
Reclaiming Memory for Lock-Free Data Structures:
There has to be a Better Way

Trevor Brown
Department of Computer Science

University of Toronto
tabrown@cs.toronto.edu

ABSTRACT
Memory reclamation for sequential or lock-based data structures
is typically easy. However, memory reclamation for lock-free data
structures is a significant challenge. Automatic techniques such as
garbage collection are inefficient or use locks, and non-automatic
techniques either have high overhead, or do not work for many rea-
sonably simple data structures. For example, subtle problems can
arise when hazard pointers, one of the most common non-automatic
techniques, are applied to many natural lock-free data structures.
Epoch based reclamation (EBR), which is by far the most efficient
non-automatic technique, allows the number of unreclaimed ob-
jects to grow without bound, because one slow or crashed process
can prevent all other processes from reclaiming memory.

We develop a more efficient, distributed variant of EBR that
solves this problem. It is based on signaling, which is provided
by many operating systems, such as Linux and UNIX. Our new
scheme takes O(1) amortized steps per high-level operation on the
lock-free data structure and O(1) steps in the worst case each time
an object is removed from the data structure. At any point, O(mn2)
objects are waiting to be freed, where n is the number of processes
and m is a small constant for most data structures. Experiments
show that our scheme has very low overhead: on average 10%, and
at worst 28%, for a balanced binary search tree over many thread
counts, operation mixes and contention levels. Our scheme also
outperforms a highly efficient implementation of hazard pointers
by an average of 75%.

Typically, memory reclamation code is tightly woven into lock-
free data structure code. To improve modularity and facilitate the
comparison of different memory reclamation schemes, we also in-
troduce a highly flexible abstraction. It allows a programmer to
easily interchange schemes for reclamation, object pooling, allo-
cation and deallocation with virtually no overhead, by changing a
single line of code.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.4.2 [Operating Systems]: Storage Man-
agement—Allocation/deallocation strategies

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PODC’15, July 21–23, 2015, Donostia-San Sebastián, Spain.
Copyright c© 2015 ACM 978-1-4503-3617-8 /15/07 ...$15.00.
DOI: http://dx.doi.org/10.1145/2767386.2767436.

General Terms
Algorithms, Performance, Reliability

Keywords
Memory reclamation; lock-free; non-blocking; epoch-based recla-
mation; hazard pointers; signals; fault-tolerance

1. INTRODUCTION
In concurrent data structures that use locks, it is typically straight-

forward to free memory to the operating system after a node is re-
moved from the data structure. For example, consider a singly-
linked list implementation of the set abstract data type using hand-
over-hand locking. Hand-over-hand locking allows a process to
lock a node (other than the head node) only if it holds a lock on
the node’s predecessor. To traverse from a locked node u to its suc-
cessor v, the process first locks v, then it unlocks u. To delete a
node u, a process first locks the head node, then performs hand-
over-hand locking until it reaches u’s predecessor and locks it. The
process then locks u (to ensure no other process holds a lock on u),
removes it from the list, frees it to the operating system, and finally
unlocks u’s predecessor. It is easy to argue that no other process
has a pointer to u when u is freed.

In contrast, memory reclamation is one of the most challenging
aspects of lock-free data structure design. Lock-free algorithms
(also called non-blocking algorithms) guarantee that as long as some
process continues to take steps, eventually some process will com-
plete an operation. The main difficulty in performing memory
reclamation for a lock-free data structure is that a process can be
sleeping while holding a pointer to an object that is about to be
freed. Thus, carelessly freeing an object can cause a sleeping pro-
cess to access freed memory when it wakes up, crashing the pro-
gram or producing subtle errors. Since nodes are not locked, pro-
cesses must coordinate to let each other know which nodes are
safe to reclaim, and which might still be accessed. (This is also
a problem for data structures with lock-based updates and lock-
free queries. The solutions presented hererin apply equally well to
lock-based data structures with lock-free queries.)

Techniques for determining which nodes are safe to reclaim can
be divided into automatic techniques, which do not require a pro-
grammer to specify when an object has been removed from the data
structure, and non-automatic techniques, which do. It is conceptu-
ally useful to divide the work of reclaiming an object into two parts:
determining when an object is removed from the data structure,
and determining when this object can be freed to the operating sys-
tem. The former is the responsibility of either an automatic mem-
ory reclamation scheme, or a lock-free data structure. The latter is
always the responsibility of the memory reclamation scheme. Au-
tomatic techniques offer a significantly simpler programming en-

vironment, but can be inefficient. Non-automatic techniques are
particularly useful when developing data structures for software
libraries, since optimization can pay large dividends when code
is reused. Additionally, non-automatic techniques can be used to
build data structures that serve as building blocks to construct new
automated techniques.

Garbage collectors comprise the largest class of automated tech-
niques. The literature on garbage collection is vast, and lies outside
the scope of this paper. Garbage collection schemes are surveyed
in [16, 22]. Reference counting is another technique that can be
automated. Limited forms of reference counting are also used to
construct non-automatic techniques.

Non-automatic techniques can broadly be grouped into four cate-
gories: object pools, hazard pointers, epoch based reclamation and
transactional memory assisted reclamation. As will be discussed in
Section 3, these techniques either do not work for, or are inefficient
for, many natural lock-free data structures.

In epoch based reclamation (EBR), the execution is divided into
epochs. Each object removed from the data structure in epoch e
is placed into a shared limbo bag for epoch e. Limbo bags are
maintained for the last three epochs. Each time a process starts an
operation, it reads and announces the current epoch, and checks the
announcements of other processes. If all processes have announced
the current epoch, then a new epoch begins, and the contents of the
oldest limbo bag can be reclaimed. If a process sleeps or crashes
during an operation, then no memory can be reclaimed, so EBR is
not fault tolerant.

We begin by developing a more efficient, distributed variant of
EBR, called DEBRA. DEBRA replaces the shared limbo bags of
EBR with per-process bags, and amortizes the checking of pro-
cesses’ announced epochs by reading only one announcement at
the start of each operation. Each limbo bag is implemented as a
singly-linked list of blocks, which each contain 256 pointers to ob-
jects. Whenever a process announces a new epoch, it appends its
oldest limbo bag to a local object pool in constant time. When-
ever local pools grow too large or small, entire blocks are moved
to or from a shared object pool. Operating on blocks instead of in-
dividual objects significantly reduces overhead. DEBRA performs
O(1) steps at the beginning and end of each operation supported by
the lock-free data structure and O(1) steps each time an object is
removed from the data structure.

Our main contribution is DEBRA+, the first fault tolerant epoch
based reclamation scheme. The primary challenge was to find a
way to allow a process to advance the current epoch without wait-
ing for another process, which may have crashed. In order to ad-
vance the epoch, we must ensure that such a process will not access
any retired object if it takes another step. The technique we intro-
duce for adding fault tolerance to DEBRA uses signals, an inter-
process communication mechanism supported by many operating
systems (e.g., Linux and UNIX). With DEBRA+, the number of
objects waiting to be freed is O(mn2), where n is the number of
processes and m is the largest number of objects removed from the
data structure by one operation.

A major problem arises when auditioning non-automatic tech-
niques to see which performs best for a given lock-free data struc-
ture. The set of operations exposed to the programmer by non-
automatic techniques varies widely. This is undesirable for several
reasons. First, from a theoretical standpoint, there is no reason
that a data structure should have to be aware of how its objects
are allocated and reclaimed. Second, it is difficult to interchange
memory reclamation schemes to determine which performs best in
a given situation. Presently, doing this entails writing many differ-
ent versions of the data structure, each version tailored to a specific

memory reclamation scheme. Third, as new advancements in mem-
ory reclamation appear, existing data structures have to be reimple-
mented (and their correctness painstakingly re-examined) before
they can reap the benefits. Updating lock-free data structures in this
way is non-trivial. Fourth, moving code to a machine with a differ-
ent memory consistency model can require changes to the memory
reclamation scheme, which currently requires changing the code
for the lock-free data structure as well. Fifth, if several instances
of a data structure are used for very different purposes (e.g., many
small trees with strict memory footprint requirements and one large
tree with no such requirement), then it may be appropriate to use
different memory reclamation schemes for the different instances.
Currently, this requires writing and maintaining code for different
versions of the data structure.

These issues were all considered in the context of sequential data
structures when the C++ standard template libraries were imple-
mented. Their solution was to introduce an Allocator abstraction,
which allows a data structure to perform allocate and deallocate
operations. With this abstraction, the memory allocation scheme
for a data structure can easily be changed without modifying or
compiling (or even having access to) the data structure code. Un-
fortunately, the Allocator abstraction cannot be applied directly to
lock- free programming, since its operations do not align well with
the operations of lock-free memory reclamation schemes. (For ex-
ample, it requires the data structure to know when an object can
be freed.) The main challenge in developing an appropriate gen-
eralization of the Allocator abstraction is to find the right set of
operations to expose to the data structure implementation, so that
the result is simultaneously highly efficient, versatile and easy to
program. In Section 6, we present the first generalization of the
Allocator abstraction for lock-free programming.

Experiments on C++ implementations of DEBRA and DEBRA+
show that overhead is very low. Compared with performing no
reclamation at all, DEBRA is on average 4% slower, and at worst
21% slower, over a wide variety of thread counts and workloads. In
some experiments, DEBRA actually improves performance by as
much as 20%. Although it seems impossible to achieve better per-
formance when computation is spent reclaiming objects, DEBRA
reduces the memory footprint of the data structure, which improves
memory locality and cache performance. Adding fault tolerance to
DEBRA adds 2.5% overhead, on average.

2. MODEL
We consider an asynchronous shared memory system with n pro-

cesses. Each process has local memory that is not accessible by
any other process, and there is a shared memory accessible by all
processes. Memory is divided into primitive objects, which have
atomic operations that are provided directly by the hardware. Ex-
amples include read/write registers, compare-and-swap (CAS) ob-
jects, and double-wide compare-and-swap (DWCAS) objects. A
record is a collection of primitive objects, which we refer to as
fields. A data structure consists of a fixed set of entry points, which
are pointers to records, and the records that are reachable by follow-
ing one or more pointers from an entry point. A record is retired
from a data structure when it changes from being in the data struc-
ture to not being in the data structure. A record is inserted into a
data structure when it changes from being not in the data struc-
ture to being in the data structure. The system is equipped with a
memory allocator. Initially, no record is accessible to any process.
Allocating a record makes it accessible and provides the process
that requested it with a pointer to the record. A record can also be
freed, which makes it inaccessible. Accessing a freed record results
in the failure of the entire system.

3. RELATED WORK
There are many existing techniques for reclaiming memory in

lock-free data structures. However, all of these techniques have
some disadvantages.

Object Pools (OP). A particularly simple way to prevent processes
from accessing a freed record is to never free any record, but allow
processes to reuse retired records. Whenever a record is retired,
it is returned to a pool of records (of the same type), from which
it can be retrieved by any process that wants to allocate a record.
Implementations of shared object pools are described in [14, 24].
If a shared pool is highly contended, then per-process pools can be
added, so each process synchronizes on the shared pool only when
one of its local pools is either empty or larger than some threshold.

Reference Counting (RC). RC augments each record o with a
counter that records the number of pointers that processes, entry
points and records have to r. An record can safely be freed once
its reference count becomes zero. Reference counts are updated
every time a pointer to a record is created or destroyed. Naturally,
a process must first read a pointer to reach a record before it can
increment the record’s reference counter. This window between
when a record is reached and when its reference counter is updated
reveals the main challenge in designing a RC scheme: the refer-
ence count of a freed record must not be accessed. However, the
reference count of a retired record can be accessed.

Detlefs et al. [6] introduced lock-free reference counting (LFRC),
which is applicable to arbitrary lock-free data structures. LFRC
uses the double compare-and-swap (DCAS) synchronization prim-
itive, which atomically modifies two arbitrary words in memory,
to change the reference count of a record only if a certain pointer
still points to it. DCAS is not natively available in modern hard-
ware, but it can be implemented from CAS. Herlihy et al. [15]
subsequently improved LFRC to single-word lock-free reference
counting (SLFRC), which uses single-word CAS instead of DCAS.
To prevent the reference count of a freed record from being ac-
cessed, the implementation of SLFRC uses a variant of Hazard
Pointers (described below) to prevent records from being freed un-
til any pending accesses have finished. Lee [17] developed a dis-
tributed reference counting scheme from fetch-and-increment and
swap. Each node contains several limited reference counts, and the
true reference count for a node is distributed between itself and its
parent. The scheme was developed for in-trees (wherein each node
has a pointer only to its parent), but it may be generalizable.

RC requires extra memory for each record and it cannot reclaim
records whose pointers form a cycle (since their reference counts
will never drop to zero). Manually breaking cycles to allow recla-
mation requires knowledge of a data structure and adds more over-
head. RC has high overhead, since following a pointer involves (at
least) two costly atomic synchronization primitives; experiments
confirm that RC is less efficient than other techniques [13].

Hazard Pointers (HPs). Michael introduced HPs [20], and pro-
vided a wait-free implementation from atomic read/write registers.
(Herlihy et al. [15] independently developed another version of
HPs, providing a lock-free implementation from CAS, and a wait-
free implementation from double-wide CAS.) HPs track which records
might be accessed by each process. Before a process can access a
field of a record r, or use a pointer to r as the expected value for
a CAS, it must first acquire a hazard pointer to r. To correctly use
HPs, one must satisfy the following constraint. Suppose a record r
is retired at time tr and later accessed by a process p at time ta. If
r remains retired between tr and ta, then one of p’s HPs must con-
tinuously point to r from before tr until after ta. It is easy to verify

that, after a record r is retired and is not pointed to by any HP, no
process can obtain a HP to r until it is next inserted into the data
structure. Therefore, a process can safely free a retired record after
scanning all HPs and seeing that none point to r.

To acquire a HP to r, a process first announces the HP by writing
a pointer to r in a shared announce array with one part for each
process. This announces to all processes that r might be accessed
and cannot safely be freed. Then, the process verifies that r is in
the data structure. If the record is not in the data structure, then the
process can behave as if its operation had failed due to contention
(typically by aborting and restarting its operation), without threat-
ening the progress guarantees of the data structure. For many data
structures, a process cannot easily determine whether a record is in
the data structure, and they are modified in an ad-hoc way to al-
low operations to restart whenever they cannot tell. This requires
reproving the data structures’ progress guarantees.

Many lock-free algorithms require only a small constant number
k of HPs per process, since a HP can be released once a process
will no longer access the record to which it points during an op-
eration. Scanning the HPs of all processes takes Θ(nk) steps, so
doing this each time a record is retired would be costly. However,
with a small modification, the expected amortized cost to retire an
object is O(1). Each process maintains a local collection of re-
tired records. When a collection contains nk+Ω(nk) objects, the
process creates a hash table T containing every HP, and, for each
object o in its collection, checks whether o is in T . If not, o is freed.
Since there are at most nk records in T , Ω(nk) records can be freed.
Thus, the number of records waiting to be freed is O(kn2).

Problems with Hazard Pointers and marking. Many lock-free
data structures use marking to prevent processes from erroneously
performing modifications to records just before, or after, they are
removed from the data structure. Specifically, before a record is
removed from the data structure, all of its pointers are marked, and
a process is allowed to change a pointer only if it is not marked.
A subtle, but significant problem arises when one considers the in-
teraction between HPs and marking in lock-free data structures that
can contain a marked node that points to another marked node (e.g.,
[4, 5, 7, 10, 21, 23]). Specifically, it occurs when a process reads a
marked pointer to a record and attempts to acquire a HP to it.

For example, consider a lock-free singly-linked list that marks
a node’s next pointer before removing it from the list. (It is easy
to see that two consecutive nodes u and u′ can be marked if one
process marks u, in preparation to delete it, and another process si-
multaneously marks u′.) Suppose that, while searching this list, a
process p has acquired a HP to node u and needs to obtain a HP to
the next node, u′. To acquire the HP to u′, p reads and announces
the pointer to u′, and must then verify that u′ is in the list. If the
pointer to u′ is unmarked, then u is in the list, and, consequently, so
is u′. If this pointer is marked and u′ is not in the list, then p can be-
have as if its operation had failed, without threatening the progress
guarantees of the list. However, behaving as if its operation had
failed when this pointer is marked and u′ is in the list might inval-
idate the progress guarantees of the list. If one does not want to
reprove the data structure’s progress guarantees, then p must find
some way to determine whether u′ is actually in the list.

By definition, u′ is in the list if and only if it is reachable from an
entry point or an unmarked node. One option is for p to traverse the
list backwards from u until it reaches an unmarked node, and then
search for u′ from there. However, unless p has already acquired
HPs to every node it will return to, it can encounter the same prob-
lem while moving backwards in the list. Furthermore, even after
p reaches an unmarked node, it can encounter the same problem
while searching for u′ from that node. Each time p reads and an-

nounces a marked pointer, and recursively starts a search, its set of
announcements grows. Consequently, the number of HPs p must
hold at once (and, hence, the number of retired nodes that cannot
be freed) can be arbitrarily large. This problem also occurs if p
searches for u′ from the beginning of the list, instead of traversing
backwards. Additionally, for some data structures, the amortized
cost of operations depends on the number of marked nodes they
traverse. Searching from an entry point can provably increase the
amortized cost of operations [9].
More about Hazard Pointers. Aghazadeh et al. [1] recently in-
troduced an improved version of HPs with a worst case constant
time procedure for scanning HPs each time a record is retired.
Their algorithm maintains two queues of length nk for each pro-
cess. These queues are used to incrementally scan HPs as records
are retired. The algorithm adds a limited type of reference count
to each record that tracks the number of incoming references from
one of the queues. Note that Θ(lognk) bits are reserved in each
record for the reference count.

A technique called Beware & Cleanup (B&C) was introduced by
Gidenstam et al. [12] to allow processes to acquire hazard pointers
to retired records. A limited form of RC is added to HPs to en-
sure that a retired record is freed only when no other record points
to it. The reference count of a record counts incoming pointers
from other records, but does not count incoming pointers from pro-
cesses’ local memories. Before reclaiming a retired record, a pro-
cess must check that its reference count is zero, and that no HP
points to it. Consequently, after announcing a HP to a record r, it
suffices to check that another record points to r. It follows that oper-
ations do not have to restart when they reach a retired record. The
goal of the work was to optimize the performance of algorithms
with searches that frequently encounter retired records and, conse-
quently, have to restart. They do not identify the problem with HPs
described above, but their technique solves it. However, B&C’s al-
gorithm for retiring records is very complicated, and the technique
has higher overhead than either RC or HPs.
Hardware transactional memory (HTM). Dragojević et al. [8]
explored simple schemes for memory reclamation using HTM. Al-
istarh et al. [2] introduced an elegant algorithm called StackTrack
(ST). The key idea is to execute each operation of the lock-free
data structure in a transaction, and use the implementation of HTM
to automatically monitor all pointers stored in the private memory
of processes without having to explicitly announce pointers before
they are accessed. The HTM system will abort any transaction that
accesses a record which is freed during the transaction. To de-
crease the probability of aborting transactions, each operation is
split into many small transactions. This takes advantage of the fact
that lock-free algorithms do not depend on transactions for correct-
ness. Splitting operations into small transactions introduces over-
head, and also causes some problems whose solutions introduce
further overhead. For example, at the end of each transaction, any
pointers that will be used by the next transaction are announced, so
that they are not freed before the next transaction begins. Any time
a process wants to free a record r, it must first verify that r is not
announced.

Since currently available implementations of HTM do not offer
progress guarantees, a fallback path that does not use HTM must
be provided to make the algorithm lock-free. ST falls back to HPs.
The paper does not give an upper bound on the number of retired
records that are not freed. Although no such constraint is stated in
the paper, ST cannot be applied to any data structure with an op-
eration that atomically removes two or more records from the data
structure [18]. Currently, ST requires a programmer to insert code
before and after each operation, and after every few lines of lock-

free data structure code (although, it should be possible to write a
compiler to automate much of this).

Epochs. A process is in a quiescent state whenever it does not
have a pointer to any record in the data structure. A grace pe-
riod is any time interval during which every process has a point
when it is in a quiescent state. Quiescent state-based reclamation
(QSBR) [19] uses the fact that a record retired by a process can
safely be freed after any subsequent grace period. Applying QSBR
to a data structure requires manually identifying quiescent states,
which may be impractical for some data structures. Additionally,
QSBR is not fault-tolerant, because a stalled process can indefi-
nitely prevent reclamation of any memory.

Fraser [11] described epoch based reclamation (EBR), which is
similar to QSBR, but assumes that a process is in a quiescent state
between its successive data structure operations. More specifically,
EBR can be applied only if processes cannot save pointers read
during an operation and access them during a later operation. EBR
uses a single global counter, which records the current epoch, and
an announce array. Each data structure operation first reads and
announces the current epoch ε , and then checks whether all pro-
cesses have announced the current epoch. If so, it increments the
current epoch using CAS. The key observation is that the period of
time starting from when the epoch was changed from ε−2 to ε−1
until it was changed from ε − 1 to ε is a grace period (since each
process announced a new value, and, hence, started a new opera-
tion). So, any records retired in epoch ε−2 can safely be freed in
epoch ε . Whenever a record is retired in epoch ε , it is appended to
a limbo bag for that epoch. It is sufficient to maintain three limbo
bags (for epochs ε , ε − 1 and ε − 2, respectively). Whenever the
epoch changes, every record in the oldest limbo bag is freed, and
that limbo bag becomes the limbo bag for the current epoch.

Since EBR introduces overhead per operation, it is significantly
more efficient than HPs, which requires costly synchronization for
each pointer read. However, synchronizing on shared limbo bags
makes it significantly less efficient than DEBRA. The penalty for
writing to memory on a per operation basis, rather than a per pointer
basis, is that processes have little information about which records
might be accessed by a process that is suspected to have crashed.
Consequently, EBR is not fault tolerant; no memory can be re-
claimed after a process crash, and a slow process can prevent an
unbounded number of retired records from being freed.

Drop the Anchor (DTA). Braginsky, Kogan and Petrank [3] intro-
duced DTA, a specialized technique for singly-linked lists, which
explores a middle ground between HPs and EBR. Instead of acquir-
ing a HP each time a pointer to a node is read, a HP is acquired only
once for every c pointers read. If another process q suspects that p
has crashed, then q will cut p out of the list by replacing all nodes
that p might access with new copies, and marking the old nodes so
that p can tell what has happened if it eventually wakes up. This
allows memory reclamation to continue, even if processes crash.

DTA has been shown to be efficient [2, 3]. However, it is not
clear how it could be extended to work for other data structures.
Additionally, DTA needs to be integrated with the mechanism for
synchronizing updates to the linked list, because processes are cut
out of the list concurrently with updates.

4. DEBRA: DISTRIBUTED EPOCH BASED
RECLAMATION

Our new memory reclamation scheme, DEBRA, provides four
operations: leaveQstate(), enterQstate(), retire(r) and isQuiescent(),
where r is a record. Each of these operations runs in worst-case
constant time. Let T be a lock-free data structure. To use DEBRA,

T simply invokes leaveQstate at the beginning of each operation,
enterQstate at the end of each operation, and retire(r) each time a
record r is retired (i.e., removed from T). Like EBR, DEBRA as-
sumes that a process does not hold a pointer to any record between
successive operations on T . Another constraint is that retire(r) can
be invoked only once each time r is retired. Each process alter-
nates invocations of leaveQstate and enterQstate, beginning with
an invocation of leaveQstate. Each process is said to be quies-
cent initially and after invoking enterQstate, and is said to be non-
quiescent after invoking leaveQstate. An invocation of isQuiescent
by a process returns true if it is quiescent, and false otherwise.

In DEBRA, each process p has three limbo bags, denoted bag0,
bag1 and bag2, which contain records that it removed from the data
structure. At any point, one of these bags is designated as p’s limbo
bag for the current epoch, and is pointed to by a local variable cur-
rentBag. Whenever p removes a record from the data structure,
it simply adds it to currentBag. Each process has a quiescent bit,
which indicates whether the process is currently quiescent. The
only thing p does when it enters a quiescent state is set its qui-
escent bit. Whenever p leaves a quiescent state, it reads the cur-
rent epoch e and announces it in announcep. If this changes the
value of announcep, then the contents of the oldest limbo bag can
be reused or freed. In this case, p changes currentBag to point to
the oldest limbo bag, and then moves the contents of currentBag
to an object pool. (Alternatively, the records in currentBag could
be freed.) Next, p attempts to determine whether the epoch can
be advanced, which is the case if each process is either quiescent
or has announced e. Process p incrementally scans the announce-
ments and quiescent bits of all processes, amortizing the cost over
n leaveQstate operations. A local variable checked keeps track of
the number of processes that p has verified are quiescent or have
announced e since p last announced a new epoch. Once checked is
n, p performs a CAS to increment the current epoch.

DEBRA reclaims a record only when no process has a pointer to
it: Suppose p places a record r in limbo bag b at time t1, and moves
r from b to the pool at time t2. Assume, to obtain a contradiction,
that a process q has a pointer to r at time t2. At time t1, b is p’s
current limbo bag, and just before time t2, b is changed from being
p’s oldest limbo bag to being p’s current limbo bag, again. Thus,
currentBag must be changed at least three times between t1 and t2.
Since p changes currentBag only in an invocation of leaveQstate
that changes announcep, p must perform at least three such invo-
cations between t1 and t2. The current epoch must change between
any pair of invocations of leaveQstate that change announcep, so
the current epoch must change at least twice between t1 and t2. By
definition, at some time between two changes of the current epoch,
say from e to e′ and from e′ to e′′, q must either be quiescent or
have announced e′. Process q cannot announce e′ prior to the cur-
rent epoch changing to e′, thus, it must announce e′ between these
two epoch changes. Since q can only announce an epoch when it
is in a quiescent state, q must be quiescent at some point between
t1 and t2. This means q must obtain its pointer to r by following
pointers from an entry point after it was quiescent, which is after
t1. However, r is removed from the data structure before t1, and,
hence, it is no longer reachable by following pointers from an entry
point, which is a contradiction.

The object pool shared by all processes is implemented as a col-
lection of n pool bags, one per process, and one shared bag. When-
ever a process moves a record to the pool, it places the record in its
pool bag. If its pool bag is too large, it moves some records to the
shared bag. Whenever a process wants to allocate a record, it first
attempts to remove one from its pool bag. If its pool bag is empty,
it attempts to take some records from the shared bag. If the process

fails to take any record from the shared bag, then it will allocate a
new record.

For efficiency, each pool bag and limbo bag is implemented as
a blockbag, which is a singly-linked list of blocks. Each block
contains a next pointer and up to B records. (In our experiments,
B= 256.) The head block in a blockbag always contains fewer than
B records, and every subsequent block contains B records. With
this invariant, it is straightforward to design constant time opera-
tions to add and remove records in a blockbag, and to move all
full blocks from one blockbag to another. This allows a process to
move all full blocks of records in its oldest limbo bag to the pool
highly efficiently after announcing a new epoch. However, if the
process only moves full blocks to the pool, then this limbo bag may
be left with some records in its head block. These records could
be moved to the pool immediately, but it is more efficient to leave
them in the bag, and simply move them to the pool later, once the
block that contains them is full. One consequence of not moving
these records to the pool is that each limbo bag can contain at most
B−1 records that were retired two or more epochs ago. This does
not affect correctness. The shared bag is implemented as a lock-
free singly-linked list of blocks with operations to add and remove
a full block. Moving entire blocks to and from the shared bag re-
duces the frequency with which processes must synchronize on the
shared bag.

Operating on blocks instead of individual records significantly
reduces overhead. However, it also requires a process to allocate
and deallocate blocks. To reduce the number of blocks that are
allocated and deallocated during an execution, each process has a
bounded block pool that is used by all of its blockbags. Instead of
deallocating a block, a process returns the block to its block bool. If
the block pool is already full, then the block is freed. Experiments
show that allowing each process to keep up to 16 blocks in its block
pool reduces the number of blocks allocated by more than 99.9%.
No blocks are allocated for the shared bag, since blocks are simply
moved between pool bags and the shared bag.

Two additional optimization are made. First, the least significant
bit of announcep is used as p’s quiescent bit. This allows both val-
ues to be read and written atomically, which reduces the number
of reads and writes to shared memory. Second, a process incre-
ments the current epoch only after invoking leaveQstate at least
MIN_CALLS times, where MIN_CALLS is a constant (100 in our
experiments). This is especially helpful when the number of pro-
cesses is small. For example, in a single process system, without
this optimization, the process will advance the epoch and try to
move records to the pool at the beginning of every single opera-
tion, introducing unnecessary overhead.

5. ADDING FAULT TOLERANCE
The primary disadvantage of DEBRA is that a crashed or slow

process can stay in a non-quiescent state for an arbitrarily long
time. This prevents any other processes from freeing memory. Al-
though we did not observe this pathological behaviour in our ex-
periments, many applications require a bound on the number of
records waiting to be freed.

Lock-free data structures are ideal for building fault tolerant sys-
tems, because they are designed to be provably fault tolerant. If a
process crashes while it is in the middle of any lock-free operation,
and it leaves the data structure in an inconsistent state, other pro-
cesses can always repair that state. The onus is on a process that
wants to access part of a data structure to restore that part of the
data structure to a consistent state before using it. Consequently,
a lock-free data structure always provides procedures to repair and
access parts of the data structure that are damaged (by a process

1 process local variables:
2 descriptor *desc;

3 void signalHandler(args):
4 if (isQuiescent ()) then
5 enterQstate ();
6 siglongjmp (...); // jump to recovery code

7 int doOperationXYZ(args):
8 ... // quiescent preamble
9 while (!done)

10 if (sigsetjmp (...)) // begin recovery code
11 if (isRProtected(desc)) done = help(desc);
12 RUnprotectAll ();
13 else // end recovery code
14 leaveQstate (); // begin body
15 do search phase
16 initialize *desc
17 RProtect each record will be accessed , or used

as the old value of a CAS , by help(desc)
18 RProtect(desc);
19 done = help(desc);
20 enterQstate (); // end body
21 RUnprotectAll ();
22 ... // quiescent postamble
23 perform retire () calls

Figure 1: Applying DEBRA+ to a typical lock-free operation.
Lines 14 and 20 are necessary for both DEBRA and DEBRA+.
Gray lines are necessary for fault tolerance (DEBRA+).

crash) or undergoing changes. (Furthermore, these procedures are
necessarily designed so that processes can crash while executing
them, and other processes can still repair the data structure and
continue to make progress.) We use these procedures to design a
mechanism that allows a process to neutralize another process that
is preventing it from advancing the epoch.

A novel aspect of DEBRA+ is our use of two features offered by
Unix, Linux and other POSIX-compliant operating systems. The
first is signaling, an inter-process communication mechanism. Sig-
nals can be sent to a process by the operating system, and by other
processes. When a process receives a signal, the code it was ex-
ecuting is interrupted, and the process begins executing a signal
handler, instead. When the process returns from the signal handler,
it resumes executing from where it was interrupted. A process can
specify what action it will take when it receives a particular signal
by registering a function as its signal handler.

The second feature is non-local goto, which allows a process
to begin executing from a different instruction, outside of the cur-
rent function, by using two procedures: sigsetjmp and siglongjmp.
A process first invokes sigsetjmp, which saves its local state and
returns false. Later, the process can invoke siglongjmp, which re-
stores the state saved by sigsetjmp immediately prior to its return,
but causes it to return true instead of false. The standard way to use
these primitives is with the idiom: “if (sigsetjmp(...)) alternate();
else usual();”. A process that executes this code will save its state
and execute usual(). Then, if the process later invokes siglongjmp,
it will restore the state saved by sigsetjmp and immediately begin
executing alternate().

At the beginning of each operation by a process q, q invokes
sigsetjmp, following the idiom described above, and then proceeds
with its operation. Another process p can interrupt q by sending a
signal to q. We design q’s signal handler so that, if q was interrupted
while it was in a quiescent state, then q will simply return from the
signal handler and resume its regular execution from wherever it
was interrupted. However, if q was interrupted in a non-quiescent
state, then it is neutralized: it will enter a quiescent state and per-
form a siglongjmp. Then, q will execute special recovery code,
which allows it to clean up any mess it left because it was neutral-
ized. Since q’s signal handler performs siglongjmp only if q was

interrupted in a non-quiescent state, q will not perform siglongjmp
while it is executing recovery code. Hence, if q receives a signal
while it is executing recovery code, it will simply return from the
signal handler and resume executing wherever it left off.

Our technique requires the operating system to guarantee that,
after a process p sends q a signal, the next time process q takes a
step, it will execute its signal handler. (This requirement can be
weakened with small modifications to DEBRA+, which are dis-
cussed in the full version of this paper.) With this guarantee, after
p has sent a signal to q, it knows that q will not access any retired
record until q has executed its recovery code and subsequently ex-
ecuted leaveQstate. Thus, as soon as p has sent q a signal, p can
immediately proceed as if q is quiescent.

Recovery code must be tailored to the data structure, but it is
straightforward for lock-free operations of the following form. Each
operation is divided into three parts: a quiescent bookkeeping pream-
ble, a non-quiescent body, and a quiescent bookkeeping postam-
ble. Processes can be neutralized while executing in the body, but
cannot be neutralized while executing in the preamble or postam-
ble (because a process will not call siglongjmp while it is qui-
escent). Consequently, processes should not do anything in the
body that will corrupt the data structure if they are neutralized part
way through. Allocation, deallocation, manipulation of process-
local data structures that persist between operations, and other non-
reentrant actions should occur only in the preamble and postamble.
Figure 1 shows how to apply DEBRA+ to such an operation. The
remainder of this section explains the steps shown there.

The body proceeds by first reading some records, then initial-
izing and announcing a special record (allocated in the preamble)
called a descriptor, which describes how to perform the operation.
It then executes a help procedure, which uses the information in
the descriptor to perform the operation. We assume that the de-
scriptor includes all pointers that the help procedure will follow
(or use as the expected value of a CAS). The help procedure can
also be used by other processes to help the operation complete. In
a system where processes may crash, a process whose progress is
blocked by another operation cannot simply wait for the operation
to complete, so helping is necessary. The help procedure for any
lock-free algorithm is always reentrant and idempotent, because,
at any time, one process can pause, and another process can begin
helping. Likewise, enterQstate must be both reentrant and idempo-
tent.

We now describe recovery for an operation O performed by a
process p. Suppose p receives a signal, enters a quiescent state,
and then performs siglongjmp to begin executing its recovery code.
Although there are many places where p might have been executing
when it was neutralized, it is fairly simply to determine what action
it should take next. The main challenge is determining whether
another process already performed O on p’s behalf. To do this,
p checks whether it announced a descriptor for O before it was
neutralized. If it did, then some other process might have seen this
descriptor and started helping O. So, p invokes help (which is safe
even if another process already helped O, since help is idempotent).
Otherwise, p can simply restart the body of O.

DEBRA allows a non-quiescent process executing an operation
to safely access any record that it reached by following pointers
from an entry point during the operation. However, DEBRA does
not allow quiescent processes to safely access any records. Once a
process p has been sent a signal, other processes treat p as if were
quiescent. Furthermore, p enters a quiescent state before execut-
ing recovery code, and it remains in a quiescent state throughout
the recovery code. Consequently, after p starts executing its sig-
nal handler, it cannot safely access any records it has pointers to,

since they might already have been freed. However, the help pro-
cedure in the recovery code must access the descriptor record, and
possibly some of the records to which it points. We use HPs in a
very limited way to prevent these records from being freed by other
processes before p has finished either its operation or its recovery
code. This lets p safely run its recovery code in a quiescent state,
so that other processes can continue to advance the current epoch
and reclaim memory.

We now describe how HPs are used. Before p invokes help for
a descriptor d, it must acquire HPs by invoking RProtect for each
record that help(d) will access, and finally invoking RProtect(d).
At the end of each operation (just after performing enterQstate),
and at the end of its recovery code, p invokes RUnprotectAll to re-
lease all of its HPs. Before p can move a record r to the pool, it
must first verify that no HP points to it by invoking isRProtected(r),
which returns true if some HP points to r, and false otherwise.
When executing recovery code, p first invokes isRProtected to de-
termine whether the last descriptor it announced is protected. If
so, then each r in S is also protected, and p is ready to safely exe-
cute help(d). Otherwise, p has not yet invoked help(d), so no other
process is aware of p’s operation, and p can simply terminate its
recovery code and restart its operation. Note that, since RProtect is
performed while a process is non-quiescent, p might be neutralized
while executing it. Hence, it must be reentrant and idempotent.

Using our new neutralizing mechanism, we can bound the num-
ber of records waiting to be freed. Each time a process p perform-
ing leaveQstate encounters a process q that is not quiescent and has
not announced epoch e, p checks whether the size of its own current
limbo bag exceeds some constant c. If so, p neutralizes q. After p’s
current limbo bag contains at least c elements, and p performs n
more data structure operations, it will have performed leaveQstate
n times, and each non-quiescent process will either have announced
the current epoch or been neutralized by p. Consequently, p will
advance the current epoch, and, the next time it performs leaveQs-
tate, it will announce the new epoch and reclaim records. It follows
that p’s current limbo bag can contain at most c+O(nm) elements,
where m is the largest number of records that can be removed from
the data structure by a high-level operation. Therefore, the total
number of records waiting to be freed is O(n(nm+ c)).

In DEBRA, all full blocks in a limbo bag are moved to the pool
in constant time. In DEBRA+, records can be moved to the pool
only if no HP points to them, so this is no longer possible. One
way to move records from a limbo bag b to the pool is to iterate
over each record r in b, and check if a HP points to r. To make
this more efficient, we move records from b to the pool only when
b contains nk+Ω(nk)+B records, where k is the number of HPs
needed per process, and B is the maximum number of records in
a block. Before we begin iterating over records in b, we create
a hash table containing every HP. Then, we can check whether a
HP points to r in O(1) expected time. We can further optimize by
rearranging records in b so that we can still move full blocks to the
pool, instead of individual records. To do this, we iterate over the
records in b, and move all records that are pointed to by HPs to
the beginning of the blockbag. All full blocks that do not contain a
record pointed to by a HP are then moved to the pool (in constant
time). Since there are at most nk HPs, and we scan only when b
contains at least nk+B+Ω(nk) records, we will be able to move
at least max{B,Ω(nk)} records to the pool. Thus, the expected
amortized cost to move a record to the pool (or free it) is O(1).

One problem with DEBRA+ is that it seems difficult to apply
to lock-based data structures, because it is dangerous to interrupt
a process and force it to restart while it holds a lock. Of course,
there is little reason to use DEBRA+ for a lock-based data structure,

since locks can cause deadlock if processes crash. For lock-based
data structures, DEBRA can be used, instead.

6. A LOCK-FREE MEMORY
MANAGEMENT ABSTRACTION

There are many compelling reasons to separate memory alloca-
tion and reclamation from data structure code. Although the steps
that a programmer must take to apply a non-automatic technique to
a data structure vary widely, it is possible to find a small, natural
set of operations that allows a programmer to write data structure
code once, and easily plug in many popular memory reclamation
schemes. In this section, we describe a record management abstrac-
tion, called a Record Manager, that is easy to use, and provides suf-
ficient flexibility to support (all three versions of) HPs, DTA, EBR,
DEBRA and DEBRA+. (ST is not supported because it currently
requires a programmer to insert transactions throughout the code,
and annotate the beginning and end of each stack frame.)

A Record Manager has three components: an Allocator, a Re-
claimer and a Pool. The Allocator determines how records will
be allocated (e.g., by individual calls to malloc or by handing out
records from a large range of memory) and freed. The Reclaimer
is given records after they are removed from the data structure, and
determines when they can be safely handed off to the Pool. The
Pool determines when records are handed to the Allocator to be
freed, and whether a process actually uses the Allocator to allocate
a new record.

We implement data structures, Allocators, Reclaimers and Pools
in a modular way, so that they can be combined without recom-
piling them. This clean separation into interchangeable compo-
nents allows, e.g., the same Pool implementation to be used with
both a HP Reclaimer and a DEBRA Reclaimer. Modularity is typ-
ically achieved with inheritance, but inheritance introduces signif-
icant runtime overhead. For example, when the precompiled data
structure invokes retire, it does not know which of the precompiled
versions of retire it should use, so it must perform work at runtime
to choose the correct implementation. In C++, this can be done
more efficiently with template parameters, which allow a compiler
to reach into compiled code and replace placeholder calls with calls
to the correct implementations. Unlike inheritance, templates in-
troduce no overhead, since the correct implementation is compiled
into the code. Furthermore, if the correct implementation is a small
function, the compiler can simply insert its code directly into the
calling function (eliminating the function call altogether).

A programmer interacts with the Record Manager, which ex-
poses the operations of the Pool and Reclaimer. A Pool provides
allocate and deallocate operations. A Reclaimer provides opera-
tions for the basic events that memory reclamation schemes are in-
terested in: starting and finishing data structure operations (leave-
Qstate and enterQstate), reaching a new pointer and disposing of it
(protect and unprotect), and retiring a record (retire). It also pro-
vides operations to check whether a process is quiescent (isQuies-
cent) and whether a pointer can be followed safely (isProtected).
Finally, it provides operations for making information available to
recovery code (RProtect, RUnprotectAll, isRProtected).

Most of these are described in Section 4 and Section 5. We de-
scribe the rest here. protect, which must be invoked on a record
r before accessing any field of r, returns true if the process suc-
cessfully protects r (and, hence, is permitted to access its fields),
and returns false otherwise. Once a process has successfully pro-
tected r, it remains protected until the process invokes unprotect(r)
or becomes quiescent. isProtected(r) returns true if r is currently
protected by the process.

Reclaimers for DEBRA and DEBRA+ are effectively described
in Section 4 and Section 5. For these techniques, unprotect does
nothing, and protect and isProtected simply return true. (Conse-
quently, these calls are optimized out of the code by the compiler.)
For HPs, leaveQstate, RProtect and RUnprotectAll all do nothing,
and isQuiescent and isRProtected simply return false. unprotect(r)
releases a HP to r, and enterQstate clears all announced HPs. pro-
tect announces a HP to a record and executes a function, which de-
termines whether that record is in the data structure. retire(r) places
r in a bag, and, if the bag contains sufficiently many records, it con-
structs a hash table T containing all HPs, and moves all records not
in T to the Pool (as described in Section 3).

A predicate called supportsCrashRecovery is added to Reclaimers
to allow a programmer to add crash recovery to a data structure
without imposing overhead for Reclaimers that do not support crash
recovery. For example, a programmer can check whether sup-
portsCrashRecovery is true before invoking RProtect. The code
statement “if (supportsCrashRecovery)” statically evaluates to “if
(true)” or “if (false)” at compile time, once the Reclaimer template
has been filled in. Consequently, these if-statements are completely
eliminated by the compiler. In our experiments, this predicate is
used to invoke sigsetjmp only for DEBRA+ (eliminating overhead
for the other techniques).

7. EXPERIMENTS
We did experiments to compare the performance of various Re-

claimers: DEBRA, DEBRA+, HP, ST and no reclamation (None).
We used the Record Manager abstraction to perform allocation and
reclamation for a lock-free balanced binary search tree [4]. This
BST can contain marked nodes that point to other marked nodes, so
ST cannot be used, and we must confront the problems described in
Section 3 to apply HP. Properly dealing with HP’s problems would
be highly complex and inefficient, so we simply restart any oper-
ation that encounters a marked node. Consequently, applying HP
causes the BST to lose its lock-free progress guarantee. To deter-
mine whether this significantly affects the performance of HP, we
added the same restarting behaviour to DEBRA, and observed that
its impact on performance was small.

Code for ST was graciously provided by its authors. They used
a lock-based skip list to compare None, HP and ST. We modi-
fied their code to use a Record Manager for allocating and pooling
nodes, and used it to compare None, DEBRA, HP and ST. The ac-
tual reclamation code for HP and ST is due to the authors of ST.
Since the skip list uses locks, it cannot use DEBRA+.

We ran our experiments on an Intel i7 4770 machine with 4 cores,
8 hardware threads and 16GB of memory, running Ubuntu 14.04.
(There is currently no system with more than 4 cores that provides
HTM and, hence, supports ST.) All code was compiled with GCC
4.9.1-3 and the highest optimization level (-O3). Google’s high
performance Thread Caching malloc (tcmalloc-2.4) was used.

Our first experiment compared the overhead of performing recla-
mation for the various Reclaimers. In this experiment, each Re-
claimer performed all the work necessary to reclaim nodes, but
nodes were not actually reclaimed (and, hence, were not reused).
The Record Manager used a Bump Allocator: each process requests
a large region of memory from the operating system at the begin-
ning of an execution, and then divides that region into nodes, which
it allocates in sequence. Since nodes were not actually reclaimed,
we eliminated the Pool component of the Record Manager. In this
experiment, a data structure suffers the overhead of reclamation,
but does not enjoy its benefits (namely, a smaller memory footprint
and fewer cache misses).

50% ins, 50% del 25% ins, 25% del, 50% search

Figure 2: Results for Experiment 1 (Overhead of reclamation).
The x-axis shows the number of processes. The y-axis shows
throughput, in millions of operations per second.

For the balanced BST, we ran eight trials for each combination of
Reclaimers in {None, DEBRA, DEBRA+, HP}, thread counts (in
{1, 2, ..., 16}), operation mixes in {25i-25d, 50i-50d} (where xi-yd
means x% insertions, y% deletions and (100− x− y)% searches)
and key ranges in {[0, 10000), [0, 1000000)}. For the skip list,
the thread counts and operation mixes were the same, but ST was
used instead of DEBRA+, and there was only one key range, [0,
200000). In each trial, the data structure was first prefilled to half
of the key range, then the appropriate number of threads performed
random operations (according to the operation mix) on uniformly
random keys from the key range for two seconds. The average of
each set of eight trials became a data point in a graph. (Unfortu-
nately, the system quickly runs out of memory when nodes are not
reclaimed, so it is not possible to run all trials for longer than two
seconds. However, we ran long trials for many cases to verify that
the results do not change.)

The results in Figure 2 show that DEBRA and DEBRA+ have
extremely low overhead. In the BST, DEBRA has between 5% and
22% overhead (averaging 12%), and DEBRA+ has between 7%
and 28% overhead (averaging 17%). Compared to HP, on average,
DEBRA performs 94% more operations and DEBRA+ performs
83% more. This is largely because DEBRA and DEBRA+ syn-
chronize once per operation, whereas HP synchronizes each time a
process reaches a new node. In the skip list, DEBRA has up to 6%
overhead (averaging 4%), outperforms HP by an average of 200%,
and also outperforms ST by between 93% and 168% (averaging
133%). ST has significant overhead. For instance, on average,
it starts almost four transactions per operation (each of which an-
nounces one or more pointers), and runtime checks are frequently
performed to determine if a new transaction should be started.

In our second experiment, nodes were actually reclaimed. The
Reclaimers were each paired with the same Pool as DEBRA. The
only exception was None, which does not use a Pool. (Thus, None
is the same as in the first experiment.)

The results appear in Figure 3. In the BST, DEBRA is only 8%
slower than None on average, and, for some data points, DEBRA
actually improves performance by up to 12%. This is possible be-

50% ins, 50% del 25% ins, 25% del, 50% search

Figure 3: Experiment 2 (Using a Bump Allocator and a Pool).

50% ins, 50% del 25% ins, 25% del, 50% search

Figure 4: Extra results for Experiment 2 on Oracle T4-1.

cause DEBRA reduces the memory footprint of the data structure,
which allows a larger fraction of the allocated nodes to fit in cache
and, hence, reduces the number of cache misses. DEBRA+ is be-
tween 2% and 25% slower than None, averaging 10%. Compared
to HP, DEBRA is between 48% and 145% faster, averaging 80%,
and DEBRA+ is between 43% and 123% faster, averaging 76%.
In the skip list, DEBRA performs as well as None. DEBRA also
outperforms ST by between 108% and 211%, averaging 160%.

To measure the benefit of neutralizing slow processes, we tracked
the total amount of memory allocated for records in each trial.
Since we used bump allocation, this simply required determining
how far each bump allocator’s pointer had moved during the exe-
cution. Thus, we were able to compute the total amount of memory
allocated after each trial had finished (without having any impact
on the trial while it was executing). Figure 6 shows the total amount
of memory allocated for records in the second experiment in the
BST with key range 10,000 and workload 50i-50d. (The other cases
were similar.) DEBRA, DEBRA+ and HP all perform similarly up
to eight processes. However, for more than eight processes, some
processes are always context switched out, and they often prevent
DEBRA from advancing the epoch in a timely manner. DEBRA+
fixes this issue. With 16 processes, DEBRA+ neutralizes processes
an average of 935 times per trial, reducing memory usage by an
average of 94% over DEBRA.

We also ran the second experiment on a NUMA Oracle T4-1
system with 8 cores and 64 hardware contexts. Figure 4 shows a
subset of the results (which is limited due to lack of space).

Our third experiment is like the second, except we used a differ-
ent Allocator, which does not preallocate memory. The Allocator’s

50% ins, 50% del 25% ins, 25% del, 50% search

Figure 5: Experiment 3: (Using malloc and a Pool).

Figure 6: Memory allocated for records in Experiment 2 in the
BST with keyrange 10,000 and workload 50i-50d.

allocate operation simply invokes malloc to request memory from
the operation system (and its deallocate operation invokes free).

The results (in Figure 5) are similar to the results for the sec-
ond experiment. However, the absolute throughput is significantly
smaller than in the previous experiments, because of the overhead
of invoking malloc. Although HP and ST are negatively affected,
proportionally, they slow down less than None, DEBRA and DE-
BRA+. This illustrates an important experimental principle: uni-
formly adding overhead to an experiment disproportionately im-
pacts low-overhead algorithms, and obscures their advantage.

8. CONCLUSION
In this work, we presented a distributed variant of EBR, called

DEBRA. Compared to EBR, DEBRA significantly reduces syn-
chronization overhead and offers high performance even with many
more processes than physical cores. Our experiments show that,
compared with performing no reclamation at all, DEBRA is 4%
slower on average, 21% slower at worst, and up to 20% faster in
some cases. Moreover, DEBRA outperforms StackTrack by an av-
erage of 138%. DEBRA is easy to use, and only adds O(1) steps
per data structure operation and O(1) steps per retired record.

We also presented DEBRA+, the first epoch based reclamation
scheme that allows processes to continue reclaiming memory af-
ter a process has crashed. In an n process system, the number of
objects waiting to be freed is O(mn2), where m is the largest num-

ber of objects retired by one data structure operation. The cost to
reuse or free a record is O(1) expected amortized time. In our ex-
periments, DEBRA+ reduced memory consumption over DEBRA
by 94%. Compared with performing no reclamation, DEBRA+ is
only 10% slower on average. DEBRA+ also outperforms a highly
efficient implementation of hazard pointers by an average of 70%.

We introduced the Record Manager, the first generalization of
the C++ Allocator abstraction that is suitable for lock-free pro-
gramming. A Record Manager separates memory reclamation code
from lock-free data structure code, which allows a dynamic data
structure to be implemented without knowing how its records will
be allocated, reclaimed and freed. This abstraction adds virtually
no overhead. It is highly flexible, allowing a programmer to inter-
change techniques for reclamation, object pooling, allocation and
deallocation by changing one line of code.

Besides DEBRA and DEBRA+, the neutralizing technique in-
troduced in this work is of independent interest. It would be use-
ful to find different ways to neutralize processes, so, for example,
the neutralizing technique could be used with different operating
systems. There may also be opportunities to apply neutralizing in
other contexts, such as garbage collection. Finally, it would also
be interesting to understand whether these ideas can be extended to
lock-based algorithms (even for a restricted class, such as reentrant
and idempotent algorithms).

Acknowledgments
I would like to acknowledge my supervisor Faith Ellen for her in-
sightful suggestions. I also extend my thanks to Ryan Johnson,
whose advice and detailed knowledge of operating system mecha-
nisms was invaluable to me. I thank Dave Dice for kindly running
my experiments on the Oracle machine. Lastly, I thank the authors
of StackTrack for sharing their code, and the anonymous review-
ers for their helpful comments. This research was supported by the
National Science and Engineering Research Council of Canada.

9. REFERENCES
[1] Z. Aghazadeh, W. Golab, and P. Woelfel. Making objects

writable. In Proceedings of the 2014 ACM symposium on
Principles of distr. comp., pages 385–395. ACM, 2014.

[2] D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and
N. Shavit. Stacktrack: An automated transactional approach
to concurrent memory reclamation. In Proceedings of the 9th
European Conference on Comp. Sys., page 25. ACM, 2014.

[3] A. Braginsky, A. Kogan, and E. Petrank. Drop the anchor:
lightweight memory management for non-blocking data
structures. In Proceedings of the 25th ACM symposium on
Parallelism in alg. and arch., pages 33–42. ACM, 2013.

[4] T. Brown, F. Ellen, and E. Ruppert. A general technique for
non-blocking trees. In Proceedings of the 19th ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pages 329–342. ACM, 2014.

[5] T. Brown and J. Helga. Non-blocking k-ary search trees. In
Principles of Distr. Sys., pages 207–221. Springer, 2011.

[6] D. L. Detlefs, P. A. Martin, M. Moir, and G. L. Steele Jr.
Lock-free reference counting. Distributed Computing,
15(4):255–271, 2002.

[7] D. Drachsler, M. Vechev, and E. Yahav. Practical concurrent
binary search trees via logical ordering. In Proceedings of
the 19th annual ACM symposium on Principles and practice
of parallel programming, pages 343–356. ACM, 2014.

[8] A. Dragojević, M. Herlihy, Y. Lev, and M. Moir. On the
power of hardware transactional memory to simplify
memory management. In Proceedings of the 30th annual
ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pages 99–108. ACM, 2011.

[9] F. Ellen, P. Fatourou, J. Helga, and E. Ruppert. The
amortized complexity of non-blocking binary search trees. In
Proc. of ACM Symp. on Princ. of Distr. Comp., PODC ’14,
pages 332–340, New York, NY, USA, 2014. ACM.

[10] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel.
Non-blocking binary search trees. In Proceedings of the 29th
ACM SIGACT-SIGOPS symposium on Principles of
distributed computing, pages 131–140. ACM, 2010.

[11] K. Fraser. Practical lock-freedom. PhD thesis, University of
Cambridge, 2004.

[12] A. Gidenstam, M. Papatriantafilou, H. Sundell, and P. Tsigas.
Efficient and reliable lock-free memory reclamation based on
reference counting. Parallel and Distributed Systems, IEEE
Transactions on, 20(8):1173–1187, 2009.

[13] T. E. Hart, P. E. McKenney, A. D. Brown, and J. Walpole.
Performance of memory reclamation for lockless
synchronization. Journal of Parallel and Distributed
Computing, 67(12):1270–1285, 2007.

[14] M. Herlihy. A methodology for implementing highly
concurrent data objects. ACM Trans. Program. Lang. Syst.,
15(5):745–770, Nov. 1993.

[15] M. Herlihy, V. Luchangco, P. Martin, and M. Moir.
Nonblocking memory management support for
dynamic-sized data structures. ACM Transactions on
Computer Systems (TOCS), 23(2):146–196, 2005.

[16] R. Jones and R. Lins. Garbage collection: Algorithms for
automatic dynamic memory management. John Wiliey &
Sons Ltd., England, 1996.

[17] H. Lee. Fast local-spin abortable mutual exclusion with
bounded space. In Principles of Distributed Systems, pages
364–379. Springer, 2010.

[18] A. Matveev. Private communication.
[19] P. E. McKenney and J. D. Slingwine. Read-copy update:

Using execution history to solve concurrency problems. In
Parallel and Distr. Comp. and Sys., pages 509–518, 1998.

[20] M. Michael. Hazard pointers: Safe memory reclamation for
lock-free objects. Parallel and Distributed Systems, IEEE
Transactions on, 15(6):491–504, 2004.

[21] A. Natarajan and N. Mittal. Fast concurrent lock-free binary
search trees. In Proceedings of the 19th annual ACM
symposium on Principles and practice of parallel
programming, pages 317–328. ACM, 2014.

[22] M. Schoeberl and W. Puffitsch. Nonblocking real-time
garbage collection. ACM Transactions on Embedded
Computing Systems (TECS), 10(1):6, 2010.

[23] N. Shafiei. Non-blocking patricia tries with replace
operations. In Distributed Comp. Sys. (ICDCS), 2013 IEEE
33rd Int. Conf. on, pages 216–225. IEEE, 2013.

[24] R. K. Treiber. Systems programming: Coping with
parallelism. International Business Machines Incorporated,
Thomas J. Watson Research Center, 1986.

