Theorems and Definitions in Group Theory

Shunan Zhao

Contents

1 Basics of a group 3
1.1 Basic Properties of Groups 3
1.2 Properties of Inverses 3
1.3 Direct Product of Groups 4
2 Equivalence Relations and Disjoint Partitions 4
3 Elementary Number Theory 5
3.1 GCD and LCM 5
3.2 Primes and Euclid's Lemma 5
4 Exponents and Order 6
4.1 Exponents 6
4.2 Order 6
5 Integers Modulo n 7
5.1 Integers Modulo n 7
5.2 Addition and Multiplication of \mathbb{Z}_{n} 7
6 Subgroups 7
6.1 Properties of Subgroups 7
6.2 Subgroups of \mathbb{Z} 8
6.3 Special Subgroups of a Group G 8
6.4 Creating New Subgroups from Given Ones 8
7 Cyclic Groups and Their Subgroups 9
7.1 Cyclic Subgroups of a Group 9
7.2 Cyclic Groups 9
7.3 Subgroups of Cyclic Groups 9
7.4 Direct Product of Cyclic Groups 10
8 Subgroups Generated by a Subset of a Group G 10
9 Symmetry Groups and Permutation Groups 10
9.1 Bijections 10
9.2 Permutation Groups 11
9.3 Cycles 11
9.4 Orbits of a Permutation 12
9.5 Generators of S_{n} 12
10 Homorphisms 13
10.1 Homomorphisms, Epimorphisms, and Monomorphisms 13
10.2 Classification Theorems 14
11 Cosets and Lagrange's Theorem 15
11.1 Cosets 15
11.2 Lagrange's Theorem 15
12 Normal Subgroups 16
12.1 Introduction to Normal Subgroups 16
12.2 Quotient Groups 16
13 Product Isomorphism Theorem and Isomorphism Theorems 17
13.1 Product Isomorphism Theorem 17
13.2 Isomorphism Theorems 18

1 Basics of a group

1.1 Basic Properties of Groups

Definition 1.1.1 (Definition of a Group). A set G is a group if and only if G satisfies the following:

1. G has a binary relation $\cdot: G \times G \rightarrow G$ so that $\forall g, h \in G, g \cdot h \in G$. We write $\cdot(g, h)=g \cdot h$. (Closure.)
2. $\forall g, h, k \in G, g \cdot(h \cdot k)=(g \cdot h) \cdot k$. (Associative.)
3. $\exists e \in G$, s.t. $e \cdot a=a=a \cdot e$. e is called an identity element of G.
4. $\forall g \in G, \exists g^{-1} \in G$, s.t. $g \cdot g^{-1}=e=g^{-1} \cdot g \cdot g^{-1}$ is called an inverse of g.

Definition 1.1.2. If $\forall g, h \in G$, we also have $g \cdot h=h \cdot g$, then we say that G is an abelian group.

Theorem 1.1.1. Let G be a group. Then,

- $\forall a \in G, a G=G=G a$, where $G a=\{g a: g \in G\}$ and $a G=\{a g: g \in G\}$
- If $a, x, y \in G$, then $a x=a y \Longrightarrow x=y$.
- If $a, x, y \in G$, then $x a=y a \Longrightarrow x=y$.

Theorem 1.1.2. G is a group. Then:

- G has only one identity element.
- Each $g \in G$ has only one inverse g^{-1}.

1.2 Properties of Inverses

Theorem 1.2.1. G is a group.

- If $g \in G$, then $\left(g^{-1}\right)^{-1}=g$.
- If $g, h \in G$, then $(g h)^{-1}=h^{-1} g^{-1}$.

Theorem 1.2.2. Let G be a set with the following axioms:

1. Closure: $g, h \in G \Longrightarrow g h \in G$.
2. Associativity: $\forall g, h, k \in G, g(h k)=(g h) k$.
3. $\exists e \in G, \forall g \in G, e g=g$. (e is a left identity.)
4. $\forall g \in G, \exists * g \in G, * g g=e .(* g$ is a left inverse.)

Then, G is a group. The same applies for a right inverse and a right identity.

1.3 Direct Product of Groups

Theorem 1.3.1. Let G and H be two groups. Define the direct product of G and H as $G \times H=\{(g, h): g \in G, h \in H\}$. Then, $G \times H$ is a group with the component-wise binary operation.

Definition 1.3.1. Let $\mathbb{C}=\mathbb{R} \times \mathbb{R}=\{(a, b): a, b \in \mathbb{R}\}$. We define addition and multiplication in \mathbb{C} as:

- Addition: We want to use the component wise addition from $(\mathbb{R},+)$. Thus, $(a, b)+$ $(c, d)=(a+b, c+d)$. Then, $\mathbf{0}=(0,0)$ and $(a, b)^{-1}=-(a, b)=(-a,-b)$.
- Multiplication: Define multiplication by $(a, b)(c, d)=(a c-b d, a d+b c)$. Then, the multiplicative identity is $(1,0)$. Furthermore, define $i=(0,1)$. Then, the multiplicative inverse is $z^{-1}=\frac{\bar{z}}{|z|^{2}}$.

Definition 1.3.2. Define $\mathbb{H}=\mathbb{C} \times \mathbb{C}=\{(z, w): z, w \in \mathbb{C}\}$. We define addtion component-wise and multiplication by $(z, w)(u, v)=(z u-w \bar{v}, z v-w \bar{u})$. The multiplicative identity is $(1,0)$ and $h^{-1}=\frac{h}{|h|^{2}}$.

2 Equivalence Relations and Disjoint Partitions

Definition 2.0.3. Let X be a set and R be a relation on $X . \mathrm{R}$ is called an equivalence relation on X if and only if the following axioms hold:

1. For each $x \in X, x \mathrm{R} x$ (R is reflexive).
2. $\forall x, y \in X$, if $x \mathrm{R} y$, then $y \mathrm{R} x$ (R is symmetric).
3. If $x \mathrm{R} y$ and $y \mathrm{R} z$, then $x \mathrm{R} z$ (R is transitive).

Definition 2.0.4. $\forall x \in X, \mathrm{R}[x]=\{y \in X: y \mathrm{R} x\}$ is called an equivalence class.
Theorem 2.0.2. Let R be an equivalence relation on X. Then, $\mathrm{R}[x]=\mathrm{R}[z] \Longleftrightarrow x \mathrm{R} z$
Theorem 2.0.3. Let R be an equivalence relation on a set X. Let $D_{R}=\{\mathrm{R}[x]: x \in X\}$. Then, D_{R} has the following properties:

1. $\mathrm{R}[x] \neq \emptyset$, since $x \mathrm{R} x \Longrightarrow x \in \mathrm{R}[x]$.
2. If $\mathrm{R}[x] \cap \mathrm{R}[y] \neq \emptyset$, then $\mathrm{R}[x]=\mathrm{R}[y]$.
3. $X=\bigcup_{x \in X} \mathrm{R}[x]$.

Definition 2.0.5. Let X be a set. The power set of X is $\mathrm{P}(X)=\{S: S \subseteq X\}$.
Definition 2.0.6 (Disjoint Partition). A subset $\mathfrak{D} \subseteq \mathrm{P}(X)$ is a disjoint partition of X if and only if \mathfrak{D} satisfies the following axioms:

1. $\forall D \in \mathfrak{D}, D \neq \emptyset$.
2. If $D, \tilde{D} \in \mathfrak{D}$ and $D \cap \tilde{D} \neq \emptyset$, then $D=\tilde{D}$.
3. $X=\bigcup_{D \in \mathfrak{A}} D$.

Corollary 2.0.4. If R is an equivalence relation on a set X, then $\mathfrak{D}_{R}=\{\mathrm{R}[x]: x \in X\}$ is a disjoint partition of X.

Theorem 2.0.5. Let \mathfrak{D} be a disjoint partition of a set X. Define a relation on $X, \mathrm{R}_{\mathcal{D}}$ as follows:

$$
x \mathrm{R}_{\mathfrak{D} y} \Longleftrightarrow \exists D \in \mathfrak{D} \text { so that } x, y \in D .
$$

Then, $R_{\mathcal{D}}$ is an equivalence relation.

3 Elementary Number Theory

3.1 GCD and LCM

Axiom 3.1.1 (The Well Ordering Principle). Every non-empty subset of \mathbb{N} has a smallest element.

Theorem 3.1.1 (Division Algorithm). Let $a, b \in \mathbb{Z}, b \neq 0$. Then, $\exists!q, r \in \mathbb{Z}$ s.t. $a=$ $b q+r, 0 \leq r<|b|$.

Definition 3.1.1. Let $a, b \in \mathbb{Z}$, not both zero. Then, $c>0, c \in \mathbb{N}$ is a greatest common divisor of a and $b \Longleftrightarrow c$ satisfies the following properties $(a, b \in \mathbb{Z}, a \neq 0 \neq b)$:

1. $c \mid a$ and $c \mid b$.
2. If $x \mid a$ and $x \mid b$, then $x \mid c$.

Theorem 3.1.2. There exists a GCD of a and b, say c, and $c=\lambda a+\mu b, \lambda, \mu \in \mathbb{Z}$. Furthermore, c is smallest $n \in \mathbb{N}$ s.t. $n=\lambda a+\mu b$.

Definition 3.1.2. Let $a, b \in \mathbb{Z}, a>0, b>0 . d \in \mathbb{Z}$ and $d>0$ is a least common multiple of a and b if and only if d satisfies the folloing properties:

1. $a \mid d$ and $b \mid d$.
2. If $a \mid x$ and $b \mid x$, then $d \mid x$.

Theorem 3.1.3. Assume $a, b \in \mathbb{Z}, a>0, b>0$. Then, $d=\frac{a b}{\operatorname{gcd}(a, b)}$ is the LCM of a and b.

3.2 Primes and Euclid's Lemma

Definition 3.2.1. $p \in \mathbb{N}, p$ is a prime $\Longleftrightarrow n \mid p \Longrightarrow n=1$ or $n=p$.
Theorem 3.2.1. Let $p \in \mathbb{N}$. p is a prime if and only if $\forall n \in \mathbb{N}, p \mid n$ or $\operatorname{gcd}(n, p)=1$ (relatively prime).

Theorem 3.2.2. For $a, b, c \in \mathbb{N}$, if $a \mid b c$ and $\operatorname{gcd}(a, b)=1$, then $a \mid c$.
Corollary 3.2.3 (Euclid's Lemma). If p is a prime and $p \mid a b$, then $p \mid a$ or $p \mid b$.

4 Exponents and Order

4.1 Exponents

Definition 4.1.1. G is a group and $a \in G$. We define $a^{0}=e, a^{1}=a$ and $a^{n+1}=a^{n} \cdot a$, for $n \in \mathbb{N}^{+}$. Also, if $m>0$, define $a^{-m}=\left(a^{-1}\right)^{m}$.

Theorem 4.1.1 (Properties of Exponents). G is a group and $a, b \in G$ and $m, n \in \mathbb{N}$. Then, we have

1. $e^{n}=e$
2. $a^{m+n}=a^{m} a^{n}$
3. $\left(a^{m}\right)^{n}=a^{m n}$
4. Let $a b=b a$. Then, $a b^{n}=b^{n} a$ and $(a b)^{n}=a^{n} b^{n}=b^{n} a^{n}$.
5. $a^{-m}=\left(a^{m}\right)^{-1}$
6. If $0 \leq m \leq n$, then $a^{n-m}=a^{n} a^{-m}$.
7. $\left(a^{-1} b a\right)^{n}=a^{-1} b^{n} a$

4.2 Order

Definition 4.2.1. G is a group and $a \in G$. If there is a positive integer $n>0$ s.t. $a^{n}=e$, we say a has finite order. If a has finite order, then the smallest $n>0$ s.t. $a^{n}=e$ is called the order of a. We write $o(a)$ as the order of a. If $\forall n \in \mathbb{N}^{+}, a^{n} \neq e$, then we say a has infinite order and we write $o(a)=\infty$. If $o(a) \neq \infty$, then a has finite order.

Theorem 4.2.1. Let G be a group and $a \in G, m>0$. Then,

1. If $a^{m}=e$, then $o(a) \mid m$.
2. Let $o(a)=\infty$. If $a^{k}=e$, then $k=0$.
3. $o(a)=\infty \Longleftrightarrow a^{m}=a^{n} \Longrightarrow m=n$.
4. If $o(a) \neq \infty$, then $o\left(a^{k}\right) \neq \infty$ and $o\left(a^{k}\right) \mid o(a)$.

Theorem 4.2.2. Let G be a group, $a \in G, o(a) \neq \infty$ and $k \in \mathbb{N}$. Then,

1. If $d=\operatorname{gcd}(o(a), k)$, then $o\left(a^{k}\right)=o\left(a^{d}\right)$.
2. $o\left(a^{k}\right)=\frac{o(a)}{\operatorname{gcd}(o(a), k)}$

5 Integers Modulo n

5.1 Integers Modulo n

Definition 5.1.1. Let $a, b \in \mathbb{Z}$. Define $a \equiv b(n)$ (a is congruent to b modulo n) if and only if $a=b+n t, t \in \mathbb{Z}$. Or, $n \mid a-b$.
Theorem 5.1.1. a is congruent to b modulo n is an equivalence relation on \mathbb{Z}.
Definition 5.1.2. The equivalence classes of $\equiv(n)$ are denoted as $[x]_{n}$, where $[x]_{n}=$ $\{z \in \mathbb{Z}: z \equiv x(n)\} . \mathbb{Z}_{n}=\left\{[x]_{n}: x \in \mathbb{Z}\right\}$ is the set of integers modulo n.
Theorem 5.1.2. $\mathbb{Z}_{n}=\left\{[r]_{n}: 0 \leq r<n\right\}=\left\{[0]_{n},[1]_{n}, \ldots,[n-1]_{n}\right\}$, and all these elements are distinct (i.e. $\left|\mathbb{Z}_{n}\right|=n$).

5.2 Addition and Multiplication of \mathbb{Z}_{n}

Definition 5.2.1 (Addition on \mathbb{Z}_{n}). Let $[x]_{n},[y]_{n} \in \mathbb{Z}_{n}$. Define $[x]_{n} \oplus[y]_{n}=[x+y]_{n}$.
Lemma 5.2.1. Let $a \equiv b(n)$ and $c \equiv d(n)$. Then, $(a+c) \equiv(b+d)(n)$.
Theorem 5.2.2. \mathbb{Z}_{n} is an additive group with group operation $[x]_{n} \oplus[y]_{n}=[x+y]_{n}$. The identity is $[0]_{n}$ and the inverse of $[x]_{n}$ is $[-x]_{n} . \mathbb{Z}_{n}$ is an abelian group, since \mathbb{Z} is abelian.
Theorem 5.2.3. In general, $\mathbb{Z}_{n}=\left\langle[1]_{n}\right\rangle$, where $[1]_{n}^{r}=[r]_{n}$.
Definition 5.2.2 (Multiplication on \mathbb{Z}_{n}). Define $[x]_{n} \odot[y]_{n}=[x y]_{n}$.
Lemma 5.2.4. If $a \equiv b(n)$ and $c \equiv d(n)$, then $a c \equiv b d(n)$.
Theorem 5.2.5. \mathbb{Z}_{n} under the multiplication $[x]_{n} \odot[y]_{n}=[x y]_{n}$ satisfies all the properties of a multiplicative group, except for, in general, the inverse.
Theorem 5.2.6. \mathbb{Z}_{n} under \odot multiplication has the following property: $[x]_{n}$ has a multiplicative inverse $\Longleftrightarrow \operatorname{gcd}(x, n)=1$.
Definition 5.2.3. In \mathbb{Z}_{n}, define $U(n)=\left\{[r]_{n}: \operatorname{gcd}(r, n)=1,0 \leq r<n\right\} . U(n)$ is called the set of units (multiplicative inverses) of \mathbb{Z}_{n} with respect to multiplication.
Theorem 5.2.7. $U(n)$ is a multiplicative group (abelian) under \odot.

6 Subgroups

6.1 Properties of Subgroups

Definition 6.1.1. Let G be a group. A subset $S \subseteq G$ is called a subgroup of G if and only if S is a group under the same group operations as G. We write $S \leqslant G$.

Theorem 6.1.1. Let G be a group and $S \subseteq G$. Then,

1. If $t, s \in S$, then $s t \in S$ (Closure).
2. $e \in S$.
3. If $s \in S$, then $s^{-1} \in S$.

Corollary 6.1.2 (Second test for subgroups). Let $S \subseteq G, G$ is a group. $S \leqslant G \Longleftrightarrow$ $S \neq \emptyset$ and $s, t \in S \Longrightarrow s t^{-1} \in S, \forall s, t \in S$.

6.2 Subgroups of \mathbb{Z}

Theorem 6.2.1. Let $S \subseteq \mathbb{Z}$. $S \leqslant \mathbb{Z} \Longleftrightarrow S=m \mathbb{Z}, m>0$.
Corollary 6.2.2. If m is the smallest integer greater than 0 in $S \neq\{0\}, S \leqslant \mathbb{Z}$, then $S=m \mathbb{Z}$.

Theorem 6.2.3 (Test for finite subgroups). G is a group and $S \subseteq G, S$ finite. Then, $S \leqslant G \Longleftrightarrow S \neq \emptyset$ and S satisfies property 1 of subgroups.

6.3 Special Subgroups of a Group G

Definition 6.3.1. Let G be a group. Then, we define the following:

1. The centre of G is $Z_{G}=Z(G)=\{z \in G: z a=a z, \forall a \in G\}$.
2. If $a \in G$, then $C(a)=\{z \in G: z a=a z\}$, is called the centralizer of a.
3. $S=\{e\}$ is called the trivial subgroup.
4. S is called a proper subgroup of $G \Longleftrightarrow S \neq G$.

Theorem 6.3.1. If G is a group, then Z_{G} is an abelian subgroup of G.
Theorem 6.3.2. In any group $G, C(a) \leqslant G$ for each $a \in G$.
Definition 6.3.2. Let G be a group. Then, $T=\{g \in G: o(g) \neq \infty\}$ is the Torsion subset of G.

Theorem 6.3.3. Let A be an abelian group. Then, $T \leqslant A$ is called the Torsion subgroup of A.

6.4 Creating New Subgroups from Given Ones

Theorem 6.4.1. G is a group and $P, Q \leqslant G$. Then,

1. $P \cap Q \leqslant G$. In fact, if $\left\{P_{\alpha}\right\}_{\alpha \in I}$ is a collection of subgroups, then $\bigcap_{\alpha \in I} P_{\alpha}$ is also a subgroup.
2. $P \cup Q \leqslant G \Longleftrightarrow P \leqslant Q$ or $Q \leqslant P$.
3. $P Q \leqslant G \Longleftrightarrow P Q=Q P$.

Theorem 6.4.2. G is a group, $P, Q \leqslant G$. Then every element $g \in G$ can be represented uniquely as $g=p q$, where $p \in P, q \in Q$ if and only if $G=P Q$ and $P \cap Q=\{e\}$.

7 Cyclic Groups and Their Subgroups

7.1 Cyclic Subgroups of a Group

Definition 7.1.1. Let G be a group and let $a \in G$. Define $\langle a\rangle=\left\{a^{k}: k \in \mathbb{Z}\right\}$.
Theorem 7.1.1. Let G be a group and $a \in G$. Then, we have:

1. $\langle a\rangle \leqslant G$.
2. $\langle a\rangle$ is the smallest subgroup of G containing a. (If $S \leqslant G$ and $a \in S$, then $\langle a\rangle \subseteq S$.)
3. $\left\langle a^{-1}\right\rangle=\langle a\rangle$.
4. Let $o(a)=n \neq \infty$. Then, $\langle a\rangle=\left\{a^{k}: 0 \leq k<n\right\}$.
5. If $o(a)=\infty$, then $\langle a\rangle=\left\{a^{k}: k \in \mathbb{Z}\right\}$, where $a^{r}=a^{s} \Longrightarrow s=r$.

7.2 Cyclic Groups

Definition 7.2.1. Let G be a group. We say G is a cyclic group $\Longleftrightarrow \exists a \in G$ s.t. $G=\langle a\rangle$. In this case, a is called a generator of G.

7.3 Subgroups of Cyclic Groups

Theorem 7.3.1. Let $G=\langle a\rangle$. Then, $S \leqslant\langle a\rangle=G \Longleftrightarrow S=\left\langle a^{k}\right\rangle, k \geq 0$.
Corollary 7.3.2. If $G=\langle a\rangle$ and $S \leqslant G, S \neq\{e\}$, then $S=\left\langle a^{k}\right\rangle$, where k is the smallest integer greater than 0 s.t. $a^{k} \in S$.

Theorem 7.3.3. Let $G=\langle a\rangle$ and $o(a)=n \neq \infty$. Then, a^{k} is a generator of $\langle a\rangle$ (i.e. $\left.\left\langle a^{k}\right\rangle=\langle a\rangle\right) \Longleftrightarrow \operatorname{gcd}(n, k)=1$. Hence, $S=\left\langle a^{k}\right\rangle$ is a proper subgroup of $G \Longleftrightarrow \operatorname{gcd}(n, k) \neq 1$.

Definition 7.3.1. If G is a finite group of n elements, we say G has order n and we write $o(G)=n$. For cyclic groups $G=\langle a\rangle$, we have $o(G)=o(\langle a\rangle)=o(a)$.

Theorem 7.3.4. Let $G=\langle a\rangle$ be a cyclic group. Then,

- Let $o(a)=n=o(G)$. If $S \leqslant G$, then $o(S) \mid o(G)$. (A special case of Legrange's theorem.)
- Let $o(a)=\infty$. Then, $\left\langle a^{r}\right\rangle=\left\langle a^{s}\right\rangle \Longleftrightarrow r= \pm s, r, s \in \mathbb{Z}$.

Theorem 7.3.5. Let $G=\langle a\rangle$ and $o(a)=n \neq \infty$. If $d \mid n$, then there exists exactly one subgroup S s.t. $o(S)=d$. If $d \neq n$ and $d \neq 1$, then S is a proper, non-trivial subgroup.

Definition 7.3.2 (Euler-Phi Function). The function $\phi: \mathbb{Z} \rightarrow \mathbb{N}$ is defined by $\phi(n)=$ $|U(n)|$. (The number of positive integers less than or equal to n that are coprime to n.)
Theorem 7.3.6. Let $G=\langle a\rangle$ with $o(a)=n \neq \infty$. Then, if $d \mid n$, then $|\{x \in G: o(x)=d\}|=\phi(d)$.
Corollary 7.3.7. Let G be a finite group with $o(G)=n$. Then, $\phi(d)||\{x \in G: o(x)=d\}|$.
Theorem 7.3.8. If G is a cyclic group and $\exists g \in G$, s.t. $o(g)=\infty$, then $\forall x \in G, o(x) \neq$ $\infty \Longrightarrow x=e$.

7.4 Direct Product of Cyclic Groups

Theorem 7.4.1. Let G_{1}, \ldots, G_{n} be groups and $\left(g_{1}, \ldots, g_{n}\right) \in \prod_{i=1}^{n} G_{i}=G_{1} \times \cdots \times G_{n}$. If $o\left(g_{i}\right)=r_{i} \neq \infty,(1 \leq i \leq n)$, then $o\left(g_{1}, \ldots, g_{n}\right)=\operatorname{lcm}\left(o\left(g_{1}\right), \ldots, o\left(g_{n}\right)\right) \neq \infty$.

Theorem 7.4.2. Let G_{1}, \ldots, G_{n} be groups. Then,

- If $\prod_{i=1}^{n} G_{i}$ is a cyclic group with generators $\left(g_{1}, \ldots, g_{n}\right)$, then each group G_{i} is a also a cyclic group with generators g_{i}.
- $\mathbb{Z} \times \mathbb{Z}$ is a not a cyclic group even though \mathbb{Z} is!

Theorem 7.4.3. Let G_{i} be finite groups, $1 \leq i \leq n$. $\prod_{i=1}^{n} G_{i}$ is cyclic with generators $\left(g_{1}, \ldots, g_{n}\right) \Longleftrightarrow$

1. Each G_{i} is cyclic with generator g_{i}.
2. $o\left(g_{1}\right) \cdots o\left(g_{n}\right)=\operatorname{lcm}\left(o\left(g_{1}\right), \ldots, o\left(g_{n}\right)\right)$, or equivalently $\operatorname{gcd}\left(o\left(g_{i}\right), o\left(g_{j}\right)\right)=1, i \neq j$.

8 Subgroups Generated by a Subset of a Group G

Definition 8.0.1. Let G be a group and suppose $M \subseteq G$. Then, $\bigcap_{M \subseteq S \leqslant G} S$ is the smallest subgroup containing M. We denote this subgroup by $\langle M\rangle$.

Theorem 8.0.4. Let G be a group and $M \subseteq G$. Then, $\langle M\rangle=\bigcup_{n=1}^{\infty}\left[M \cup M^{-1}\right]^{n}$.
Corollary 8.0.5. Let A be an abelian group and $M=\left\{m_{1}, \ldots, m_{t}\right\} \subseteq A$. Then, $\langle M\rangle=\left\{x_{1}^{\varepsilon_{1}} \cdots x_{n}^{\varepsilon_{n}}: x_{i} \in M\right\}=\left\{m_{1}^{t_{1}} \cdots m_{t}^{t_{t}}: t_{i}= \pm 1, m_{i} \in M, t \geq 1\right\}$.

Definition 8.0.2 (Dihedral Group). Let G be a group and $M=\{\sigma, \delta\}$, where $o(\sigma)=$ $2, o(\delta)=n$, and $\sigma \delta=\delta^{-1} \sigma$.

Theorem 8.0.6. $\langle\{\sigma, \delta\}\rangle=\left\{e, \delta^{1}, \ldots, \delta^{n-1}\right\} \cup\left\{\sigma, \sigma \delta, \ldots, \sigma \delta^{n-1}\right\}=D_{n}$ (Dihedral group with $2 n$ elements). Note that $D_{n}=\langle\delta\rangle \cup \sigma\langle\delta\rangle$.

9 Symmetry Groups and Permutation Groups

9.1 Bijections

Definition 9.1.1. Let X, Y be sets and $f: X \rightarrow Y$ a function. Then,

1. If $S \subseteq X$, then $f(S)=\{f(s): s \in S\}$.
2. If $T \subseteq Y$, then $f^{-1}(T)=\{x \in X: f(x) \in T\}$.
3. f is injective one-to-one if and only if $\forall x, y \in X, f(x)=f(y) \Longrightarrow x=y$.
4. f is surjective (onto) if and only if $\forall y \in Y, \exists x \in X$, s.t. $f(x)=y$.
5. f is a bijection if and only if f is injective and surjective.

Theorem 9.1.1. Let $f: X \rightarrow Y$ be a function.

1. f is injective $\Longleftrightarrow \exists g: Y \rightarrow X$ s.t. $g \circ f=\operatorname{id}_{X}$. In other words, f has a left inverse.
2. f is surjective $\Longleftrightarrow \exists h: Y \rightarrow X$ s.t. $f \circ h=\operatorname{id}_{Y}$. In other words, f has a right inverse.
3. f is is bijective $\Longleftrightarrow \exists k: Y \rightarrow X$ s.t. $k \circ f=\operatorname{id}_{X}$ and $f \circ k=\operatorname{id}_{Y}$. I.e. k is the inverse of f.

Theorem 9.1.2. Let X be a set with $X=\left\{x_{1}, \ldots, x_{n}\right\}$. If $f: X \rightarrow X$ is a function, then f is injective $\Longleftrightarrow f$ is surjective.

9.2 Permutation Groups

Definition 9.2.1. Let X be a set. Define $S_{X}=\{f \mid f: X \rightarrow X$ is a bijection $\}$.
Theorem 9.2.1. For any set X, S_{X} is a group under composition of functions, where the identity is $1=\operatorname{id}_{X}: X \rightarrow X$.

Theorem 9.2.2. If X is a set and $|X| \geq 3$, then S_{X} is non-abelian.
Definition 9.2.2. S_{X} is called the symmetry group on X. If $X=\{1, \ldots, n\}$, we write $S_{X}=S_{n}$. Here, S_{n} is called the permutation group on X and $\left|S_{n}\right|=n!$.

Definition 9.2.3. If $f \in S_{n}$, we denote f as:

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & \cdots & n \\
a_{1} & a_{2} & a_{3} & \cdots & a_{n}
\end{array}\right)
$$

i.e. $f(i)=a_{i}$.

9.3 Cycles

Definition 9.3.1. A permutation $\varphi \in S_{n}$ is called a cycle if and only if $\varphi=\left(a_{1} \ldots a_{\ell}\right)$, which means that:

$$
\varphi(x)= \begin{cases}a_{i+1} & x=a_{i},(1 \leq i \leq \ell-1) \\ a_{1} & x=a_{\ell} \\ x & x \neq a_{i}, \forall i\end{cases}
$$

ℓ is called the length of φ.
Theorem 9.3.1 (Properties of Cycles). We have the following results for cycles:

1. $\left(a_{1} \ldots a_{\ell}\right)^{-1}=\left(a_{\ell} \ldots a_{1}\right)$. i.e. the inverse of a cycle is a cycle.
2. 2 cycles do not produce another cycle, in general.
3. 2 cycles do not necessarily commute.

Theorem 9.3.2. When do 2 cycles commute?

1. If $\varphi \in S_{n}$, then $\varphi\left(a_{1} \ldots a_{\ell}\right) \varphi^{-1}=\left(\varphi\left(a_{1}\right) \ldots \varphi\left(a_{\ell}\right)\right)$, or $\varphi\left(a_{1} \ldots a_{\ell}\right)=\left(\varphi\left(a_{1}\right) \ldots \varphi\left(a_{\ell}\right)\right) \varphi$.
2. If $\varphi \in S_{n}$ and $\varphi\left(a_{i}\right)=a_{i},(1 \leq i \leq n)$, then $\varphi\left(a_{1} \ldots a_{\ell}\right)=\left(a_{1} \ldots a_{\ell}\right) \varphi$.
3. Let $\theta_{1}=\left(a_{1} \ldots a_{\ell}\right)$ and $\theta_{2}=\left(b_{1} \ldots b_{k}\right)$. If $\left\{a_{i}\right\}_{1}^{\ell} \cap\left\{b_{i}\right\}_{1}^{k}=\emptyset$, then $\theta_{1} \theta_{2}=\theta_{2} \theta_{1}$.

Corollary 9.3.3. If $\theta=\left(a_{1} \ldots a_{\ell}\right)$ is a cycle, then $o(\theta)=\ell$, the length of θ.

9.4 Orbits of a Permutation

Definition 9.4.1. Let $\varphi \in S_{n}$. Then, the set $O_{\varphi}(i)=\left\{\varphi^{m}(i): m \in \mathbb{Z}\right\}$ is called the orbit of i under φ. Note that $O_{\varphi}(i) \subseteq X=\{1, \ldots, n\}$, so $O_{\varphi}(i)$ is finite and hence there exists a smallest integer $\ell>0$ s.t. $\varphi^{\ell}(i)=i$. ℓ is called the length of the orbit.

Theorem 9.4.1. Suppose $\varphi \in S_{n}$ and $O_{\varphi}(i)$ is an orbit with length $\ell>0$. Then, $O_{\varphi}(i)=\left\{i, \varphi(i), \ldots, \varphi^{\ell-1}(i)\right\}$

Theorem 9.4.2. Let $\varphi \in S_{n}$. Then, the set of orbits of $\varphi, O_{\varphi}=\left\{O_{\varphi}(i): 1 \leq i \leq n\right\}$ forms a disjoint partition of X.

Theorem 9.4.3. Let $\varphi \in S_{n}$ with an orbit $O_{\varphi}(i)$ of length ℓ. The orbit determines a cycle $\theta=\left(i \varphi(i) \ldots \varphi^{\ell-1}(i)\right)$ of length ℓ so that $\varphi(x)=\theta(x)$ if $x \in O_{\varphi}(i)$.

Definition 9.4.2. We define $\mathscr{C}=$ set of cyles.
Theorem 9.4.4 (Cycle Decomposition Theorem). Let $\varphi \in S_{n}$, let $O_{\varphi}=\left\{O_{\varphi}\left(t_{i}\right)\right.$: $1 \leq i \leq p\}$ be the set of distinct orbits of φ. Let θ_{i} be the cycle determined by the orbit $O_{\varphi}\left(t_{i}\right), 1 \leq i \leq p$. Then, $\varphi=\theta_{p} \cdots \theta_{1}$, where $\theta_{i} \theta_{j}=\theta_{j} \theta_{i}, i \neq j$. Hence, $S_{n}=\langle\mathscr{C}\rangle=\bigcup_{n=1}^{\infty} \mathscr{C}^{n}$, since $\mathscr{C}^{-1}=\mathscr{C}$.

Theorem 9.4.5. Let $\varphi \in S_{n}$ with cycle decomposition $\varphi=\theta_{2} \theta_{1}$. Then $o(\varphi)=\operatorname{lcm}\left(o\left(\theta_{1}\right), o\left(\theta_{2}\right)\right)$. Furthermore, if $\varphi=\theta_{n} \cdots \theta_{1}$, where $\theta_{i} \theta_{j}=\theta_{j} \theta_{i}, i \neq j$, then $o(\varphi)=\operatorname{lcm}\left(o\left(\theta_{1}\right), \ldots, o\left(\theta_{n}\right)\right)$.

9.5 Generators of S_{n}

Theorem 9.5.1. $S_{n}=\langle\mathscr{C}\rangle$
Theorem 9.5.2. G is a group and $G=\langle M\rangle$. Let $N \subseteq G$. Then, $G=\langle N\rangle \Longleftrightarrow M \subseteq$ $\langle N\rangle$.

Definition 9.5.1. In S_{n}, let T be the set of transpositions.
Theorem 9.5.3.

$$
S_{n}=\langle T\rangle=\bigcup_{i=1}^{\infty} T^{i},\left(T^{-1}=T\right)
$$

Corollary 9.5.4.

$$
\left(a_{1} \ldots a_{\ell}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \cdots\left(a_{\ell-1} a_{\ell}\right)
$$

Theorem 9.5.5. In S_{n}, let $T_{1}=\{(1 x): 1<x \leq n\}$. Then, $S_{n}=\left\langle T_{1}\right\rangle$.
Corollary 9.5.6. If $(a b) \in S_{n}$, then $(a b)=(1 a)(1 b)(1 a)$.
Definition 9.5.2 (The Alternating Group). Let $\tilde{X}^{n}=\left\{x_{1}, \ldots, x_{n}: x_{i} \neq x_{j},(i \neq j)\right\}$ Define $P: \tilde{X}^{n} \rightarrow \mathbb{N}$ by $P\left(x_{1}, \ldots, x_{n}\right)=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)$.

Theorem 9.5.7. We have the following results:

1. $P(\varphi)(\psi)\left(x_{1}, \ldots, x_{n}\right)=P(\varphi)\left(x_{\psi(1)}, \ldots, x_{\psi(n)}\right)$.
2. If τ is a transposition, then $P(\tau)=-P$.
3. If $\varphi \in S_{n}, \varphi=\tau_{n} \cdots \tau_{1}$, where τ_{i} is a transposition. Then, $P(\varphi)=(-1)^{n} P$.

Definition 9.5.3. Let $P: \tilde{X}^{n} \rightarrow \mathbb{N}$ be given. Then, we define $G(P)=\left\{\varphi \in S_{n}: P(\varphi)=\right.$ $P\}$.

Theorem 9.5.8. We have the following results:

1. $G(P) \leqslant S_{n}$.
2. $G(P)=\left\{\varphi \in S_{n}: \varphi\right.$ is the product of an even number of transpositions. $\}$

Definition 9.5.4. $G(P)$ is called the alternating group on n-letters. We write A_{n} for $G(P)$.

Theorem 9.5.9 (Generators for $\left.A_{n}\right) . A_{n}=\langle\{(1 a b)\}\rangle$, if $n \geq 3$.
Corollary 9.5.10. If $(a b c) \in S_{n}$, then $(a b c)=(a c)(a b)$.

10 Homorphisms

10.1 Homomorphisms, Epimorphisms, and Monomorphisms

Definition 10.1.1. Let G and H be groups. Then, a function $\varphi: G \rightarrow H$ is a homomorphism $\Longleftrightarrow \varphi(a b)=\varphi(a) \varphi(b)$. We also say φ is an epimorphism if and only if φ is surjective and φ is a monomorphism if and only if φ is injective. If φ is surjective and injective, we say φ is an isomorphism.

Definition 10.1.2. Let G be a group. An isomorphism $\varphi: G \rightarrow G$ is called an automorphism. We write $\operatorname{Auto}(G)=\{\varphi: G \rightarrow G \mid \varphi$ is an automorphism. $\}$.

Theorem 10.1.1. Let $\varphi: G \rightarrow H$ be a homomorphism. Then, we have:

1. If φ is an isomorphism, then φ^{-1} is also a homomorphism.
2. Auto (G) is a group under functional composition.
3. φ is an isomorphism $\Longleftrightarrow \exists$ a homomorphism $\psi: H \rightarrow G$ s.t. $\varphi \circ \psi=I_{H}$ and $\psi \circ \varphi=I_{G}$.

Theorem 10.1.2. Let $\varphi: G \rightarrow H$ be a homorphism. Then,

1. $\varphi(e)=e$.
2. $\varphi\left(a^{-1}\right)=(\varphi(a))^{-1}$.
3. $\varphi\left(a^{n}\right)=\varphi(a)^{n}$.
4. $\varphi(\langle a\rangle)=\langle\varphi(a)\rangle$.
5. If $S \leqslant G$, then $\varphi(S) \leqslant H$.
6. If $T \leqslant H$, then $\varphi^{-1}(T) \leqslant G$.
7. If $a \in G$ and $o(a)=n \neq \infty$, then $o(\varphi(a)) \mid o(a)$.

Definition 10.1.3. Let $\varphi: G \rightarrow H$ be a homomorphism. Then, the set $\operatorname{ker} \varphi=\{g \in$ $G: \varphi(g)=e\}$ is called the kernel of φ.

Corollary 10.1.3. Let $\varphi: G \rightarrow H$ be a monomorphism and $o(a)=n$. Then, $o(\varphi(a))=$ $o(a)$.

Theorem 10.1.4. Let $\varphi: G \rightarrow H$ be a homomorphism. Then,

1. $\operatorname{ker} \varphi \leqslant G$.
2. φ is a monomorphism $\Longleftrightarrow \operatorname{ker} \varphi=\{e\}$.

Definition 10.1.4. Let G be a group. Then, $I_{n n}(G)=\left\{\varphi_{g}: g \in G, \varphi_{g}(x)=\right.$ $\left.g x g^{-1}, \forall x \in G\right\}$ is called the set of inner Automorphisms.

10.2 Classification Theorems

Theorem 10.2.1. We have the following two classification results:

1. Any 2 infinite cyclic groups are isomorphic. Hence, up to isomorphism \mathbb{Z} is the only cyclic group. i.e. if $o(a)=\infty$, then $\langle a\rangle \cong \mathbb{Z}$. Or, \mathbb{Z} is the unique infinite cyclic group.
2. Two finite cyclic groups, $\langle a\rangle$ and $\langle b\rangle$, are isomorphic if and only if $o(a)=o(b)$, or $|\langle a\rangle|=|\langle b\rangle|$. Hence, up to isomorphism, the only finite cyclic groups are \mathbb{Z}_{n}.

Theorem 10.2.2 (Cayley's Theorem). Every group G is isomorphic to a subgroup of a permutation group, namely S_{G}.

Theorem 10.2.3 (Product Isomorphism Theorem). Let G be a group with subgroup P and Q. If we have:

1. $G=P Q$
2. $P \cap Q=\{e\}$ and $p q=q p, \forall p \in P, \forall q \in Q$

Then, $G \cong P \times Q$.

11 Cosets and Lagrange's Theorem

11.1 Cosets

Definition 11.1.1. Let G be a group and $S \leqslant G$. Then, for each $g \in G$, the set $S g(g S)$ is called a right coset (left coset) of G.

Theorem 11.1.1. Let G be a group and $S \leqslant G$. Then:

1. $S g_{1}=S g_{2} \Longleftrightarrow g_{1} g_{2}^{-1} \in S \Longleftrightarrow g_{2}^{-1} g_{1} \in S$.
2. $S=S e=e S$ is a coset and so $S g=S \Longleftrightarrow g \in S$.
3. $|S g|=o(S)=|g S|$.

Theorem 11.1.2. Let G be a group and $S \leqslant G$. Then, $\{S g: g \in G\}$ and $\{g S: g \in G\}$ are disjoint partitions of G.

11.2 Lagrange's Theorem

Theorem 11.2.1 (Lagrange's Theorem). Let G be a finite group and $S \leqslant G$. Then, $o(S) \mid o(G)$.

Definition 11.2.1. The index of S relative to G is written as $[G: S]$. Note, $[G: S]=$ $\frac{o(G)}{o(S)}$, which is the number of left cosets of S (and the number of right cosets of S).

Corollary 11.2.2. Let G be a finite group and $g \in G$. Then, $o(g) \mid o(G)$.
Corollary 11.2.3. If G is a finite group and $g \in G$, then $g^{o(G)}=e, \forall g \in G$.
Corollary 11.2.4 (Euler's Theorem). If $\operatorname{gcd}(n, k)=1$, then $k^{\phi(n)} \equiv 1(n)$. i.e. In \mathbb{Z}_{n}, $\left[k^{\phi(n)}\right]_{n}=[1]_{n}$.

Corollary 11.2.5 (Fermat's Little Theorem). If p is prime, then $k^{p-1} \equiv 1(p)$, for $k \in \mathbb{Z}$ s.t. $\operatorname{gcd}(p, k)=1$.

Corollary 11.2.6. Let G be a group. Then, G is a cyclic group with no proper non-trivial subgroups if and only if $o(G)$ is a prime.

Theorem 11.2.7. If $H, K \leqslant G$, where G is a finite group, then $|H K|=\frac{o(H) o(K)}{o(H \cap K)}$.
Corollary 11.2.8. If G is a finite group, $H, K \leqslant G$, and $H \cap K=\{e\}$, then $|H K|=$ $o(H) o(K)$.

Theorem 11.2.9 (The converse of Lagrange's Theorem). If $d \mid o(G)$, then there exists a subgroup S s.t. $o(S)=d$ is true if G is abelian, but is not true if G is not abelian.

Theorem 11.2.10 (The First Sylow Theorem). If G is a finite group and $p^{n} \mid o(G)$, where p is a prime, then $\exists S \leqslant G$, with $o(S)=p^{n}$.

12 Normal Subgroups

12.1 Introduction to Normal Subgroups

Definition 12.1.1. Let G be a group and $N \leqslant G . N$ is called a normal subgroup of G if and only if $N g=g N, \forall g \in G$. Or, equivalently, $g N g^{-1}=N, \forall g \in G$. We write $N \triangleleft G$ for N to be a normal subgroup of G.

Theorem 12.1.1 (Tests for Normal Subgroups). Let G be a group and $N \leqslant G$. Then,

1. $N \triangleleft G \Longleftrightarrow g N g^{-1} \subseteq N, \forall g \in G$.
2. If $[G: N]=2$, then $N \triangleleft G$.

Theorem 12.1.2. Let G be a group. Then,

1. $Z(G)=Z_{G} \triangleleft G$.
2. If $\varphi: G \rightarrow H$ is a homomorphism, then $\operatorname{ker} \varphi \triangleleft G$.

Theorem 12.1.3 (Operations on Normal Subgroups). Let $M, N \leqslant G$, where G is a group. Then,

1. If $N \triangleleft G$, then $M \cap N \triangleleft M$.
2. If $N \triangleleft G$, then $M N \leqslant G$ and $N \triangleleft M N$.
3. If both M and N are normal, then $M \cap N$ and $M N$ are normal subgroups of G.

12.2 Quotient Groups

Theorem 12.2.1. Let $N \triangleleft G, G$ is a group. Let $G / N=\{N g: g \in G\}$. Define a binary relation on G / N by $\left(N g_{1}\right)\left(N g_{2}\right)=N g_{1} g_{2}$. Then, G / N is a group.

Definition 12.2.1. If $N \triangleleft G$, where G is a group, then the set of cosets, G / N, we say G modulo N, is a group with identity $N e$ and inverses $N g^{-1}=(N g)^{-1} . G / N$ is called the quotient group of G and N. If G is finite, then $o(G / N)=[G: N]=o(G) / o(N)$. In general, G / N inherits properties from G.

Theorem 12.2.2. Let G be a group and $N \triangleleft G$. Then,

1. If G is abelian, then so is G / N.
2. If G is cyclic, then so is G / N.

Theorem 12.2.3. Let A be an abelian group and let $T=\{a \in A: o(a) \neq \infty\}$ be the Torsion subgroup. Then, A / T is Torsion-free, i.e. all elements of A / T have infinite order.

Theorem 12.2.4 (The $G / Z(G)$ Theorem). Let G be a group and we know that $Z(G) \triangleleft$ G. If $G / Z(G)$ is cyclic, then G is abelian.

Corollary 12.2.5. Let G be a group, $N \triangleleft G$ and $N \subseteq Z(G)$. If G / N is cyclic, then G is abelian.

13 Product Isomorphism Theorem and Isomorphism Theorems

13.1 Product Isomorphism Theorem

Theorem 13.1.1. Let G be a group and $M, N \leqslant G$. Then, G satisfies:

1. $G=M N$.
2. $M \cap N=\{e\}$.
3. $m n=n m, \forall m \in M, \forall n \in N$.

If and only if G also satisfies:

1. $G=M N$.
2. $M \cap N=\{e\}$.
3. M and N are normal subgroups.

Definition 13.1.1. Let M and N be subgroups of a group G. We say G is the internal direct product of M and N if and only if:

1. $G=M N$.
2. $M \cap N=\{e\}$.
3. $m n=n m, \forall m \in M, \forall n \in N$.

In general, we say G is the internal direct product of subgroups $N_{1}, \ldots, N_{t} \Longleftrightarrow$

1. $G=N_{1} \cdots N_{t}$.
2. $\left(N_{1} \cdots N_{i}\right) \cap N_{i+1}=\{e\},(1 \leq i \leq t-1)$.
3. $N_{i} \triangleleft G, \forall i=1, \ldots, t$.

Definition 13.1.2. Let $N_{i}(1 \leq i \leq n)$ be n subgroups of G. $\prod_{i=1}^{n} N_{i}=N_{1} \times \cdots \times N_{n}$ is the external direct product of the N_{i} 's. If G is the internal direct product of the N_{i} 's, then we write $G=\bigoplus_{i=1}^{n} N_{i}$.

Theorem 13.1.2 (Product Isomorphism Theorem). If $G=\bigoplus_{i=1}^{n} N_{i}$, then $G \cong \prod_{i=1}^{n} N_{i}$.
Theorem 13.1.3. Let G be a group and $o(G)=p^{2}$, where p is a prime. Then, $G \cong \mathbb{Z}_{p^{2}}$ or $G \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and hence G is abelian.

13.2 Isomorphism Theorems

Theorem 13.2.1. Suppose G is a group and $N \triangleleft G$. The map $\varphi_{N}: G \rightarrow G / N$ defined by $\varphi_{N}(g)=N g$ is an epimorphism whose kernel is N.

Corollary 13.2.2. Let G be a group. Then, $N \triangleleft G \Longleftrightarrow N$ is the kernel of some homomorphism $\varphi: G \rightarrow H$.

Theorem 13.2.3 (Fundamental Homomorphism Theorem). If $\varphi: G \rightarrow H$ is a homomorphism, then $G / \operatorname{ker} \varphi \cong \varphi(G)$.
If φ is an epimorphism, then $G / \operatorname{ker} \varphi \cong H$.
Theorem 13.2.4 (Second Isomorphism Theorem). G is a group, $M \leqslant G$ and $N \triangleleft G$. Then,

1. $M \cap N \triangleleft M$.
2. $M N \leqslant G$ and $N \triangleleft M N$.
3. $M N / N \cong M / M \cap N$.

Theorem 13.2.5 (Third Isomorphism Theorem). Let G be a group and M and N are both normal subgroups of G with $N \leqslant M$. Then,

1. $M / N \triangleleft G / N$.
2. $G / M \cong(G / N) /(M / N)$.

Theorem 13.2.6 (Basis Theorem). Let A be an abelian group, with $A=\langle M\rangle$, and M is finite, i.e. A is a finitely generated abelian group. Then, $A \cong \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{2}} \times \cdots \times \mathbb{Z}_{m_{r}} \times \mathbb{Z}^{S}$, where $m_{1}\left|m_{2}\right| \cdots\left|m_{r-1}\right| m_{r}\left(m_{i} \mid m_{i+1}, 1 \leq i \leq r-1\right)$. Here, $T=\mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{r}}$ is called the Torsion subgroup and the m_{i} are called the Torsion coefficients. The S is called the rank of A, or the Betti number. If $S=0$, we have a finite abelian group. If $r=0$, we have $A \cong \mathbb{Z}^{S}$ and we have a free abelian group of rank S.

Theorem 13.2.7 (The Fundamental Theorem of Finitely Generated Abelian Groups). Let A be a finitely generated abelian group. If $A \cong \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{r}} \times \mathbb{Z}^{S} \cong \mathbb{Z}_{n_{1}} \times \cdots \times$ $\mathbb{Z}_{n_{t}} \times \mathbb{Z}^{W}$, then $r=t, m_{i}=n_{i}(1 \leq i \leq r)$, and $S=W$. If A is a finite abelian group, A has type ($m_{1}, m_{2}, \ldots, m_{r}$) if and only if $A \cong \mathbb{Z}_{m_{1}} \times \cdots \times \mathbb{Z}_{m_{r}}$, with $m_{i} \mid m_{i+1}(1 \leq i \leq r-1)$.

