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ABSTRACT
Algorithms that use hardware transactional memory (HTM) must
provide a software-only fallback path to guarantee progress. The
design of the fallback path can have a profound impact on perfor-
mance. If the fallback path is allowed to run concurrently with hard-
ware transactions, then hardware transactions must be instrumented,
adding significant overhead. Otherwise, hardware transactions must
wait for any processes on the fallback path, causing concurrency
bottlenecks, or move to the fallback path. We introduce an approach
that combines the best of both worlds. The key idea is to use three
execution paths: an HTM fast path, an HTM middle path, and a soft-
ware fallback path, such that the middle path can run concurrently
with each of the other two. The fast path and fallback path do not
run concurrently, so the fast path incurs no instrumentation overhead.
Furthermore, fast path transactions can move to the middle path
instead of waiting or moving to the software path. We demonstrate
our approach by producing an accelerated version of the tree up-
date template of Brown et al., which can be used to implement fast
lock-free data structures based on down-trees. We used the acceler-
ated template to implement two lock-free trees: a binary search tree
(BST), and an (a,b)-tree (a generalization of a B-tree). Experiments
show that, with 72 concurrent processes, our accelerated (a,b)-tree
performs between 4.0x and 4.2x as many operations per second as
an implementation obtained using the original tree update template.

1 INTRODUCTION
Concurrent data structures are crucial building blocks in multi-
threaded software. There are many concurrent data structures imple-
mented using locks, but locks can be inefficient, and are not fault
tolerant (since a process that crashes while holding a lock can pre-
vent all other processes from making progress). Thus, it is often
preferable to use hardware synchronization primitives like compare-
and-swap (CAS) instead of locks. This enables the development
of lock-free (or non-blocking) data structures, which guarantee that
at least one process will always continue to make progress, even if
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some processes crash. However, it is notoriously difficult to imple-
ment lock-free data structures from CAS, and this has inhibited the
development of advanced lock-free data structures.

One way of simplifying this task is to use a higher level syn-
chronization primitive that can atomically access multiple locations.
For example, consider a k-word compare-and-swap (k-CAS), which
atomically: reads k locations, checks if they contain k expected val-
ues, and, if so, writes k new values. k-CAS is highly expressive, and
it can be used in a straightforward way to implement any atomic
operation. Moreover, it can be implemented from CAS and regis-
ters [16]. However, since k-CAS is so expressive, it is difficult to
implement efficiently.

Brown et al. [6] developed a set of new primitives called LLX
and SCX that are less expressive than k-CAS, but can still be used
in a natural way to implement many advanced data structures. These
primitives can be implemented much more efficiently than k-CAS.
At a high level, LLX returns a snapshot of a node in a data structure,
and after performing LLXs on one or more nodes, one can perform
an SCX to atomically: change a field of one of these nodes, and
finalize a subset of them, only if none of these nodes have changed
since the process performed LLXs on them. Finalizing a node pre-
vents any further changes to it, which is useful to stop processes
from erroneously modifying deleted parts of the data structure. In
a subsequent paper, Brown et al. used LLX and SCX to design
a tree update template that can be followed to produce lock-free
implementations of down-trees (trees in which all nodes except the
root have in-degree one) with any kinds of update operations [7].
They demonstrated the use of the template by implementing a chro-
matic tree, which is an advanced variant of a red-black tree (a type
of balanced binary search tree) that offers better scalability. The
template has also been used to implement many other advanced data
structures, including lists, relaxed AVL trees, relaxed (a,b)-trees,
relaxed b-slack trees and weak AVL trees [5, 7, 17]. Some of these
data structures are highly efficient, and would be well suited for
inclusion in data structure libraries.

In this work, we study how the new hardware transactional mem-
ory (HTM) capabilities found in recent processors (e.g., by Intel and
IBM) can be used to produce significantly faster implementations of
the tree update template. By accelerating the tree update template,
we also provide a way to accelerate all of the data structures that
have been implemented with it. Since library data structures are
reused many times, even minor performance improvements confer a
large benefit.

HTM allows a programmer to run blocks of code in transactions,
which either commit and take effect atomically, or abort and have
no effect on shared memory. Although transactional memory was
originally intended to simplify concurrent programming, researchers
have since realized that HTM can also be used effectively to improve
the performance of existing concurrent code [21, 22, 28]: Hardware
transactions typically have very little overhead, so they can often be
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used to replace other, more expensive synchronization mechanisms.
For example, instead of performing a sequence of CAS primitives,
it may be faster to perform reads, if-statements and writes inside a
transaction. Note that this represents a non-standard use of HTM:
we are not interested in its ease of use, but, rather, in its ability to
reduce synchronization costs.

Although hardware transactions are fast, it is surprisingly difficult
to obtain the full performance benefit of HTM. Here, we consider
Intel’s HTM, which is a best-effort implementation. This means it
offers no guarantee that transactions will ever commit. Even in a
single threaded system, a transaction can repeatedly abort because
of internal buffer overflows, page faults, interrupts, and many other
events. So, to guarantee progress, any code that uses HTM must also
provide a software fallback path to be executed if a transaction fails.
The design of the fallback path profoundly impacts the performance
of HTM-based algorithms.

Allowing concurrency between two paths. Consider an operation
O that is implemented using the tree update template. One natural
way to use HTM to accelerate O is to use the original operation as
a fallback path, and then obtain an HTM-based fast path by wrap-
ping O in a transaction, and performing optimizations to improve
performance [21]. We call this the 2-path concurrent algorithm
(2-path con). Since the fast path is just an optimized version of the
fallback path, transactions on the fast path and fallback path can
safely run concurrently. If a transaction aborts, it can either be retried
on the fast path, or be executed on the fallback path. Unfortunately,
supporting concurrency between the fast path and fallback path can
add significant overhead on the fast path.

The first source of overhead is instrumentation on the fast path
that manipulates the meta-data used by the fallback path to syn-
chronize processes. For example, lock-free algorithms often create
a descriptor for each update operation (so that processes can deter-
mine how to help one another make progress), and store pointers to
these descriptors in Data-records, where they act as locks. The fast
path must also manipulate these descriptors and pointers so that the
fallback path can detect changes made by the fast path.

The second source of overhead comes from constraints imposed
by algorithmic assumptions made on the fallback path. The tree up-
date template implementation in [7] assumes that only child pointers
can change, and all other fields of nodes, such as keys and values,
are never changed. Changes to these other immutable fields must be
made by replacing a node with a new copy that reflects the desired
change. Because of this assumption on the fallback path, transactions
on the fast path cannot directly change any field of a node other than
its child pointers. This is because the fallback path has no mecha-
nism to detect such a change (and may, for example, erroneously
delete a node that is concurrently being modified by the fast path).
Thus, just like the fallback path, the fast path must replace a node
with a new copy to change one of its immutable fields, which can be
much less efficient than changing the field directly.

Disallowing concurrency between two paths. To avoid the over-
heads described above, concurrency is often disallowed between the
fast path and fallback path. The simplest example of this approach is
a technique called transactional lock elision (TLE) [25, 26]. TLE
is used to implement an operation by wrapping its sequential code
in a transaction, and falling back to acquire a global lock after a

certain number of transactional attempts. At the beginning of each
transaction, a process reads the state of the global lock and aborts the
transaction if the lock is held (to prevent inconsistencies that might
arise because the fallback path is not atomic). Once a process begins
executing on the fallback path, all concurrent transactions abort, and
processes wait until the fallback path is empty before retrying their
transactions.

If transactions never abort, then TLE represents the best perfor-
mance we can hope to achieve, because the fallback path introduces
almost no overhead and synchronization is performed entirely by
hardware. Note, however, that TLE is not lock-free. Additionally, in
workloads where operations periodically run on the fallback path,
performance can be very poor.

As a toy example, consider a TLE implementation of a binary
search tree, with a workload consisting of insertions, deletions and
range queries. A range query returns all of the keys in a range [lo,hi).
Range queries access many memory locations, and cause frequent
transactional aborts due to internal processor buffer overflows (ca-
pacity limits). Thus, range queries periodically run on the fallback
path, where they can lead to numerous performance problems. Since
the fallback path is sequential, range queries (or any other long-
running operations) cause a severe concurrency bottleneck, because
they prevent transactions from running on the fast path while they
slowly complete, serially.

One way to mitigate this bottleneck is to replace the sequential
fallback path in TLE with a lock-free algorithm, and replace the
global lock with a fetch-and-increment object F that counts how
many operations are running on the fallback path. Instead of aborting
if the lock is held, transactions on the fast path abort if F is non-zero.
We call this the 2-path non-concurrent algorithm (2-path con). In
this algorithm, if transactions on the fast path retry only a few times
before moving to the fallback path, or do not wait between retries
for the fallback path to become empty, then the lemming effect [13]
can occur. (The lemming effect occurs when processes on the fast
path rapidly fail and move to the fallback path, simply because other
processes are on the fallback path.) This can cause the algorithm
to run only as fast as the (much slower) fallback path. However, if
transactions avoid the lemming effect by retrying many times before
moving to the fallback path, and waiting between retries for the
fallback path to become empty, then processes can spend most of
their time waiting.

The problem with two paths. In this paper, we study two different
types of workloads: light workloads, in which transactions rarely
run on the fallback path, and heavy workloads, in which transac-
tions more frequently run on the fallback path. In light workloads, al-
gorithms that allow concurrency between paths perform very poorly
(due to high overhead) in comparison to algorithms that disallow
concurrency. However, in heavy workloads, algorithms that disal-
low concurrency perform very poorly (since transactions on the
fallback path prevent transactions from running on the fast path)
in comparison to algorithms that allow concurrency between paths.
Consequently, all two path algorithms have workloads that yield poor
performance. Our experiments confirm this, showing surprisingly
poor performance for two path algorithms in many cases.

Using three paths. We introduce a technique that simultaneously
achieves high performance for both light and heavy workloads by



Figure 1: Overview of the 3-path algorithm.

using three paths: an HTM fast path, an HTM middle path and a
non-transactional fallback path. (See Figure 1.) Each operation be-
gins on the fast path, and moves to the middle path after it retries
F times. An operation on the middle path moves to the fallback
path after retrying M times on the middle path. The fast path does
not manipulate any synchronization meta-data used by the fallback
path, so operations on the fast path and fallback path cannot run
concurrently. Thus, whenever an operation is on the fallback path,
all operations on the fast path move to the middle path. The middle
path manipulates the synchronization meta-data used by the fallback
path, so operations on the middle path and fallback path can run con-
currently. Operations on the middle path can also run concurrently
with operations on the fast path (since conflicts are resolved by the
HTM system). We call this the 3-path algorithm (3-path).

We briefly discuss why this approach avoids the performance
problems described above. Since transactions on the fast path do not
run concurrently with transactions on the fallback path, transactions
on the fast path run with no instrumentation overhead. When a
transaction is on the fallback path, transactions can freely execute
on the middle path, without waiting. The lemming effect does not
occur, since transactions do not have to move to the fallback path
simply because a transaction is on the fallback path. Furthermore,
we enable a high degree of concurrency, because the fast and middle
paths can run concurrently, and the middle and fallback paths can
run concurrently.

We performed experiments to evaluate our new template algo-
rithms by comparing them with the original template algorithm. In
order to compare the different template algorithms, we used each
algorithm to implement two data structures: a binary search tree
(BST) and a relaxed (a,b)-tree. We then ran microbenchmarks to
compare the performance (operations per second) of the different
implementations in both light and heavy workloads. The results
show that our new template algorithms offer significant performance
improvements. For example, on an Intel system with 72 concurrent
processes, our best implementation of the relaxed (a,b)-tree outper-
formed the implementation using the original template algorithm by
an average of 410% over all workloads.

Contributions
• We present four accelerated implementations of the tree

update template of Brown et al. that explore the design
space for HTM-based implementations: 2-path con, TLE,
2-path con, and 3-path.

• We highlight the importance of studying both light and
heavy workloads in the HTM setting. Each serves a distinct
role in evaluating algorithms: light workloads demonstrate
the potential of HTM to improve performance by reducing
overhead, and heavy workloads capture the performance
impact of interactions between different execution paths.

• We demonstrate the effectiveness of our approach by ac-
celerating two different lock-free data structures: an unbal-
anced BST, and a relaxed (a,b)-tree. Experimental results
show a significant performance advantage for our acceler-
ated implementations.

The remainder of the paper is structured as follows. The model
is introduced in Section 2. Section 3 describes LLX and SCX,
and the tree update template. In Section 4, we describe our four
accelerated template implementations, and argue correctness and
progress. Experimental results are presented in Section 5. Related
work is surveyed in Section 7. Section 6 describes an optimization
to two of our accelerated template implementations. Finally, we
conclude in Section 8.

2 MODEL
We consider an asynchronous shared memory system with n pro-
cesses, and Intel’s implementation of HTM. Arbitrary blocks of code
can be executed as transactions, which either commit (and appear
to take place instantaneously) or abort (and have no effect on the
contents of shared memory). A transaction is started by invoking
txBegin, is committed by invoking txEnd, and can be aborted by in-
voking txAbort. Intel’s implementation of HTM is best-effort, which
means that the system can force transactions to abort at any time, and
no transactions are ever guaranteed to commit. Each time a transac-
tion aborts, the hardware provides a reason why the abort occurred.
Two reasons are of particular interest. Conflict aborts occur when
two processes contend on the same cache-line. Since a cache-line
contains multiple machine words, conflict aborts can occur even if
two processes never contend on the same memory location. Capac-
ity aborts occur when a transaction exhausts some shared resource
within the HTM system. Intuitively, this occurs when a transaction
accesses too many memory locations. (In reality, capacity aborts
also occur for a variety of complex reasons that make it difficult to
predict when they will occur.)

3 BACKGROUND
The LLX and SCX primitives. The load-link extended (LLX) and
store-conditional extended (SCX) primitives are multi-word gener-
alizations of the well-known load-link (LL) and store-conditional
(SC), and they have been implemented from single-word CAS [6].
LLX and SCX operate on Data-records, each of which consists of
a fixed number of mutable fields (which can change), and a fixed
number of immutable fields (which cannot).

LLX(r) attempts to take a snapshot of the mutable fields of a
Data-record r. If it is concurrent with an SCX involving r, it may
return FAIL, instead. Individual fields of a Data-record can also be
read directly. An SCX(V, R, f ld, new) takes as its arguments a
sequence V of Data-records, a subsequence R of V , a pointer f ld
to a mutable field of one Data-record in V , and a new value new
for that field. The SCX tries to atomically store the value new in
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Figure 2: Example of the tree update template.

the field that f ld points to and finalize each Data-record in R. Once
a Data-record is finalized, its mutable fields cannot be changed by
any subsequent SCX, and any LLX of the Data-record will return
FINALIZED instead of a snapshot.

Before a process p invokes SCX, it must perform an LLX(r) on
each Data-record r in V . For each r ∈V , the last LLX(r) performed
by p prior to the SCX is said to be linked to the SCX, and this
linked LLX must return a snapshot of r (not FAIL or FINALIZED).
An SCX(V,R, f ld,new) by a process modifies the data structure
and returns TRUE (in which case we say it succeeds) only if no
Data-record r in V has changed since its linked LLX(r); otherwise
the SCX fails and returns FALSE. Although LLX and SCX can fail,
their failures are limited in such a way that they can be used to build
data structures with lock-free progress. See [6] for a more formal
specification.

We briefly describe the implementation of SCX. Each Data-record
is augmented with two fields: marked and info. Each SCX(V, R,
f ld, new) starts by creating an SCX-record D, which contains all of
the information necessary to perform the SCX, and then completes
the SCX by invoking a function called HELP, and passing D as its ar-
gument. Invocations of SCX synchronize with one another by taking
a special kind of lock on each Data-record in V . These locks grant
exclusive access to an SCX operation, rather than to a process. An
SCX S locks a Data-record u by using CAS to store a pointer to its
SCX-record in u.info. Suppose S successfully locks all Data-records
in its V sequence. Then, S finalizes each Data-record u∈R by setting
u.marked := TRUE, and releases its locks on all other Data-records
(leaving finalized Data-records permanently locked). Whenever a
process encounters a (non-finalized) node locked for S, it invokes
HELP(D) to help S complete and release its locks.

Observe that SCX can only change a single value in a Data-record
(and finalize a sequence of Data-records) atomically. Thus, to im-
plement an operation that changes multiple fields, one must create
new Data-records that contain the desired changes, and use SCX to
change one pointer to replace the old Data-records.

The tree update template. The tree update template implements
lock-free updates that atomically replace an old connected subgraph
R of a down-tree by a new connected subgraph N (as shown in
Figure 2). Such an update can implement any change to the tree,
such as an insertion into a BST or a rotation in a balanced tree. The
old subgraph includes all nodes with a field to be modified. The new
subgraph may have pointers to nodes in the old tree. Since every

node in a down-tree has indegree one, the update can be performed
by changing a single child pointer of some node parent. However,
problems could arise if a concurrent operation changes the part of
the tree being updated. For example, nodes in the old subgraph,
or even parent, could be removed from the tree before parent’s
child pointer is changed. The template takes care of the process
coordination required to prevent such problems.

Each tree node is represented by a Data-record with a fixed num-
ber of child pointers as its mutable fields. Each child pointer either
points to a Data-record or contains NIL (denoted by ⊸ in our fig-
ures). Any other data in the node is stored in immutable fields. Thus,
if an update must change some of this data, it makes a new copy of
the node with the updated data. There is a Data-record entry which
acts as the entry point to the data structure and is never deleted.

At a high level, an update that follows the template proceeds in
two phases: the search phase and the update phase. In the search
phase, the update searches for a location where it should occur. Then,
in the update phase, the update performs LLXs on a connected
subgraph of nodes in the tree, including parent and the set R of
nodes to be removed from the tree. Next, it decides whether the tree
should be modified, and, if so, creates a new subgraph of nodes and
performs an SCX that atomically changes a child pointer, as shown
in Figure 2, and finalizes any nodes in R. See [7] for further details.

4 ACCELERATED TEMPLATE
IMPLEMENTATIONS

HTM-based LLX and SCX. In the following, we use SCXO and
LLXO to refer to the original lock-free implementation of LLX and
SCX. We give an implementation of SCX that uses an HTM-based
fast path called SCXHT M , and SCXO as its fallback path. Hardware
transactions are instrumented so they can run concurrently with
processes executing SCXO. This algorithm guarantees lock-freedom
and achieves a high degree of concurrency. Pseudocode appears
in Figure 3. At a high level, an SCXHT M by a process p starts a
transaction, then attempts to perform a highly optimized version
of SCXO. Each time a transaction executed by p aborts, control
jumps to the onAbort label, at the beginning of the SCX procedure.
If a process explicitly aborts a transaction at line 19, then SCX
returns FALSE at line 4. Each process has a budget AttemptLimit
that specifies how many times it will attempt hardware transactions
before it will fall back to executing SCXO.

In SCXO, SCX-records are used (1) to facilitate helping, and
(2) to lock Data-records and detect changes to them. In partic-
ular, SCXO guarantees the following property. P1: between any
two changes to (the user-defined fields of) a Data-record u, a new
SCX-record pointer is stored in u.info. However, SCXHT M does
not create SCX-records. In a transactional setting, helping causes
unnecessary aborts, since executing a transaction that performs the
same work as a running transaction will cause at least one (and
probably both) to abort. Helping in transactions is also not necessary
to guarantee progress, since progress is guaranteed by the fallback
path. So, to preserve property P1, we give each process p a tagged
sequence number tseqp that contains the process name, a sequence
number, and a tag bit. The tag bit is the least significant bit. On mod-
ern systems where pointers are word aligned, the least significant
bit in a pointer is always zero. Thus, the tag bit allows a process



1 Private variable for process p: attemptsp, tagseqp

2 SCX(V, R, f ld, new) by process p
3 onAbort: ▷ jump here on transaction abort
4 i f we jumped here after an explicit abort then return FALSE

5 i f attemptsp < AttemptLimit then
6 attemptsp := attemptsp +1
7 retval := SCXHT M(V,R, f ld,new) ▷ Fast
8 e l s e
9 retval := SCXO(V,R, f ld,new) ▷ Fallback

10 i f retval then attemptsp := 0
11 re turn retval

12 SCXHT M(V,R, f ld,new) by process p
13 Let infoFields be a pointer to a table in p’s private memory containing,

for each r in V , the value of r.info read by p’s last LLX(r)
14 Let old be the value for f ld returned by p’s last LLX(r)

15 Begin hardware transaction
16 tagseqp := tagseqp + 2⌈logn⌉

17 f o r each r ∈V do
18 Let rinfo be the pointer indexed by r in infoFields
19 i f r.info , rinfo then Abort hardware transaction (explicitly)
20 f o r each r ∈V do r.info := tagseqp

21 f o r each r ∈ R do r.marked := TRUE

22 write new to the field pointed to by f ld
23 Commit hardware transaction
24 re turn TRUE

Figure 3: HTM-based implementation of SCX.

to distinguish between a tagged sequence number and a pointer. In
SCXHT M , instead of having p create a new SCX-record and store
pointers to it in Data-records to lock them, p increments its sequence
number in tseqp and stores tseqp in Data-records. Since no writes
performed by a transaction T can be seen until it commits, it never
actually needs to hold any locks. Thus, every value of tseqp stored
in a Data-record represents an unlocked value, and writing tseqp
represents p locking and immediately unlocking a node.

After storing tseqp in each r ∈V , SCXHT M finalizes each r ∈ R
by setting r.marked := TRUE (mimicking the behaviour of SCXO).
Then, it stores new in the field pointed to by f ld, and commits.
Note that eliminating the creation of SCX-records on the fast path
also eliminates the need to reclaim any created SCX-records, which
further reduces overhead.

The SCXHT M algorithm also necessitates a small change to
LLXO, to handle tagged sequence numbers. An invocation of LLXO(r)
reads a pointer rinfo to an SCX-record, follows rinfo to read one
of its fields, and uses the value it reads to determine whether r is
locked. However, rinfo may now contains a tagged sequence number,
instead of a pointer to an SCX-record. So, in our modified algorithm,
which we call LLXHT M , before a process tries to follow rinfo, it
first checks whether rinfo is a tagged sequence number, and, if so,
behaves as if r is unlocked.

Correctness and progress. Due to a lack of space, we omit the
full proof of correctness and progress for our HTM-based imple-
mentation of LLX and SCX, and give a brief sketch, instead. The
high-level idea is to show that one can start with LLXO and SCXO,
and obtain our HTM-based implementation by applying a sequence
of transformations. Intuitively, these transformations preserve the se-
mantics of SCX and maintain backwards compatibility with SCXO
so that the transformed versions can be run concurrently with invoca-
tions of SCXO. More formally, for each execution of a transformed
algorithm, there is an execution of the original algorithm in which:
the same operations are performed, they are linearized in the same
order, and they return the same results. After arguing correctness
and progress for each transformation, the proof of correctness and
progress for the HTM-based implementation of LLX and SCX
follows immediately from the original proof for LLXO and SCXO.

The 2-path con algorithm. We now use our HTM-based LLX and
SCX to obtain an HTM-based implementation of a template opera-
tion O. The fallback path for O is simply a lock-free implementation
of O using LLXO and SCXO. The fast path for O starts a transac-
tion, then performs the same code as the fallback path, except that
it uses the HTM-based LLX and SCX. Since the entire operation
is performed inside a transaction, we can optimize the invocations
of SCXHT M that are performed by O as follows. Lines 15 and 23
can be eliminated, since SCXHT M is already running inside a large
transaction. Additionally, lines 17-19 can be eliminated, since the
transaction will abort due to a data conflict if r.info changes after it
is read in the (preceding) linked invocation of LLX(r), and before
the transaction commits. The proof of correctness and progress for 2-
path con follows immediately from the proof of the original template
and the proof of the HTM-based LLX and SCX implementation.

Note that it is not necessary to perform the entire operation in
a single transaction. In Section 6, we describe a modification that
allows a read-only searching prefix of the operation to be performed
before the transaction begins.

The TLE algorithm. To obtain a TLE implementation of an op-
eration O, we simply take sequential code for O and wrap it in a
transaction on the fast path. The fallback path acquires and releases
a global lock instead of starting and committing a transaction, but
otherwise executes the same code as the fast path. To prevent the fast
path and fallback path from running concurrently, transactions on the
fast path start by reading the lock state and aborting if it is held. An
operation attempts to run on the fast path up to AttemptLimit times
(waiting for the lock to be free before each attempt) before resorting
to the fallback path. The correctness of TLE is trivial. Note, however,
that TLE only satisfies deadlock-freedom (not lock-freedom).

The 2-path con algorithm. We can improve concurrency on the
fallback path and guarantee lock-freedom by using a lock-free algo-
rithm on the fallback path, and a global fetch-and-increment object F
instead of a global lock. Consider an operation O implemented with
the tree update template. We describe a 2-path con implementation
of O. The fallback path increments F , then executes the lock-free
tree update template implementation of O, and finally decrements
F . The fast path executes sequential code for O in a transaction. To



prevent the fast path and fallback path from running concurrently,
transactions on the fast path start by reading F and aborting if it
is nonzero. An operation attempts to run on the fast path up to At-
temptLimit times (waiting for F to become zero before each attempt)
before resorting to the fallback path.

Recall that operations implemented using the tree update tem-
plate can only change a single pointer atomically (and can perform
multiple changes atomically only by creating a connected set of new
nodes that reflect the desired changes). Thus, each operation on the
fallback path simply creates new nodes and changes a single pointer
(and assumes that all other operations also behave this way). How-
ever, since the fast path and fallback path do not run concurrently,
the fallback path does not impose this requirement on the fast path.
Consequently, the fast path can make (multiple) direct changes to
nodes. Unfortunately, as we described above, this algorithm can still
suffer from concurrency bottlenecks.

The 3-path algorithm. One can think of the 3-path algorithm as a
kind of hybrid between the 2-path con and 2-path con algorithms
that obtains their benefits while avoiding their downsides. Consider
an operation O implemented with the tree update template. We
describe a 3-path implementation of O. As in 2-path con, there is
a global fetch-and-increment object F , and the fast path executes
seqeuential code for O in a transaction. The middle path and fallback
path behave like the fast path and fallback path in the 2-path con
algorithm, respectively. Each time an operation begins (resp., stops)
executing on the fallback path, it increments (resp., decrements)
F . (If the scalability of fetch-and-increment is of concern, then a
scalable non-zero indicator object [15] can be used, instead.) This
prevents the fast and fallback paths from running concurrently. As
we described above, operations begin on the fast path, and move
to the middle path after FastLimit attempts, or if they see F , 0.
Operations move from the middle path to the fallback path after
MiddleLimit attempts. Note that an operation never waits for the
fallback path to become empty—it simply moves to the middle path.

Since the fast path and fallback path do not run concurrently,
the fallback path does not impose any overhead on the fast path,
except checking if F = 0 (offering low overhead for light workloads).
Additionally, when there are operations running on the fallback
path, hardware transactions can continue to run on the middle path
(offering high concurrency for heavy workloads).

Correctness and progress for 3-path. The correctness argument is
straightforward. The goal is to prove that all template operations
are linearizable, regardless of which path they execute on. Recall
that the fallback path and middle path behave like the fast path and
fallback path in 2-path con. It follows that, if there are no operations
on the fast path, then the correctness of operations on the middle
path and fallback path is immediate from the correctness of 2-path
con. Of course, whenever there is an operation executing on the
fallback path, no operation can run on the fast path. Since operations
on the fast path and middle path run in transactions, they are atomic,
and any conflicts between the fast path and middle path are handled
automatically by the HTM system. Therefore, template operations
are linearizable.

The progress argument for 3-path relies on three assumptions.

A1. The sequential code for an operation executed on the fast path
must terminate after a finite number of steps if it is run on a
static tree (which does not change during the operation).

A2. In an operation executed on the middle path or fallback path,
the search phase must terminate after a finite number of steps
if it is run on a static tree.

A3. In an operation executed on the middle path or fallback path,
the update phase can modify only a finite number of nodes.

We give a simple proof that 3-path satisfies lock-freedom. To
obtain a contradiction, suppose there is an execution in which after
some time t, some process takes infinitely many steps, but no op-
eration terminates. Thus, the tree does not change after t. We first
argue that no process takes infinitely many steps in a transaction T .
If T occurs on the fast path, then A1 guarantees it will terminate. If
T occurs on the middle path, then A2 and A3 guarantee that it will
terminate. Therefore, eventually, processes only take steps on the
fallback path. Progress then follows from the fact that the original
tree update template implementation (our fallback path) is lock-free.

5 EXPERIMENTS
We used two different Intel systems for our experiments: a dual-
socket 12-core E7-4830 v3 with hyperthreading for a total of 48
hardware threads (running Ubuntu 14.04LTS), and a dual-socket
18-core E5-2699 v3 with hyperthreading for a total of 72 hardware
threads (running Ubuntu 15.04). Each machine had 128GB of RAM.
We used the scalable thread-caching allocator (tcmalloc) from the
Google perftools library. All code was compiled on GCC 4.8+ with
arguments -std=c++0x -O2 -mcx16. (Using the higher optimiza-
tion level -O3 did not significantly improve performance for any
algorithm, and decreased performance for some algorithms.) On
both machines, we pinned threads such that we saturate one socket
before scheduling any threads on the other.

Data structures implemented with the template. We used two
data structures to study the performance of our accelerated template
implementations: an unbalanced BST, and a relaxed (a,b)-tree. The
BST is similar to the chromatic tree in [7], but with no rebalancing.
The relaxed (a,b)-tree is a concurrency-friendly generalization of
a B-tree that is based on the work of Jacobson and Larsen [18].
Nodes contain up to b keys, and, when there are no ongoing updates,
they contain at least a keys (where b ≥ 2a−1). In our experiments,
we fix a = 6 and b = 16. With b = 16, each node occupies four
consecutive cache lines. Since b ≥ 2a− 1, with b = 16, we must
have a ≤ 8. We chose to make a slightly smaller than 8 in order
to exploit a performance tradeoff: a smaller minimum degree may
slightly increase depth, but decreases the number of rebalancing
steps that are needed to maintain balance.

Template implementations studied. We implemented each of data
structures with four different template implementations: 3-path, 2-
path con, TLE and the original template implementation, which
we call Non-HTM. (2-path con is omitted, since it performed sim-
ilarly to TLE, and cluttered the graphs.) The 2-path con and TLE
implementations perform up to 20 attempts on the fast path before
resorting to the fallback path. 3-path performs up to 10 attempts
(each) on the fast path and middle path. We implemented memory
reclamation using DEBRA [4], an epoch based reclamation scheme.
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Figure 4: Results (48-thread system) showing throughput (oper-
ations per second) versus the number of concurrent processes.

5.1 Light vs. Heavy workloads
Methodology. We study two workloads: in light, n processes per-
form updates (50% insertion and 50% deletion), and in heavy, n−1
processes perform updates, and one thread performs 100% range
queries (RQs). For each workload and data structure implementation,
and a variety of thread counts, we perform a set of five randomized
trials. In each trial, n processes perform either updates or RQs (as
appropriate for the workload) for one second, and counted the num-
ber of completed operations. Updates are performed on keys drawn
uniformly randomly from a fixed key range [0,K). RQs are per-
formed on ranges [lo, lo+ s) where lo is uniformly random in [0,K)
and s is chosen, according to a probability distribution described
below, from [1,1000] for the BST and [1,10000] for the (a,b)-tree.
(We found that nodes in the (a,b)-tree contained approximately 10
keys, on average, so the respective maximum values of s for the
BST and (a,b)-tree resulted in range queries returning keys from
approximately the same number of nodes in both data structures.)
To ensure that we are measuring steady-state performance, at the
start of each trial, the data structure is prefilled by having threads
perform 50% insertions and 50% deletions on uniform keys until the
data structure contains approximately half of the keys in [0,K).

We verified the correctness of each data structure after each trial
by computing key-sum hashes. Each thread maintains the sum of all
keys it successfully inserts, minus the sum of all keys it successfully
deletes. At the end of the trial, the total of these sums over all threads
must match the sum of keys in the tree.

Probability distribution of s. We chose the probability distribution
of s to produce many small RQs, and a smaller number of very
large ones. To achieve this, we chose s to be ⌊x2S⌋+ 1, where x
is a uniform real number in [0,1), and S = 1000 for the BST and
S = 10000 for the (a,b)-tree. By squaring x, we bias the uniform
distribution towards zero, creating a larger number of small RQs.

Results. We briefly discuss the results from the 48 thread machine,
which appear in Figure 4. The BST and the relaxed (a,b)-tree behave

2x 36-thread Intel E5-2699 v3
Unbalanced BST (LLX/SCX)
Updates w/key range [0,104)
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Figure 5: Results (72 thread system) showing throughput (oper-
ations per second) versus the number of concurrent processes.

fairly similarly. Since the (a,b)-tree has large nodes, it benefits much
more from a low-overhead fast path (in TLE or 3-path) which can
avoid creating new nodes during updates. In the light workloads,
3-path performs significantly better than 2-path con (which has
more overhead) and approximately as well as TLE. On average, the
3-path algorithms completed 2.1x as many operations as their non-
HTM counterparts (and with 48 concurrent processes, this increases
to 3.0x, on average). In the heavy workloads, 3-path significantly
outperforms TLE (completing 2.0x as many operations, on average),
which suffers from excessive waiting. Interestingly, 3-path is also
significantly faster than 2-path con in the heavy workloads. This is
because, even though RQs are always being performed, some RQs
can succeed on the fast path, so many update operations can still
run on the fast path in 3-path, where they incur much less overhead
(than they would in 2-path con).

Results from the 72-thread machine appear in Figure 5. There,
3-path shows an even larger performance advantage over Non-HTM.

5.2 Code path usage and abort rates
To gain further insight into the behaviour of our accelerated template
implementations, we gathered some additional metrics about the
experiments described above. Here, we only describe results from the
48-thread Intel machine. (Results from the 72-thread Intel machine
were similar.)

Operations completed on each path. We started by measuring how
often operations completed successfully on each execution path. This
revealed that operations almost always completed on the fast path.
Broadly, over all thread counts, the minimum number of operations
completed on the fast path in any trial was 86%, and the average
over all trials was 97%.

In each trial that we performed with 48 concurrent threads, at least
96% of operations completed on the fast path, even in the workloads
with RQs. Recall that RQs are the operations most likely to run on the
fallback path, and they are only performed by a single thread, so they



Figure 6: Summary of how many transactions commit vs. how
many abort in our experiments on the 48-thread Intel machine.

make up a relatively small fraction of the total operations performed
in a trial. In fact, our measurements showed that the number of
operations which completed on the fallback path was never more
than a fraction of one percent in our trials with 48 concurrent threads.

In light of this, it might be somewhat surprising that the perfor-
mance of TLE was so much worse in heavy workloads than light
ones. However, the cost of serializing threads is high, and this cost
is compounded by the fact that the operations which complete on
the fallback path are often long-running. Of course, in workloads
where more operations run on the fallback path, the advantage of
improving concurrency between paths would be even greater.

Commit/abort rates. We also measured how many transactions
committed and how many aborted, on each execution path, in each
of our trials. Figure 6 summarizes the average commit/abort rates for
each data structure, template implementation and workload. Since
nearly all operations completed on the fast path, we decided not to
distinguish between the commit/abort rate on the fast path and the
commit/abort rate on the middle path.

5.3 Comparing with hybrid transactional memory
Hybrid transactional memory (hybrid TM) combines hardware and
software transactions to hide the limitations of HTM and guarantee
progress. This offers an alternative way of using HTM to imple-
ment concurrent data structures. Note, however, that state of the
art hybrid TMs use locks. So, they cannot be used to implement
lock-free data structures. Regardless, to get an idea of how such
implementations would perform, relative to our accelerated template
implementations, we implemented the unbalanced BST using Hy-
brid NOrec, which is arguably the fastest hybrid TM implementation
with readily available code [27].

If we were to use a precompiled library implementation of Hybrid
NOrec, then the unbalanced BST algorithm would have to perform
a library function call for each read and write to shared memory,
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Figure 7: Results showing throughput (operations per second)
versus number of processes for an unbalanced BST imple-
mented with different tree update template algorithms, and
with the hybrid TM algorithm Hybrid NOrec.

which would incur significant overhead. So, we directly compiled
the code for Hybrid NOrec into the code for the BST, allowing
the compiler to inline the Hybrid NOrec functions for reading and
writing from shared memory into our BST code, eliminating this
overhead. Of course, if one intended to use hybrid TM in practice
(and not in a research prototype), one would use a precompiled
library, with all of the requisite overhead. Thus, the following results
are quite charitable towards hybrid TMs.

We implemented the BST using Hybrid NOrec by wrapping se-
quential code for the BST operations in transactions, and manually
replacing each read from (resp., write to) shared memory with a
read (resp., write) operation provided by Hybrid NOrec. Figure 7
compares the performance of the resulting implementation to the
other BST implementations discussed in Section 5.

The BST implemented with Hybrid NOrec performs relatively
well with up to six processes. However, beyond six processes, it
experiences severe negative scaling. The negative scaling occurs
because Hybrid NOrec increments a global counter in each updating
transaction (i.e., each transaction that performs at least one write).
This global contention hotspot in updating transactions causes many
transactions to abort, simply because they contend on the global
counter (and not because they conflict on any data in the tree). How-
ever, even without this bottleneck, Hybrid NOrec would still perform
poorly in heavy workloads, since it incurs very high instrumenta-
tion overhead for software transactions (which must acquire locks,
perform repeated validation of read-sets, maintain numerous aux-
iliary data structures for read-sets and write-sets, and so on). Note
that this problem is not unique to Hybrid NOrec, as every hybrid
TM must use a software TM as its fallback path in order to guar-
antee progress. In contrast, in our template implementations, the
software-only fallback path is a fast lock-free algorithm.



6 MODIFICATIONS FOR PERFORMING
SEARCHES OUTSIDE OF TRANSACTIONS

In this section, we describe how the 3-path implementations of the
unbalanced BST and relaxed (a,b)-tree can be modified so that each
operation attempt on the fast path or middle path performs its search
phase before starting a transaction (and only performs its update
phase in a transaction). (The same technique also applies to the
2-path con implementations.) First, note that the lock-free search
procedure for each of these data structures is actually a standard, se-
quential search procedure. Consequently, a simple sequential search
procedure will return the correct result, regardless of whether it is
performed inside a transaction. (Generally, whenever we produce a
3-path implementation starting from a lock-free fallback path, we
will have access to a correct non-transactional search procedure.)

The difficulty is that, when an operation starts a transaction and
performs its update phase, it may be working on a part of the tree
that was deleted by another operation. One can imagine an operation
Od that deletes an entire subtree, and an operation Oi that inserts a
node into that subtree. If the search phase of Oi is performed, then
Od is performed, then the update phase of Oi is performed, then Oi
may erroneously insert a node into the deleted subtree.

We fix this problem as follows. Whenever an operation O on
the fast path or middle path removes a node from the tree, it sets
a marked bit in the node (just like operations on the fallback path
do). Whenever O first accesses a node u in its transaction, it checks
whether u has its marked bit set, and, if so, aborts immediately. This
way, O’s transaction will commit only if every node that it accessed
is in the tree.

We found that this modification yielded small performance im-
provements (on the order of 5-10%) in our experiments. The rea-
son this improves performance is that fewer memory locations are
tracked by the HTM system, which results in fewer capacity aborts.
We briefly discuss why the performance benefit is small in our ex-
periments. The relaxed (a,b)-tree has a very small height, because it
is balanced, and its nodes contain many keys. The BST also has a
fairly small height (although it is considerably taller than the relaxed
(a,b)-tree), because processes in our experiments perform insertions
and deletions on uniformly random keys, which leads to trees of log-
arithmic height with high probability. So, in each case, the sequence
of nodes visited by searches is relatively small, and is fairly unlikely
to cause capacity aborts.

The performance benefit associated with this modification will
be greater for data structures, operations or workloads in which an
operation’s search phase will access a large number of nodes. Addi-
tionally, IBM’s HTM implementation in their POWER8 processors
is far more prone to capacity aborts than Intel’s implementation,
since a transaction will abort if it accesses more than 64 different
cache lines [24]. (In contrast, in Intel’s implementation, a trans-
action can potentially commit after accessing tens of thousands of
cache lines.) Thus, this modification could lead to significantly better
performance on POWER8 processors.

7 RELATED WORK
Hybrid TMs share some similarities to our work, since they all
feature multiple execution paths. The first hybrid TM algorithms
allowed HTM and STM transactions to run concurrently [10, 19].

Hybrid NOrec [9] and Reduced hardware NOrec [23] are hybrid
TMs that both use global locks on the fallback path, eliminating
any concurrency. We discuss two additional hybrid TMs, Phased
TM [20] (PhTM) and Invyswell [8], in more detail.

PhTM alternates between five phases: HTM-only, STM-only,
concurrent HTM/STM, and two global locking phases. Roughly
speaking, PhTM’s HTM-only phase corresponds to our uninstru-
mented fast path, and its concurrent HTM/STM phase corresponds
to our middle HTM and fallback paths. However, their STM-only
phase (which allows no concurrent hardware transactions) and global
locking phases (which allow no concurrency) have no analogue in
our approach. In heavy workloads, PhTM must oscillate between its
HTM-only and concurrent HTM/STM phases to maximize the per-
formance benefit it gets from HTM. When changing phases, PhTM
typically waits until all in-progress transactions complete before
allowing transactions to begin in the new mode. Thus, after a phase
change has begun, and before the next phase has begun, there is a
window during which new transactions must wait (reducing perfor-
mance). One can also think of our three path approach as proceeding
in two phases: one with concurrent fast/middle transactions and one
with concurrent middle/fallback transactions. However, in our ap-
proach, “phase changes” do not introduce any waiting, and there is
always concurrency between two execution paths.

Invyswell is closest to our three path approach. At a high level,
it features an HTM middle path and STM slow path that can run
concurrently (sometimes), and an HTM fast path that can run con-
currently with the middle path (sometimes) but not the slow path,
and two global locking fallback paths (that prevent any concurrency).
Invyswell is more complicated than our approach, and has numerous
restrictions on when transactions can run concurrently. Our three
path methodology does not have these restrictions. The HTM fast
path also uses an optimization called lazy subscription. It has been
shown that lazy subscription can cause opacity to be violated, which
can lead to data corruption or program crashes [11].

Hybrid TM is very general, and it pays for its generality with
high overhead. Consequently, data structure designers can extract
far better performance for library code by using more specialized
techniques. Additionally, we stress that state of the art hybrid TMs
use locks, so they cannot be used to produce lock-free data structures.

Different options for concurrency have recently begun to be ex-
plored in the context of TLE. Refined TLE [12] and Amalgamated
TLE [1] both improve the concurrency of TLE when a process is on
the fallback path by allowing HTM transactions to run concurrently
with a single process on the fallback path. Both of these approaches
still serialize processes on the fallback path. They also use locks, so
they cannot be used to produce lock-free data structures.

Timnat, Herlihy and Petrank [28] proposed using a strong synchro-
nization primitive called multiword compare-and-swap (k-CAS) to
obtain fast HTM algorithms. They showed how to take an algorithm
implemented using k-CAS and produce a two-path implementation
that allows concurrency between the fast and fallback paths. One of
their approaches used a lock-free implementation of k-CAS on the
fallback path, and an HTM-based implementation of k-CAS on the
fast path. They also experimented with two-path implementations
that do not allow concurrency between paths, and found that allow-
ing concurrency between the fast path and fallback path introduced



significant overhead. Makreshanski, Levandoski and Stutsman [22]
also independently proposed using HTM-based k-CAS in the context
of databases.

Liu, Zhou and Spear [21] proposed a methodology for accelerat-
ing concurrent data structures using HTM, and demonstrated it on
several lock-free data structures. Their methodology uses an HTM-
based fast path and a non-transactional fallback path. The fast path
implementation of an operation is obtained by encapsulating part
(or all) of the operation in a transaction, and then applying sequen-
tial optimizations to the transactional code to improve performance.
Since the optimizations do not change the code’s logic, the resulting
fast path implements the same logic as the fallback path, so both
paths can run concurrently. Consequently, the fallback path imposes
overhead on the fast path.

Some of the optimizations presented in that paper are similar
to some optimizations in our HTM-based implementation of LLX
and SCX. For instance, when they applied their methodology to the
lock-free unbalanced BST of Ellen et al. [14], they observed that
helping can be avoided on the fast path, and that the descriptors
which are normally created to facilitate helping can be replaced by a
small number of statically allocated descriptors. However, they did
not give details on exactly how these optimizations work, and did not
give correctness arguments for them. In contrast, our optimizations
are applied to a more complex algorithm, and are proved correct.

Multiversion concurrency control (MVCC) is another way to
implement range queries efficiently [2, 3]. At a high level, it involves
maintaining multiple copies of data to allow read-only transactions
to see a consistent view of memory and serialize even in the presence
of concurrent modifications. However, our approach could also be
applied to operations that modify a range of keys, so it is more
general than MVCC.

8 CONCLUDING REMARKS
In this work, we explored the design space for HTM-based imple-
mentations of the tree update template of Brown et al. and presented
four accelerated implementations. We discussed performance issues
affecting HTM-based algorithms with two execution paths, and de-
veloped an approach that avoids them by using three paths. We used
our template implementations to accelerate two different lock-free
data structures, and performed experiments that showed significant
performance improvements over several different workloads. This
makes our implementations an attractive option for producing fast
concurrent data structures for inclusion in libraries, where perfor-
mance is critical.
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