Reuse, don’t Recycle: Transforming Lock-free
Algorithms that Throw Away Descriptors™*

Maya Arbel-Raviv and Trevor Brown

Technion, Computer Science Department, Haifa, Israel
mayaarl@cs.technion.ac.il, me@tbrown.pro

—— Abstract

In many lock-free algorithms, threads help one another, and each operation creates a descriptor
that describes how other threads should help it. Allocating and reclaiming descriptors intro-
duces significant space and time overhead. We introduce the first descriptor abstract data type
(ADT), which captures the usage of descriptors by lock-free algorithms. We then develop a
weak descriptor ADT which has weaker semantics, but can be implemented significantly more
efficiently. We show how a large class of lock-free algorithms can be transformed to use weak
descriptors, and demonstrate our technique by transforming several algorithms, including the
leading k-compare-and-swap (k-CAS) algorithm. The original k-CAS algorithm allocates at
least k 4+ 1 new descriptors per k-CAS. In contrast, our implementation allocates two descriptors

per process, and each process simply reuses its two descriptors. Experiments on a variety of work-
loads show significant performance improvements over implementations that reclaim descriptors,
and reductions of up to three orders of magnitude in peak memory usage.

1998 ACM Subject Classification D.1.3 [Programming Techniques]: Concurrent Programming
Keywords and phrases Concurrency, data structures, lock-free, synchronization, descriptors

Digital Object Identifier 10.4230/LIPIcs.DISC.2017.4

1 Introduction

Many concurrent data structures use locks, but locks have downsides, such as susceptib-
ility to convoying, deadlock and priority inversion. Lock-free data structures avoid these
downsides, and can be quite efficient. They guarantee that some process will always makes
progress, even if some processes halt unexpectedly. This guarantee is typically achieved with
helping, which allows a process to harness any time that it would otherwise spend waiting for
another operation to complete. Specifically, whenever a process p is prevented from making
progress by another operation, it attempts to perform some (or all) of the work of the other
operation, on behalf of the process that started it. This way, even if the other process has
crashed, its operation can be completed, so that it no longer blocks p.

In simple lock-free data structures (e.g., [27, 13, 22, 25]), a process can determine how
to help an operation that blocks it by inspecting a small part of the data structure. In more
complex lock-free data structures [12, 16, 26, 10|, processes publish descriptors for their
operations, and helpers look at these descriptors to determine how to help. A descriptor
typically encodes a sequence of steps that a process should follow in order to complete the
operation that created it.

Since lock-free algorithms cannot use mutual exclusion, many helpers can simultaneously
help an operation, potentially long after the operation has terminated. Thus, to avoid situ-

* Full paper submitted to Arxiv. It is also available at: http://tbrown.pro

© Maya Arbel-Raviv and Trevor Brown;

Bv licensed under Creative Commons License CC-BY
31st International Symposium on Distributed Computing (DISC 2017).
Editor: Andréa Richa; Article No. 4; pp.4:1-4:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.DISC.2017.4
http://tbrown.pro
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2

Reuse, don’t Recycle: Transforming Lock-free Algorithms that Throw Away Descriptors

ations where helpers read inconsistent data in a descriptor and corrupt the data structure,
each descriptor must remain consistent and accessible until no helper will ever access it
again. This leads to wasteful algorithms which allocate a new descriptor for each operation.

In this work, we introduce two simple abstract data types (ADTS) that capture the way
descriptors are used by wasteful algorithms (in Section 2). The immutable descriptor ADT
provides two operations, CreateNew and ReadField, which respectively create and initialize
a new descriptor, and read one of its fields. The mutable descriptor ADT extends the
immutable descriptor ADT by adding two operations: WriteField and CASField. These
allow a helper to modify fields of the descriptor (e.g., to indicate that the operation has
been partially or fully completed).

The natural way to implement the immutable and mutable descriptor ADTS is to have
CreateNew allocate memory and initialize it, and to have ReadField, WriteField and CAS-
Field perform a read, write and CAS, respectively. Every implementation of one of these
ADTs must eventually reclaim the descriptors it allocates. Otherwise, the algorithm would
eventually exhaust memory. We briefly explain why reclaiming descriptors is expensive.

In order to safely free a descriptor, a process must know that the descriptor is no longer
reachable. This means no other process can reach the descriptor by following pointers in
shared memory or in its private memory. State of the art lock-free memory reclamation
algorithms such as hazard pointers [23] and DEBRA+ [6] can determine when no process has
a pointer in its private memory to a given object, but they typically require the underlying
algorithm to identify a time ¢ after which the object is no longer reachable from shared
memory. In an algorithm where each operation removes all pointers to its descriptor from
shared memory, ¢t is when O completes. However, in some algorithms (e.g., [9]), pointers
to descriptors are “lazily” cleaned up by subsequent operations, so ¢t may be difficult to
identify. The overhead of reclaiming descriptors comes both from identifying ¢, and from
actually running a lock-free memory reclamation algorithm.

Additionally, in some applications, such as embedded systems, it is important to have a
small, predictable number of descriptors in the system. In such cases, one must use memory
reclamation algorithms that aggressively reclaim memory to minimize the number of objects
that are waiting to be reclaimed at any point in time. Such algorithms incur high overhead.
For example, hazard pointers can be used to maintain a small memory footprint, but a
process must perform costly memory fences every time it tries to access a new descriptor.

To circumvent the aforementioned problems, we introduce a weak descriptor ADT (in
Section 3) that has slightly weaker semantics than the mutable descriptor ADT, but can be
implemented without memory reclamation. The crucial difference is that each time a process
invokes CreateNew to create a new descriptor, it invalidates all of its previous descriptors.
An invocation of ReadField on an invalid descriptor fails and returns a special value 1.
Invocations of WriteField and CASField on invalid descriptors have no effect. We believe
the weak descriptor ADT can be useful in designing new lock-free algorithms, since an
invocation of ReadField that returns L can be used to inform a helper that it no longer
needs to continue helping (making further accesses to the descriptor unnecessary).

We also identify a class of lock-free algorithms that use the descriptor ADT, and which
can be transformed to use the weak descriptor ADT (in Section 3.1). At a high level,
these are algorithms in which (1) each operation creates a descriptor and invokes a Help
function on it, and (2) ReadField, WriteField and CASField operations occur only inside
invocations of Help. Intuitively, the fact that these operations occur only in Help makes
it easy to determine how the transformed algorithm should proceed when it performs an
invalid operation: the operation being helped must have already terminated, so it no longer

M. Arbel-Raviv and T. Brown

needs help. We demonstrate our approach by transforming a wasteful implementation of a
double-compare-single-swap (DCSS) primitive [14].

We then present an extension to our weak descriptor ADT, and show how algorithms that
perform ReadField operations outside of Help can be transformed to use this extension (in
Section 4). We demonstrate our approach by transforming a wasteful implementation of a k-
compare-and-swap (k-CAS) primitive [14]. In the full paper, we also transform the LLX and
SCX primitives of Brown et al. [9], and provide proofs for all of our transformations. These
primitives can be used to implement a wide variety of advanced lock-free data structures.
For example, LLX and SCX have been used to implement lists, chromatic trees, relaxed
AVL trees, relaxed (a,b)-trees, relaxed b-slack trees and weak AVL trees [10, 7, 15].

We use mostly known techniques to produce an efficient, provably correct implementation
of our extended weak descriptor ADT. The high level idea is to (1) store a sequence number
in each descriptor, (2) replace pointers to descriptors with tagged sequence numbers, which
contain a process name and a sequence number, and (3) increment the sequence number in a
descriptor each time it is reused. With this implementation, the transformed algorithms for
k-CAS, and LLX and SCX, have some desirable properties. In the original k-CAS algorithm,
each operation attempt allocates at least k+ 1 new descriptors. In contrast, the transformed
algorithm allocates only two descriptors per process, once, at the beginning of the execution,
and these descriptors are reused. This entirely eliminates dynamic allocation and memory
reclamation for descriptors, and results in an extremely small descriptor footprint.

We present extensive experiments on a 64-thread AMD system and a 48-thread Intel
system (in Section 5). Our results show that transformed implementations always perform
at least as well as their wasteful counterparts, and significantly outperform them in some
workloads. In a k-CAS microbenchmark, our implementation outperformed wasteful im-
plementations using fast distributed epoch-based reclamation [6], hazard pointers [23] and
read-copy-update (RCU) [11] by up to 2.3x, 3.3x and 5.0x, respectively.

The crucial observation in this work is that, in algorithms where descriptors are used only
to facilitate helping, a descriptor is no longer needed once its operation has terminated. This
allows a process to reuse a descriptor as soon as its operation finishes, instead of allocating
a new descriptor for each operation, and waiting considerably longer (and incurring much
higher overhead) to reclaim it using standard memory reclamation techniques. The challenge
in this work is to characterize the set of algorithms that can benefit from this observation,
and to design and prove the correctness of a transformation that takes such algorithms and
produces new algorithms that simply reuse a small number of descriptors.

2 Wasteful Algorithms

In this section, we describe two classes of lock-free wasteful algorithms, and give descriptor
ADTs that capture their behaviour. First, we consider algorithms with immutable descriptors,
which are not changed after they are initialized. We then discuss algorithms with mutable
descriptors, which are modified by helpers.

For the sake of illustration, we start by describing one common way that lock-free wasteful
algorithms are implemented. Consider a lock-free algorithm that implements a set of high-
level operations. Each high-level operation consists of one or more attempts, which either
succeed, or fail due to contention. Each high-level operation attempt accesses a set of objects
(e.g., individual memory locations or nodes of a tree). Conceptually, a high-level operation
attempt locks a subset of these objects and then possibly modifies some of them. These locks
are special: instead of providing exclusive access to a process, they provide exclusive access

4:3

DISC 2017

4:4

Reuse, don’t Recycle: Transforming Lock-free Algorithms that Throw Away Descriptors

to a high-level operation attempt. Whenever a high-level operation attempt by a process p is
unable to lock an object because it is already locked by another high-level operation attempt
O, p first helps O to complete, before continuing its own attempt or starting a new one. By
helping O complete, p effectively removes the locks that prevent it from making progress.
Note that p is able to access objects locked for a different high-level operation attempt (which
is not possible in traditional lock-based algorithms), but only for the purpose of helping the
other high-level operation attempt complete.

We now discuss how helping is implemented. FEach high-level operation or operation
attempt allocates a new descriptor object, and fills it with information that describes any
modifications it will perform. This information will be used by any processes that help the
high-level operation attempt. For example, if the lock-free algorithm performs its modi-
fications with a sequence of CAS steps, then the descriptor might contain the addresses,
expected values and new values for the CAS steps.

A high-level operation attempt locks each object it would like to access by publishing
pointers to its descriptor, typically using CAS. Each pointer may be published in a dedicated
field for descriptor pointers, or in a memory location that is also used to store application
values. For example, in the BST of Ellen et al., nodes have a separate field for descriptor
pointers [12], but in Harris’ implementation of multi-word CAS from single-word CAS, high-
level operations temporarily replace application values with pointers to descriptors [14].

When a process encounters a pointer ptr to a descriptor (for a high-level operation
attempt that is not its own), it may decide to help the other high-level operation attempt
by invoking a function Help(ptr). Typically, Help(ptr) is also invoked by the process that
started the high-level operation. That is, the mechanism used to help is the same one used
by a process to perform its own high-level operation attempt.

Wasteful algorithms typically assume that, whenever an operation attempt allocates
a new descriptor, it uses fresh memory that has never previously been allocated. If this
assumption is violated, then an ABA problem may occur. Suppose a process p reads an
address = and sees A, then performs a CAS to change x from A to C, and interprets the
success of the CAS to mean that = contained A at all times between the read and CAS.
If another process changes x from A to B and back to A between p’s read and CAS, then
p’s interpretation is invalid, and an ABA problem has occurred. Note that safe memory
reclamation algorithms will reclaim a descriptor only if no process has, or can obtain, a
pointer to it. Thus, no process can tell whether a descriptor is allocated fresh or reclaimed
memory. So, safe memory reclamation will not introduce ABA problems.

2.1 Immutable descriptors

We give a straightforward immutable descriptor ADT that captures the way that descriptors
are used by the class of wasteful algorithms we just described. A descriptor has a set of fields,
and each field contains a value. The ADT offers two operations: CreateNew and ReadField.
CreateNew takes, as its arguments, a descriptor type and a sequence of values, one for each
field of the descriptor. It returns a unique descriptor pointer des that has never previously
been returned by CreateNew. Every descriptor pointer returned by CreateNew represents a
new immutable descriptor object. ReadField takes, as its arguments, a descriptor pointer
des and a field f, and returns the value of f in des. We require the immutable descriptor
ADT operations to be lock-free, so they can be used to implement lock-free data structures.

Example Algorithm: DCSS. We use the double-compare single-swap (DCSS) al-
gorithm of Harris et al. [14] as an example of a lock-free algorithm that fits the preceding
description. Its usage of descriptors is easily captured by the immutable descriptor ADT.

© 0 N e A W N e

11
12
13
14
15
16

M. Arbel-Raviv and T. Brown

DCSS(a1,e1,az,e2,n2) : 17 type DCSSdes :
des := CreateNew(DCSSdes, a1, e1, az, e2,n2) {ADDR;, EXP, ADDRg2, EXP2, NEW;}
fdes := flag(des)
loop
r:= CAS(az, e2, fdes)
if ris flagged then DCSSHelp(r) 21 DCSSHelp(fdes) :
else exit loop 22 des := unflag(fdes)
if r=ez then DCSSHelp(fdes) 23 a1 := ReadField(des, ADDR;)
return r 24 a2 := ReadField(des, ADDR2)
25 e1 := ReadF'ield(des, EXP1)
DCSSRead(addr) : 26 if *a; =e; then
loop 27 ng := ReadField(des, NEW3)
r = xaddr 28 CAS(az, fdes,n2)
if ris flagged then DCSSHelp(r) 29 else
else exit loop 30 e2 := ReadField(des, EXP2)
return r 31 CAS(az, fdes, e2)

Figure 1 Code for the DCSS algorithm of Harris et al. [14] using the immutable descriptor ADT.

A DCSS(ay,e1,as,e2,n2) operation does the following atomically. It checks whether the
values in addresses a; and as are equal to a pair of expected values, e; and ey. If so, it
stores the value ny in a9 and returns e,. Otherwise it returns the current value of as.

Pseudocode for the DCSS algorithm appears in Figure 1. At a high level, DCSS creates
a descriptor, and then attempts to lock as by using CAS to replace the value in as with a
pointer to its descriptor. Since the DCSS algorithm replaces values with descriptor pointers,
it needs a way to distinguish between values and descriptor pointers (in order to determine
when helping is needed). So, it steals a bit from each memory location and uses this bit to
flag descriptor pointers.

We now give a more detailed description. DCSS starts by creating and initializing a
new descriptor des at line 2. It then flags des at line 3. We call the result fdes a flagged
pointer. DCSS then attempts to lock ag in the loop at lines 4-7. In each iteration, it tries
to store its flagged pointer in ay using CAS. If the CAS is successful, then the operation
attempt invokes DCSSHelp to complete the operation (at line 8). Now, suppose the CAS
fails. Then, the DCSS checks whether its CAS failed because as contained another DCSS
operation’s flagged pointer (at line 6). If so, it invokes DCSSHelp to help the other DCSS
complete, and then retries its CAS. DCSS repeatedly performs its CAS (and helping) until
the DCSS either succeeds, or fails because as did not contain es.

DCSSHelp takes a flagged pointer fdes as its argument, and begins by unflagging fdes
(to obtain the actual descriptor pointer for the operation). Then, it reads a; and checks
whether it contains e; (at line 26). If so, it uses CAS to change as from fdes to na,
completing the DCSS (at line 28). Otherwise, it uses CAS to change ay from fdes to eq,
effectively aborting the DCSS (at line 31). Note that this code is executed by the process
that created the descriptor, and also possibly by several helpers. Some of these helpers may
perform a CAS at line 26 and some may perform a CAS at line 28, but only the first of
these CAS steps can succeed.

When a program uses DCSS, some addresses can contain either values or descriptor
pointers. So, each read of such an address must be replaced with an invocation of a function
called DCSSRead. DCSSRead takes an address addr as its argument, and begins by reading
addr (at line 13). It then checks whether it read a descriptor pointer (at line 14) and, if so,
invokes DCSSHelp to help that DCSS complete. DCSSRead repeatedly reads and performs
helping until it sees a value, which it returns (at line 16).

4:5

DISC 2017

4:6

Reuse, don’t Recycle: Transforming Lock-free Algorithms that Throw Away Descriptors

2.2 Mutable descriptors

In some more advanced lock-free algorithms, each descriptor also contains information about
the status of its high-level operation attempt, and this status information is used to coordin-
ate helping efforts between processes. Intuitively, the status information gives helpers some
idea of what work has already been done, and what work remains to be done. Helpers use
this information to direct their efforts, and update it as they make progress. For example,
the state information might simply be a bit that is set (by the process that started the
high-level operation, or a helper) once the high-level operation succeeds.

As another example, in an algorithm where high-level operation attempts proceed in
several phases, the descriptor might store the current phase, which would be updated by
helpers as they successfully complete phases. Observe that, since lock-free algorithms can-
not use mutual exclusion, helpers often use CAS to avoid making conflicting changes to
status information, which is quite expensive. Updating status information may introduce
contention. Even when there is no contention, it adds overhead. Lock-free algorithms typic-
ally try to minimize updates to status information. Moreover, status information is usually
simplistic, and is encoded using a small number of bits.

Status information might be represented as a single field in a descriptor, or it might be
distributed across several fields. Any fields of a descriptor that contain status information
are said to be mutable. All other fields are called immutable, because they do not change
during an operation.

Mutable descriptor ADT. We now extend the immutable descriptor ADT to provide
operations for changing (mutable) fields of descriptors. The mutable descriptor ADT offers
four operations: CreateNew, WriteField, CASField and ReadField. The semantics for Cre-
ateNew and ReadField are the same as in the immutable descriptor ADT. WriteField takes,
as its arguments, a descriptor pointer des, a field f and a value v. It stores v in field f of des.
CASField takes, as its arguments, a descriptor pointer des, a field f, an expected value exp
and a new value v. Let vy be the value of f in des just before the CASField. If vy = exp,
then CASField stores v in f. CASField returns vy. As in the immutable descriptor ADT,
we require the operations of the mutable descriptor ADT to be lock-free.

Example Algorithm: k-CAS. A k-CAS(ay,...,ak, e1,...,€x, M1,...,nk) operation
atomically does the following. First, it checks if each address a; contains its expected value
e;. If so, it writes a new value n; to a; for all 4 and returns true. Otherwise it returns false.

The k-CAS algorithm of Harris et al. [14] is an example of a lock-free algorithm that has
descriptors with mutable fields. At a high level, a k-CAS operation O starts by creating a
descriptor that contains its arguments. It then tries to lock each location a; for the operation
O by changing the contents of a; from e; to des, where des is a pointer to O’s descriptor.
If it successfully locks each location a;, then it changes each a; from des to n;, and returns
true. If it fails because a; is locked for another operation, then it helps the other operation
to complete (and unlock its addresses), and then tries again. If it fails because a; contains an
application value different from e;, then the k-CAS fails, and unlocks each location a; that
it locked by changing it from des back to e;, and returns false. (The same thing happens if
O fails to lock a; because the operation has already terminated.)

In addition to the arguments to its k-CAS operation, a k-CAS descriptor contains a 2-bit
state field that initially contains Undecided and is changed to Succeeded or Fuailed depending
on how the operation progresses. This state field is used to coordinate helpers.

Let p be a process performing (or helping) a k-CAS operation O that created a descriptor
d. If p fails to lock some address a; in d, then p attempts to change the state of d using
CAS from Undecided to Failed. On the other hand, if p successfully locks each address in

M. Arbel-Raviv and T. Brown

d, then p attempts to change the state of d using CAS from Undecided to Succeeded. Since
the state field changes only from Undecided to either Fuailed or Succeeded, only the first CAS
on the state field of d will succeed. The k-CAS implementation then uses a lock-free DCSS
primitive (the one presented in Section 2.1) to ensure that p can lock addresses for O only
while d’s state is Undecided. This prevents helpers from erroneously performing successful
CAS steps after the k-CAS operation is already over.

Recall that the DCSS algorithm allocates a descriptor for each DCSS operation. A
k-CAS operation performs potentially many DCSS operations (at least k for a successful
k-CAS), and also allocates its own k-CAS descriptor. The k-CAS algorithm need not be
aware of DCSS descriptors (or of the bit reserved in each memory location by the DCSS
algorithm to flag values as DCSS descriptor pointers), since it can simply use the DCSSRead
procedure described above whenever it accesses a memory location that might contain a
DCSS descriptor. However, the k-CAS algorithm performs DCSS on the state field of a
k-CAS descriptor, which is accessed using the k-CAS descriptor’s ReadField operation. To
allow DCSS to access the state field, we must modify DCSS slightly. First, instead of passing
an address a; to DCSS, we pass a pointer to the k-CAS descriptor and the name of the state
field. Second, we replace the read of addr; in DCSS with an invocation of ReadField.

Since k-CAS descriptor pointers are temporarily stored in memory locations that nor-
mally contain application values, the k-CAS algorithm needs a way to determine whether
a value in a memory location is an application value or a k-CAS descriptor pointer. In the
DCSS algorithm, the solution was to reserve a bit in each memory location, and use this bit
to flag the value contained in the location as a pointer to a DCSS descriptor. Similarly, the
k-CAS algorithm reserves a bit in each memory location to flag a value as a k-CAS descriptor
pointer. The k-CAS and DCSS algorithms need not be aware of each other’s reserved bits,
but they should not reserve the same bit (or else, for example, a DCSS operation could
encounter a k-CAS descriptor pointer, and interpret it as a DCSS descriptor pointer).

When the k-CAS algorithm is used, some memory addresses may contain either values or
descriptor pointers, so reads of such addresses must be replaced by a k-CASRead operation.
This operation reads an address, and checks whether it contains a k-CAS descriptor pointer.
If so, it helps the k-CAS operation to complete, and tries again. Otherwise, it returns the
value it read. For further details on the k-CAS algorithm, refer to [14].

3 Weak descriptors

In this section we present a weak descriptor ADT that has weaker semantics than the
mutable descriptor ADT, but can be implemented more efficiently (without requiring any
memory reclamation for descriptors). We identify a class of algorithms that use the mutable
descriptor ADT, and which can be transformed to use the weak descriptor ADT, instead.

We first discuss a restricted case where operation attempts only create a single descriptor,
and we give an ADT and transformation for that restricted case. (In the next section, we
describe how the ADT and transformation can be modified slightly to support operation
attempts that create multiple descriptors.)

The weak descriptor ADT is a variant of the mutable descriptor ADT that allows some
operations to fail. To facilitate the discussion, we introduce the concept of descriptor validity.
Let des be a pointer returned by a CreateNew operation O by a process p, and d be the
descriptor pointed to by des. In each configuration, d is either valid or invalid. Initially,
d is valid. If p performs another CreateNew operation O’ after O, then d becomes invalid
immediately after O’ (and will never be valid again).

4:7

DISC 2017

4:8

Reuse, don’t Recycle: Transforming Lock-free Algorithms that Throw Away Descriptors

We say that a ReadField(des,...), WriteField(des,...) or CASField(des,...) operation is
performed on a descriptor d, where des is a pointer to d. An operation on a valid (resp.,
invalid) descriptor is said to be valid (resp., invalid). Invalid operations have no effect on
any base object, and return a special value L (which is never contained in a field of any
descriptor) instead of their usual return value. We say that a CreateNew operation O is
performed on a descriptor d if O returns a pointer to d. Observe that a CreateNew
operation is always valid. We say that a process p owns a descriptor d if it performed a
CreateNew operation that returned a pointer des to d.

The semantics for CreateNew are the same as in the mutable descriptor ADT. The
semantics for the other three operations are the same as in the mutable descriptor ADT,
except that they can be invalid. As in the previous ADTs, these operations must be lock-free.

3.1 Transforming a class of algorithms to use the weak descriptor ADT

We now formally define a class of lock-free algorithms that use the mutable descriptor ADT,
and can easily be transformed so that they use the weak descriptor ADT, instead. We
say that a step s of an execution is nontrivial if it changes the state of an object o in
shared memory, and trivial otherwise. In particular, all invalid operations are trivial, and
an unsuccessful CAS or a CAS whose expected and new values are the same are both trivial.
In the following, we abuse notation slightly by referring interchangeably to a descriptor and
a pointer to it.

» Definition 1. Weak-compatible algorithms (WCA) are lock-free wasteful algorithms that
use the mutable descriptor ADT, and have the following properties:

1. Each high-level operation attempt O by a process p may create (and initialize) a single
descriptor d. Inside O, p may perform at most one invocation of a function Help(d) (and
p may not invoke Help(d) outside of O).

2. A process may help any operation attempt O’ by another process by invoking Help(d')
where d’ is the descriptor that was created by O’.

3. If O terminates at time ¢, then any steps taken in an invocation of Help(d) after time ¢
are trivial (i.e., do not change the state of any shared object, incl. d).

4. While a process g # p is performing Help(d), ¢ cannot change any variables in its private
memory that are still defined once Help(d) terminates (i.e., variables that are local to
the process ¢, but are not local to Help).

5. All accesses (read, write or CAS) to a field of d occur inside either Help(d) or O.

At a high level, properties 1 and 2 of WCA describe how descriptors are created and
helped. Property 4 intuitively states that, whenever a process ¢ finishes helping another
process perform its operation attempt, g knows only that it finished helping, and does
not remember anything about what it did while helping the other process. In particular,
this means that ¢ cannot pay attention to the return value of Help. We explain why this
behaviour makes sense. If ¢ creates a descriptor d as part of a high-level operation attempt
O and invokes Help(d), then ¢ might care about the return value of Help, since it needs
to compute the response of O. However, if ¢ is just helping another process p’s high-level
operation attempt O, then it does not care about the response of Help, since it does not
need to compute the response of O. The remaining properties, 3 and 5, allow us to argue
that the contents of a descriptor are no longer needed once the operation that created it has
terminated (and, hence, it makes sense for the descriptor to become invalid). In Section 4,
we will study a larger class of algorithms with a weaker version of property 5.

M. Arbel-Raviv and T. Brown

The transformation. Each algorithm in WCA can be transformed in a straightforward
way into an algorithm that uses the weak descriptor ADT as follows. Consider any ReadField
or CASField operation op performed by a high-level operation attempt O in an invocation
of Help(d), where d was created by a different high-level operation attempt O’. Note that op
is performed while O is helping O’. After op, a check is added to determine whether op was
invalid, in which case p returns from Help immediately. (In this case, Help does not need to
continue, since op will be invalid only if O’ has already been completed by the process that
owns d or a helper.)

Reading immutable fields efficiently. If an invocation of Help(des) accesses many
immutable fields of a descriptor, then we can optimize it by replacing many ReadField
operations with a single, more efficient operation. Details appear in the full paper.

4 Extended Weak Descriptors

In this section, we describe an extended version of the weak descriptor ADT, and an ex-
tended version of the transformation in Section 3.1. This extended transformation weakens
property 5 of WCA so that ReadField operations on a descriptor d can also be performed
outside of Help(d). At a high level, we handle ReadField operations performed outside of
Help as follows. For ReadFields performed inside Help, we have seen that we can simply
stop helping when L is returned. However, for ReadFields performed outside of Help, it is
not clear, in general, how we should respond if | is returned. Intuitively, the goal is to
find a value that ReadField can return so that the algorithm will behave the same way as it
would if the descriptor were still valid. In some algorithms, just knowing that an operation
has been completed gives us enough information to determine what a ReadField operation
should return (as we will see below).

Ezxtended weak descriptor ADT. This ADT is the same as the weak descriptor ADT,
except that ReadField is extended to take, as an additional argument, a default value dv
that is returned instead of 1 when the operation is invalid. Observe that the weak descriptor
ADT is a special case of the extended weak descriptor ADT where each argument dv to an
invocation of ReadField is L.

The extended transformation. CASField and WriteField operations are handled
the same way as in the WCA transformation. However, an invocation of ReadField(des, f)
is handled differently depending on whether it occurs inside an invocation of Help(des). If
it does, it is replaced with an invocation of ReadField(des, f, L) followed by the check, as in
the WCA transformation. If not, it is replaced with an invocation of ReadField(des, f,dv),
where the choice of dv is specific to the algorithm being transformed.

Let A be any algorithm that uses mutable descriptors, and satisfies properties 1-4 of WCA
algorithms (see Definition 1), as well as a weaker version of property 5, called property 5,
which states: every write or CAS to a field of a descriptor d must occur in an invocation
of Help(d). Let e be an execution of A and let ¢ be an execution that is the same as e,
except that one (arbitrary) descriptor d becomes invalid at some point ¢ after the high-level
operation attempt O that created d terminates. (When we say that d becomes invalid at
time ¢, we mean that after ¢, each invocation of ReadField(d, f,dv) that is performed outside
of Help(d) returns its default value dv.)

Let O’ be any high-level operation attempt in ¢ which, after ¢, performs ReadField on
d outside of Help(d). We say that an extended transformation is correct for A if, for all
choices of e, €, d, t, and O, the exact same changes are performed by O’ in e and €’ to any
variables that are still defined once O’ terminates (i.e., variables that are local to the process

4:9

DISC 2017

4:10 Reuse, don’t Recycle: Transforming Lock-free Algorithms that Throw Away Descriptors

performing O’, but are not local to O’, and variables in shared memory), and O’ returns the
same response in both executions. An algorithm A is an eztended weak-compatible algorithm
(and is in the class EWCA) if there is an extended transformation that is correct for A.

Multiple descriptors per operation attempt. In some lock-free algorithms, an
operation can create several different types of descriptors, and invoke different Help proced-
ures. For simplicity, we think of there being a single Help procedure that checks the type
of the descriptor passed to it, and behaves differently for different types. To support such
algorithms, we make the following minor changes. We redefine CreateNew so it only inval-
idates previous descriptors of the same type. We also update Property 1 as follows: Each
high-level operation attempt O by a process p may create a sequence D of descriptors, each
with a unique type. Inside O, p may perform at most one invocation of a function Help(d)
for each d € D (and may not invoke Help(d) outside of O). Details appear in the full paper.

Example Algorithm: k-CAS. In this section, we explain how the extended transform-
ation is applied to the k-CAS algorithm presented in Section 2.2. Note that no invocations
of ReadField on a DCSS descriptor des are performed outside of HelpDCSS(des). There is
only one place in the algorithm where an invocation I of ReadField on a k-CAS descriptor
des is performed outside of Help(des) (the Help procedure for k-CAS). Specifically, I reads
the state field of a k-CAS descriptor inside the modified version of HelpDCSS. Recall that
the k-CAS algorithm passes a k-CAS descriptor pointer and the name of the state field
as the first argument to DCSS, and the DCSS algorithm is modified to use ReadField (at
line 26 of Figure 1) to read this state field. We choose the default value dv = Succeeded for
this invocation of ReadField. We explain why this extended transformation is correct.

When [is performed at line 26 of DCSSHelp (in Figure 1), its response is compared with
e1, which contains Undecided. 1f I returns Undecided, then the CAS at line 28 is performed,
and the process p performing I returns from HelpDCSS. Otherwise, the CAS at line 31 is
performed, and p returns from HelpDCSS.

Suppose I is invalid. Then, we know the k-CAS operation attempt that created des
has been completed. We use the following algorithm specific knowledge. After a k-CAS
operation attempt has completed, its k-CAS descriptor has state Succeeded or Failed (and
is never changed back to Undecided). (This can be determined by inspection of the code.)
Thus, if I were valid, its response would not be Undecided, and p would perform the CAS
at line 31 and return from HelpDCSS. Since dv = Succeeded, p does exactly the same thing
when T is invalid. (Note that the exact value of state is unimportant. It is only important
that it is not Undecided.)

Example Algorithm: LLX and SCX. In the full paper, we also transform a wasteful
implementation of the LLX and SCX primitives of Brown et al. [9].

Implementing the extended weak descriptor ADT. We give a brief high-level
overview, here. Details appear in the full paper. It uses largely known techniques (similar
to [21]), and is not the main contribution of this work. Each process p uses a single descriptor
object D7, in shared memory to represent all descriptors of type 7" that it ever creates. The
descriptor object Dt , conceptually represents p’s current descriptor of type T'. At different
times in an execution, Dt , represents different abstract descriptors created by p. We store
a sequence number in Drp, that is incremented every time p performs CreateNew(T, —).
Instead of using traditional descriptor pointers, we represent each descriptor pointer as a
pair of fields stored in a single word. These fields contain the name of the process who
owns the descriptor, and a sequence number that indicates which invocation of CreateNew
conceptually created this descriptor. When a descriptor pointer is passed to an operation O
on the abstract descriptor, O compares the sequence number in des with the current sequence

M. Arbel-Raviv and T. Brown

number in D7, to determine whether the operation is valid or invalid. Thus, incrementing
the sequence number in Dy), effectively makes all abstract descriptors of type T" that were
previously created by p inwvalid. Mutable fields are stored in a single word alongside a
sequence number, so they can be updated with CAS, preventing invalid operations from
making changes. (If the mutable fields and a sequence number cannot fit in one word, then
one can use multiple words and attach the sequence number to each word.)

5 Experiments

Our experiments were run on two large-scale systems. The first is a 2-socket Intel E7-4830
v3 with 12 cores per socket and 2 hyperthreads (HTs) per core, for a total of 48 threads.
Each core has a private 32KB L1 cache and 256KB L2 cache (which is shared between HTs
on a core). All cores on a socket share a 30MB L3 cache. The second is a 4-socket AMD
Opteron 6380 with 8 cores per socket and 2 HTs per core, for a total of 64 threads. Each
core has a private 16KB L1 data cache and 2MB L2 cache (which is shared between HTs on
a core). All cores on a socket share a 6MB L3 cache.

Since both machines have multiple sockets and a non-uniform memory architecture
(NUMA), in all of our experiments, we pinned threads to cores so that the first socket
is filled first, then the second socket is filled, and so on. Furthermore, within each socket,
each core has one thread pinned to it before hyperthreading is engaged. Consequently, our
graphs clearly show the effects of hyperthreading and NUMA.

Both machines have 128GB of RAM. Each runs Ubuntu 14.04 LTS. All code was com-
piled with the GNU C++ compiler (G++) 4.8.4 with build target x86_ 64-linux-gnu and
compilation options -std=c++0x -mcx16 -03. Thread support was provided by the POSIX
Threads library. We used the Performance Application Programming Interface (PAPI) lib-
rary to collect statistics from hardware counters to determine cache miss rates, stall times,
etc. We used the scalable allocator jemalloc 4.2.1, which greatly improved performance.

k-CAS microbenchmark. In order to compare our reusable descriptor technique
with algorithms that reclaim descriptors, we implemented k-CAS with several memory re-
clamation schemes. Specifically, we implemented a lock-free memory reclamation scheme
that aggressively frees memory called hazard pointers [23], a (blocking) epoch-based re-
clamation scheme called DEBRA [6], and reclamation using the read-copy-update (RCU)
primitives [11] (also blocking). We use Reuse as shorthand for our reusable descriptor based
algorithm, and DEBRA, HP and RCU to denote the other algorithms.

The paper by Harris et al. also describes an optimization to reduce the number of DCSS
descriptors that are allocated by embedding them in the k-CAS descriptor. We applied this
optimization, and found that it did not significantly improve performance. Furthermore, it
complicated reclamation with hazard pointers. Thus, we did not use this optimization.

Methodology. We compared our implementations of k-CAS using a simple array-
based microbenchmark. For each algorithm A € {Reuse, DEBRA, HP, RCU}, array size
S € {214,220 2261 and k-CAS parameter k € {2,16}, we run ten timed trials for several
thread counts n. In each trial, an array of a fixed size S is allocated and each entry is
initialized to zero. Then, n concurrent threads run for one second, during which each thread
repeatedly chooses k uniformly random locations in the array, reads those locations, and
then performs a k-CAS (using algorithm A) to increment each location by one.

As a way of validating correctness in each trial, each thread keeps track of how many
successful k-CAS operations it performs. At the end of the trial, the sum of entries in the
array must be k times the total number of successful k-CAS operations over all threads.

4:11

DISC 2017

4:12 Reuse, don’t Recycle: Transforming Lock-free Algorithms that Throw Away Descriptors

2-CAS 16-CAS

3
o

N
o

-
o

w

o

N
5]

N}

S}

o

Array size 2%6
S

Array size 226
5

o

0 8 16 24 32 40 48 56 64

16 24 32 40 48 56 64

O R N WA OO

O R N WA OO

0 8 16 24 32 40 48 < 0 8 16 24 32 40 48 56 64 0 8 16 24 32 40 48 56 64

4FReuse -4-DEBRA ¢HP -&-RCU

Figure 2 Results for a k-CAS microbenchmark. The x-axis represents the number of con-
current threads. The y-axis represents operations per microsecond.

Results. The results for this benchmark appear in Figure 2. Error bars are not drawn
on the graphs, since more than 97% of the data points have a standard deviation that is less
than 5% of the mean (making them essentially too small to see).

Overall, Reuse outperforms every other algorithm, in every workload, on both machines.
Notably, on the Intel machine, its throughput is 2.2 times that of the next best algorithm
at 48 threads with k = 16 and array size 226. On the AMD machine, its throughput is 1.7
times that of the next best algorithm at 64 threads with k = 16 and array size 22°.

On the Intel machine, with & = 2, NUMA effects are quite noticeable for Reuse in the
jump from 24 to 32 threads, as threads begin running on the second socket. According the
statistics we collected with PAPI, this decrease in performance corresponds to an increase
in cache misses. For example, with k£ = 2 and an array of size 226 in the Intel machine,
jumping from 24 threads to 25 increases the number of L3 cache misses per operation from
0.7 to 1.6 (with similar increases in L1 and L2 cache misses and pipeline stalls). We believe
this is due to cross-socket cache invalidations.

From the three graphs for £ = 2 on Intel, we can see that the effect is more severe with
larger absolute throughput (since the additive overhead of a cache miss is more significant).
Conversely, the effect is masked by the much smaller throughput of the slower algorithms,
and by the substantially lower throughputs in the k = 16 case, except when the array is of
size 2'4. In the array of size 2'4, contention is extremely high, since each of the 48 threads
are accessing 16 k-CAS addresses, each of which causes contention on the entire cache line
of 8 words, for a total of 6144 array entries contended at any given time. Thus, cache
misses become a dominating factor in the performance on two sockets. These effects were
not observed on the AMD machine. There, the number of cache misses is not significantly
different when crossing socket boundaries, which suggests a robustness to NUMA effects
that is not seen on the Intel machine.

M. Arbel-Raviv and T. Brown

Interestingly, absolute throughputs on the AMD machine are larger with array size 22°
214 226 220 array size represents a sweet spot with
214 226 size. For example,
with 64 threads and k = 16, Reuse incurred approximately 50% more cache misses with size
226 than with size 22°, and approximately 50% of operations helped one another with size
24 whereas less than 1% of operations helped one another with size 22°.

than with sizes and . This is because the

less contention than the size and better cache utilization than the

Note, however, that this is not true on the Intel machine. There, 226 is almost always as
fast as 220 because of the very large shared L3 cache (which is 5x larger than on the AMD
machine). This is reflected in the increased number of cycles where the processor is stalled
(e.g., waiting for cache misses to be served) when moving from size 229 to 226. On the Intel
machine, stalled cycles increase by 85% per operation, whereas on the AMD machine they
increase by a whopping 450% per operation.

Several additional experiments appear in the full paper, including empirical studies of
memory usage, and of the performance of a transformed LLX and SCX implementation.

6 Related Work

Several papers have presented universal constructions or strong primitives for non-blocking
algorithms in which operations create descriptors [17, 2, 1, 24, 14, 20, 18, 21, 3, 9]. A subset
of these algorithms employ ad-hoc techniques for reusing descriptors [17, 2, 1, 24, 21, 20, 18].
The rest assume descriptors will be allocated for each operation and eventually reclaimed.
Most of the ad-hoc techniques for reusing descriptors have significant downsides. Some
are complex and tightly integrated into the underlying algorithm, or rely on highly specific
algorithmic properties (e.g., that descriptors contain only a single word). Others use syn-
chronization primitives that atomically operate on large words, which are not available on
modern systems, and are inefficient when implemented in software. Yet others introduce
high space overhead (e.g., by attaching a sequence number to every memory word). Some
techniques also incur significant runtime overhead (e.g., by invoking expensive synchron-
ization primitives just to read fields of a descriptor). Furthermore, these techniques give,
at best, a vague idea of how one might reuse descriptors for arbitrary algorithms, and it
would be difficult to determine how to use them in practice. Our work avoids all of these
downsides, and provides a concrete approach for transforming a large class of algorithms.
Barnes [4] introduced a technique for producing non-blocking algorithms that can be
more efficient (and sometimes simpler) than the universal constructions described above.
With Barnes’ technique, each operation creates a new descriptor. Creating a new descriptor
for each operation allows his technique to avoid the ABA problem while remaining concep-
tually simple. Each operation conceptually locks each location it will modify by installing
a pointer to its descriptor, and then performs it modifications and unlocks each location.
Barnes’ technique is the inspiration for the class WCA. Many algorithms have since been in-
troduced using variants of this technique [14, 12, 3, 16, 26, 9, 10]. Several of these algorithms
are quite efficient in practice despite the overhead of creating and reclaiming descriptors.
Our technique can significantly improve the space and time overhead of such algorithms.
Recent work has identified ways to use hardware transactional memory (HTM) to reduce
descriptor allocation [8, 19]. Currently, HTM is supported only on recent Intel and IBM
processors. Other architectures, such as AMD, SPARC and ARM have not yet developed
HTM support. Thus, it is important to provide solutions for systems with no HTM support.
Additionally, even with HTM support, our approach is useful. Current (and likely future)
implementations of HTM offer no progress guarantees, so one must provide a lock-free

4:13

DISC 2017

4:14 Reuse, don’t Recycle: Transforming Lock-free Algorithms that Throw Away Descriptors

fallback path to guarantee lock-free progress. The techniques in [8, 19] accelerate the HTM-
based code path(s), but do nothing to reduce descriptor allocations on the fallback path.
In some workloads, many operations run on the fallback path, so it is important for it to
be efficient. Our work provides a way to accelerate the fallback path, and is orthogonal to
work that optimizes the fast path.

The long-lived renaming (LLR) problem is related to our work (see [5] for a survey), but
its solutions do not solve our problem. LLR provides processes with operations to acquire
one unique resource from a pool of resources, and subsequently release it. One could imagine
a scheme in which processes use LLR to reuse a small set of descriptors by invoking acquire
instead of allocating a new descriptor, and eventually invoking release. Note, however, that a
descriptor can safely be released only once it can no longer be accessed by any other process.
Determining when it is safe to release a descriptor is as hard as performing general memory
reclamation, and would also require delaying the release (and subsequent acquisition) of a
descriptor (which would increase the number of descriptors needed). In contrast, our weak
descriptors eliminate the need for memory reclamation, and allow immediate reuse.

7 Conclusion

We presented a novel technique for transforming algorithms that throw away descriptors
into algorithms that reuse descriptors. Our experiments show that our transformation yields
significant performance improvements for a lock-free k-CAS algorithm. Furthermore, our
transformation reduces peak memory usage by nearly three orders of magnitude over the next
best implementation. We believe our transformation can be used to improve the performance
and memory usage of many other algorithms that throw away descriptors. Moreover, we
hope that our extended weak descriptor ADT will aid in the design of more efficient, complex
algorithms, by allowing algorithm designers to benefit from the conceptual simplicity of
throwing away descriptors without paying the practical costs of doing so.

Acknowledgments

We thank Faith Ellen for her gracious help in proving correctness for our transformations,
and her insightful comments. Some of this work was done while Trevor was a student at the
University of Toronto, and while Maya was visiting him there. This work was supported by
the Israel Science Foundation (grant 1749/14), the Yad-HaNadiv foundation, the Natural
Sciences and Engineering Research Council of Canada, and Global Affairs Canada. Maya is
supported in part by the Technion Hasso Platner Institute Research School.

—— References

1 Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free made fast. In Proceedings of
STOC 95, pages 5b38-547, 1995.

2 James H. Anderson and Mark Moir. Universal constructions for multi-object operations.
In Proceedings of PODC ’95, pages 184—193, 1995.

3 Hagit Attiya and Eshcar Hillel. Highly concurrent multi-word synchronization. Theoretical
Computer Science, 412(12):1243-1262, 2011.

4 Greg Barnes. A method for implementing lock-free shared-data structures. In Proceedings
of SPAA 93, pages 261-270, 1993.

5 Alex Brodsky, Faith Ellen, and Philipp Woelfel. Fully-adaptive algorithms for long-lived
renaming. Distributed Computing, 24(2):119, 2011.

M. Arbel-Raviv and T. Brown

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Trevor Brown. Reclaiming memory for lock-free data structures. In Proceedings of PODC
’15, pages 261-270, 2015.

Trevor Brown. Techniques for Constructing Efficient Data Structures. PhD thesis, Univer-
sity of Toronto, 2017.

Trevor Brown. A template for implementing fast lock-free trees using HTM. In Proceedings
of PODC ’17, pages 293-302, 2017.

Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-blocking data
structures. In Proceedings of PODC 13, pages 13-22, 2013.

Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking trees.
In Proceedings of PPoPP ’1}, pages 329-342, 2014.

Mathieu Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais, and Jonathan
Walpole. User-level implementations of Read-Copy Update. IEEE Transactions on Parallel
and Distributed Systems, 23(2):375-382, 2012.

Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking
binary search trees. In Proceedings of PODC ’10, pages 131-140, 2010.

Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Proceedings
of DISC' ’01, pages 300-314, 2001.

Timothy L. Harris, Keir Fraser, and Tan A. Pratt. A practical multi-word compare-and-
swap operation. In Proceedings of DISC ’02, pages 265279, 2002.

Meng He and Mengdu Li. Deletion without rebalancing in non-blocking binary search trees.
In Proceedings of OPODIS 16, pages 34:1-34:17, 2017.

Shane V. Howley and Jeremy Jones. A non-blocking internal binary search tree. In Pro-
ceedings of SPAA ’12, pages 161-171, 2012.

Amos Israeli and Lihu Rappoport. Disjoint-access-parallel implementations of strong shared
memory primitives. In Proceedings of PODC' 94, pages 151-160, 1994.

Prasad Jayanti and Srdjan Petrovic. Efficiently implementing a large number of LL/SC
objects. In Proceedings of OPODIS’ 05, pages 17-31, 2005.

Yujie Liu, Tingzhe Zhou, and Michael Spear. Transactional acceleration of concurrent data
structures. In Proceedings of SPAA 15, pages 244-253, 2015.

Victor Luchangco, Mark Moir, and Nir Shavit. Nonblocking k-compare-single-swap. Theory
of Computing Systems, 44(1):39-66, January 2009.

Virendra Jayant Marathe and Mark Moir. Toward high performance nonblocking software
transactional memory. In Proceedings of PPoPP ’08, pages 227-236, 2008.

Maged M. Michael. High performance dynamic lock-free hash tables and list-based sets.
In Proceedings of SPAA 02, pages 73-82, 2002.

Maged M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Trans. Parallel Distrib. Syst., 15(6):491-504, June 2004.

Mark Moir. Practical implementations of non-blocking synchronization primitives. In
Proceedings of PODC' °97, pages 219-228, 1997.

Aravind Natarajan and Neeraj Mittal. Fast concurrent lock-free binary search trees. In
Proceedings of PPoPP ’1}, pages 317-328, 2014.

Niloufar Shafiei. Non-blocking patricia tries with replace operations. In Proceedings of
ICDCS 13, pages 216-225, 2013.

John D. Valois. Lock-free linked lists using compare-and-swap. In Proceedings of PODC
’95, pages 214-222, 1995.

4:15

DISC 2017

	Introduction
	Wasteful Algorithms
	Immutable descriptors
	Mutable descriptors

	Weak descriptors
	Transforming a class of algorithms to use the weak descriptor ADT

	Extended Weak Descriptors
	Experiments
	Related Work
	Conclusion

