, then S is non-abelian.

Definition 9.2.2. Sy is called the symmetry group on X. If X = {1,...,n}, we write
Sx = S,. Here, S, is called the permutation group on X and |S,| = n!.

Definition 9.2.3. If f € §5,,, we denote f as:

12 3 -+ n
a; as ag -+ QAp

9.3 Cycles

Definition 9.3.1. A permutation ¢ € S, is called a cycle if and only if ¢ = (a; ... ay),

which means that:
a;+1 T = Gy, (1§Z§£—1)

pr)=qa T=ua
x x # a;, Vi

¢ is called the length of .

Theorem 9.3.1 (Properties of Cycles). We have the following results for cycles:
1. (a1...a0)"' = (ar...ay). i.e. the inverse of a cycle is a cycle.
2. 2 cycles do not produce another cycle, in general.

3. 2 cycles do not necessarily commute.

11



Theorem 9.3.2. When do 2 cycles commute?

1. Ifp € Sy, then p(ay ...ap)p™t = (plar) ... o(ap)),or play ...ar) = (plar)...elap))ep.
2. If p €S, and p(a;) = a;, (1 <i<n), then p(a;...ap) = (ay...ap)p.
3. Let 01 = (a1 N a,g) and 02 = (bl Ce bk) If {al}‘i N {bl}lf = @, then 0102 = 0281.

Corollary 9.3.3. If § = (a; ...ay) is a cycle, then o(0) = ¢, the length of 6.

9.4 Orbits of a Permutation

Definition 9.4.1. Let ¢ € S,,. Then, the set O, (i) = {¢™ (i) : m € Z} is called the orbit
of i under ¢. Note that O,(i) C X = {1,...,n}, so O,(7) is finite and hence there exists
a smallest integer £ > 0 s.t. ¢(i) = 4. £ is called the length of the orbit.

Theorem 9.4.1. Suppose ¢ € S, and O,(i) is an orbit with length ¢ > 0. Then,
O, (i) = {i,(i),..., " (i)}

Theorem 9.4.2. Let ¢ € S,,. Then, the set of orbits of ¢, O, = {O,(i) : 1 < i < n}
forms a disjoint partition of X.

Theorem 9.4.3. Let ¢ € 5, with an orbit O,(7) of length ¢. The orbit determines a
cycle 0 = (i (i) ... "7 1(i)) of length ¢ so that p(z) = 6(z) if x € O,(4).

Definition 9.4.2. We define ¥ = set of cyles.

Theorem 9.4.4 (Cycle Decomposition Theorem). Let ¢ € S, let O, = {O,(t;) :
1 < i < p} be the set of distinct orbits of ¢. Let 6; be the cycle determined by the
orbit Oy(t;), 1 < i < p. Then, ¢ = 6,---6,, where 0,0, = 6;0;,, i # j. Hence,

Sp,=(¥¢) = U €", since €' = €.

n=1

Theorem 9.4.5. Let ¢ € S,, with cycle decomposition ¢ = 6,60;. Then
o(p) = lem(o(01),0(62)). Furthermore, if ¢ = 6, ---6;, where 6,0; = 6,6;, i # j, then
o(p) =lem(o(6y),...,0(0,)).

9.5 Generators of 5,
Theorem 9.5.1. S, = (%)

Theorem 9.5.2. G is a group and G = (M). Let N C G. Then, G = (N) <= M C
(N).

Definition 9.5.1. In S, let T" be the set of transpositions.

Theorem 9.5.3. .
S, =(T) =71, (T7' =1).
i=1

Corollary 9.5.4.
(ay...ap) = (a1 ag)(az az) -+ (a1 ag)

12



Theorem 9.5.5. In S, let 7} = {(1 z) : 1 <z <n}. Then, S, = (T1).
Corollary 9.5.6. If (a b) € S, then (a b) = (1 a)(1b)(1 a).

Definition 9.5.2 (The Alternating Group). Let X = {xy,...,z, : @ # x5, (i # j)}
Define P : X" — N by P(x1,...,2,) = H (x; — ;).

1<i<j<n
Theorem 9.5.7. We have the following results:
L P(e) () (1, -, 2n) = P(@) Ty, -5 Tpim))-
2. If 7 is a transposition, then P(1) = —P.
3. If p € Sy, ¢p =7, --- 71, where 7; is a transposition. Then, P(p) = (—1)"P.

Definition 9.5.3. Let P : X" — N be given. Then, we define G(P) = {p € S, : P(p) =
P}.

Theorem 9.5.8. We have the following results:
1. G(P) < Sy
2. G(P)={p €S, : pis the product of an even number of transpositions. }

Definition 9.5.4. G(P) is called the alternating group on n-letters. We write A,, for
G(P).

Theorem 9.5.9 (Generators for 4,,). 4, = {(1ab)}), if n > 3.

Corollary 9.5.10. If (abc) € Sy, then (abc) = (ac)(ab).

10 Homorphisms

10.1 Homomorphisms, Epimorphisms, and Monomorphisms

Definition 10.1.1. Let G and H be groups. Then, a function ¢ : G — H is a homo-
morphism <= p(ab) = ¢(a)p(b). We also say ¢ is an epimorphism if and only if ¢
is surjective and ¢ is a monomorphism if and only if ¢ is injective. If ¢ is surjective
and injective, we say ¢ is an isomorphism.

Definition 10.1.2. Let G be a group. An isomorphism ¢ : G — G is called an auto-
morphism. We write Auto(G) = {¢ : G — G | ¢ is an automorphism.}.

Theorem 10.1.1. Let ¢ : G — H be a homomorphism. Then, we have:
1. If ¢ is an isomorphism, then ¢! is also a homomorphism.
2. Auto(@G) is a group under functional composition.

3. ¢ is an isomorphism <= d a homomorphism ¢ : H — G s.t. po¢ = Iy and
Yoy =g

Theorem 10.1.2. Let ¢ : G — H be a homorphism. Then,
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5. If S < G, then ¢(S5) < H.
6. If T < H, then o 1(T) < G.
7. If a € G and o(a) = n # oo, then o(p(a))|o(a).

Definition 10.1.3. Let ¢ : G — H be a homomorphism. Then, the set kerp = {g €
G : p(g) = e} is called the kernel of ¢.

Corollary 10.1.3. Let ¢ : G — H be a monomorphism and o(a) = n. Then, o(p(a)) =

o(a).
Theorem 10.1.4. Let ¢ : G — H be a homomorphism. Then,
1. kerp < G.
2. ¢ is a monomorphism <= kerp = {e}.
Definition 10.1.4. Let G be a group. Then, [,,(G) = {¢, : g € G, @,(z) =

grg~t, Vo € G} is called the set of inner Automorphisms.

10.2 Classification Theorems

Theorem 10.2.1. We have the following two classification results:

1. Any 2 infinite cyclic groups are isomorphic. Hence, up to isomorphism Z is the only
cyclic group. i.e. if o(a) = oo, then (a) = Z. Or, Z is the unique infinite cyclic
group.

2. Two finite cyclic groups, (a) and (b), are isomorphic if and only if o(a) = o(b), or
|{(a)| = [(b)|. Hence, up to isomorphism, the only finite cyclic groups are Z,.

Theorem 10.2.2 (Cayley’s Theorem). Every group G is isomorphic to a subgroup of a
permutation group, namely Sg.

Theorem 10.2.3 (Product Isomorphism Theorem). Let G be a group with subgroup P
and @. If we have:

1. G =PqQ
2. PNQ ={e} and pg = qp, Vp € P,Vq € Q
Then, G = P x Q.
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11 Cosets and Lagrange’s Theorem

11.1 Cosets

Definition 11.1.1. Let G be a group and S < G. Then, for each g € G, the set Sg (¢5)
is called a right coset (left coset) of G.

Theorem 11.1.1. Let G be a group and S < G. Then:
1. S =80 < q1g;' €5 < g,'q1 €5.
2. §S=Se=eSisacoset andso Sg=95 < geS.
3. [9g] = o(5) = |g5].
Theorem 11.1.2. Let G be a group and S < G. Then, {Sg: g € G} and {¢95 : g € G}

are disjoint partitions of G.

11.2 Lagrange’s Theorem

Theorem 11.2.1 (Lagrange’s Theorem). Let G be a finite group and S < G. Then,
o(S)]o(G).

Definition 11.2.1. The index of S relative to G is written as [G : S]. Note, [G : S] =

Z((g)), which is the number of left cosets of S (and the number of right cosets of ).

Corollary 11.2.2. Let G be a finite group and g € G. Then, o(g)|o(G).

Corollary 11.2.3. If G is a finite group and ¢ € G, then ¢°¢) = ¢, Vg € G.

Corollary 11.2.4 (Euler’s Theorem). If ged(n, k) = 1, then k™ = 1(n). ie. In Z,,
[k¢(n)]n = [1]n-

Corollary 11.2.5 (Fermat’s Little Theorem). If p is prime, then k7~ = 1(p), for k € Z
s.t. ged(p, k) = 1.

Corollary 11.2.6. Let GG be a group. Then, G is a cyclic group with no proper non-trivial
subgroups if and only if o(G) is a prime.
o(H)o(K)

Theorem 11.2.7. If H, K < G, where G is a finite group, then |HK| = HNE)
0

Corollary 11.2.8. If G is a finite group, H, K < G, and H N K = {e}, then |[HK| =
o(H)o(K).

Theorem 11.2.9 (The converse of Lagrange’s Theorem). If d|o(G), then there exists a
subgroup S s.t. o(S) = d is true if G is abelian, but is not true if G is not abelian.

Theorem 11.2.10 (The First Sylow Theorem). If G is a finite group and p”|o(G), where
p is a prime, then 35 < G, with o(S) = p™.

15



12 Normal Subgroups

12.1 Introduction to Normal Subgroups

Definition 12.1.1. Let G be a group and N < G. N is called a normal subgroup of G if
and only if Ng = gN, Vg € G. Or, equivalently, gNg~* = N, Vg € G. We write N <1 G
for N to be a normal subgroup of G.

Theorem 12.1.1 (Tests for Normal Subgroups). Let G be a group and N < G. Then,
1. NG < gNg'CN,Vged.
2. If [G: N] =2, then N < G.
Theorem 12.1.2. Let G be a group. Then,
1. Z(G) =Zs < G.
2. If ¢ : G — H is a homomorphism, then ker ¢ <1 G.

Theorem 12.1.3 (Operations on Normal Subgroups). Let M, N < G, where G is a
group. Then,

1. f NG, then MNN < M.
2. f N <G, then MN < Gand N << MN.

3. If both M and N are normal, then M N N and M N are normal subgroups of G.

12.2 Quotient Groups

Theorem 12.2.1. Let N < G, G is a group. Let G/N = {Ng: g € G}. Define a binary
relation on G/N by (Ng1)(Ng2) = Ngiga. Then, G/N is a group.

Definition 12.2.1. If N < G, where G is a group, then the set of cosets, G/N, we say
G modulo N, is a group with identity Ne and inverses Ng~' = (Ng)~!. G/N is called
the quotient group of G and N. If G is finite, then o(G/N) = [G : N] = o(@/on). In
general, G/N inherits properties from G.

Theorem 12.2.2. Let G be a group and N < GG. Then,
1. If G is abelian, then so is G/N.
2. If G is cyclic, then so is G/N.

Theorem 12.2.3. Let A be an abelian group and let T'= {a € A : o(a) # oo} be the
Torsion subgroup. Then, A/T is Torsion-free, i.e. all elements of A/T" have infinite order.

Theorem 12.2.4 (The G/Z(G) Theorem). Let G be a group and we know that Z(G) <
G. If G/Z(G) is cyclic, then G is abelian.

Corollary 12.2.5. Let G be a group, N < G and N C Z(G). If G/N is cyclic, then G
is abelian.
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13 Product Isomorphism Theorem and Isomorphism
Theorems

13.1 Product Isomorphism Theorem

Theorem 13.1.1. Let GG be a group and M, N < G. Then, G satisfies:
1. G=MN.
2. MNN = {e}.
3. mn=nm, Ym € M,Vn € N.
If and only if G also satisfies:
1. G=MN.
2. MNN = {e}.
3. M and N are normal subgroups.

Definition 13.1.1. Let M and N be subgroups of a group GG. We say G is the internal
direct product of M and N if and only if:

1. G=MN.
2. MNN = {e}.
3. mn=nm, Ym € M,Vn € N.
In general, we say G is the internal direct product of subgroups Ny,..., N; <=
1. G=Ny--- Ny
2. (N1 N;)N Ny =Ae}, 1<i<t—1).
3. Niy< G, Vi=1,...,t

Definition 13.1.2. Let N; (1 < i < n) be n subgroups of G. HNZ- =Ny X+ x N,
i=1
is the external direct product of the N;’s. If G is the internal direct product of the N;’s,
then we write G = @ N;.
i=1
Theorem 13.1.2 (Product Isomorphism Theorem). If G = @ N;, then G = H N;.
i=1 i=1

Theorem 13.1.3. Let G be a group and o(G) = p?, where p is a prime. Then, G = Z»
or G = Z, x Z, and hence G is abelian.
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13.2 Isomorphism Theorems

Theorem 13.2.1. Suppose G is a group and N < G. The map ¢n : G — G/N defined
by ¢n(g) = Ng is an epimorphism whose kernel is N.

Corollary 13.2.2. Let G be a group. Then, N < ¢ <= N is the kernel of some
homomorphism ¢ : G — H.

Theorem 13.2.3 (Fundamental Homomorphism Theorem). If ¢ : G — H is a homo-
morphism, then G/ ker ¢ = ¢(G).
If ¢ is an epimorphism, then G/kerp = H.

Theorem 13.2.4 (Second Isomorphism Theorem). G is a group, M < G and N < G.
Then,

1. MAN < M.
2. MN <G and N < MN.
3. MN/N = M/M N.

Theorem 13.2.5 (Third Isomorphism Theorem). Let G be a group and M and N are
both normal subgroups of G with N < M. Then,

1. M/N <1 G/N.
2. G/M = (G/N)/(M/N).

Theorem 13.2.6 (Basis Theorem). Let A be an abelian group, with A = (M), and M is
finite, i.e. A is a finitely generated abelian group. Then, A & Z,,, X Zyn, X+ + X Ly, X 75,
where mq|mal - - - |m._1|m, (ms|mi1, 1 <i<r—1). Here, T = Zy,, X -+ X Ly, is called
the Torsion subgroup and the m; are called the Torsion coefficients. The S is called the
rank of A, or the Betti number. If S = 0, we have a finite abelian group. If r = 0, we
have A = 7Z° and we have a free abelian group of rank S.

Theorem 13.2.7 (The Fundamental Theorem of Finitely Generated Abelian Groups).
Let A be a finitely generated abelian group. If A= Z,,, X -+ X Ly, X L5 2 L X -+ X
Dy xZW  thenr =t, m; =n; (1<i<r),and S =W. If Ais a finite abelian group,

has type (mq,ma, ..., m,)ifand only if A = Z,, X+ -+ XZy,,, with m;|m; 1 (1 < i <r—1).
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