
Concurrent Data Structures

Faith Ellen
Department of Computer Science

University of Toronto, Canada
faith@cs.toronto.edu

Trevor Brown
Department of Computer Science

University of Toronto, Canada
tabrown@cs.toronto.edu

Data structures are an important component of efficient
and well-structured programs. In shared memory distributed
computing, correct data structures are difficult to construct
because concurrent accesses by different processes can con-
flict with one another. One simple approach is to use a
global lock to restrict access to one process at a time. But
this can severely affect performance. This talk will present a
survey of some of the interesting techniques that have been
developed to build efficient concurrent data structures. It
will also discuss how we think concurrent data structures
should be evaluated.

1. TECHNIQUES
One natural technique is for a process to only lock a small

portion of the data structure that is currently being ac-
cessed. This is known as fine grain locking. An example
of this is hand-over-hand locking [2, 19]. However, such
data structures are not fault tolerant. If a process crashes
while holding a lock, part of the data structure may become
inaccessible.

Another approach is to build lock-free (non-blocking) or
wait-free data structures. These ensure that some processes
or all processes can always complete an operation on the
data structures, no matter how the processes are scheduled.
However, there typically needs to be some way for processes
accessing the same part of a data structure to synchronize
with one another. For example, nodes that are going to be
deleted can be marked so that no other processes will later
modify these nodes [14] or auxillary nodes can be added
between real nodes be prevent conflicts between updates of
adjacent nodes [25].

For complicated updates that involve changing multiple
pointers, processes must record information about the up-
dates they are performing, so that other processes can help
complete the updates, in case the processes are slow or crash.
Nodes involved in such an update can be flagged and store
information in specially dedicated fields or store a pointer
to an information node describing the update [12, 10].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

PODC’16 July 25-28, 2016, Chicago, IL, USA
c© 2016 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3964-3/16/07.

DOI: http://dx.doi.org/10.1145/2933057.2933123

If an operation takes effect by applying a single atomic
primitive, there is no need to record information about the
update, because it is never interrupted. Atomic multi-word
primitives (such as multi-word compare&swap) can simplify
the implementation of complicated updates. However, such
primitives are typically not available. An alternative is to
use lock-free linearizable implementations of more powerful
primitives from weaker primitives such as compare&swap [7].
The key is to choose powerful primitives that are well-suited
for implementing data structure operations, but are not so
powerful that they preclude efficient implementations.

Transactional memory enables concurrent data structures
to be built very easily: simply put each operation inside a
transaction [16]. However, the high overhead of software
transactional memory means that the resulting data struc-
tures are inefficient. Using hardware transactional memory
reduces the overhead, but does not provide any progress
guarantees. Therefore, data structures built using hard-
ware transactional memory must provide a software fallback
path. To allow the hardware and software paths to run
concurrently (avoiding concurrency bottlenecks), hardware
transactions must be instrumented, which adds significant
overhead. With two hardware paths, one instrumented and
one not, together with a software fallback path, high ef-
ficiency can be obtained without introducing concurrency
bottlenecks [5].

It is typically easier to implement a data-structure with
weak progress guarantees, for example, obstruction-freedom.
However, there are techniques that can automatically trans-
form (a class of) implementations to have stronger progress
guarantees [11, 13, 24].

Instead of trying to implement an efficient sequential data
structure in a concurrent setting, it is sometimes better to
implement a version having relaxed structural properties.
For example, with lazy deletion, a node is marked to logically
delete it from a set and may be physically deleted later [14,
4]. In a chromatic tree, updates (such as rotations), which
are used to help rebalance the tree, are decoupled from the
insertion and deletion of nodes and can be freely interleaved
with other updates [3, 8]. Breaking up a big operation into
a number of smaller pieces can be especially beneficial for
implementations using hardware transactional memory, be-
cause there are capacity limits that cause transactions ac-
cessing too many memory locations to fail.

Alternatively, one can relax the definition of the abstract
data type to be implemented. A pool (bag) maintains a set
which supports an operation that returns an an arbitrary el-
ement, rather than a specified element (such as the element

151



that was inserted earliest or latest). For some applications
where a queue or stack is employed, a pool is sufficient and
can be implemented more efficiently [17, 23, 1]. Other ex-
amples of relaxed concurrent data types can be found in
[22].

An atomic snapshot of a data structure is useful for it-
erating through the data structure, for example, when per-
forming a range query or for generating a consistent backup
copy of the data structure. A persistent data structure,
in which each update creates a new version of the data
structure without destroying previous versions, automati-
cally provides atomic snapshots. However, it can use a lot
of space, even when large parts of the data structure are
shared by consecutive versions. For example, in a persis-
tent binary search tree, each update creates a copy of all
the nodes it changes as well as all ancestors of these nodes.
Other implementations are more space efficient [4, 21, 20].

For sequential and lock-based data structures, memory
reclamation is easy. For lock-free and wait-free data struc-
tures, it can be difficult to determine when a node can safely
be freed (and then reused) after it has been deleted from the
data structure. Before a process can free a node, it must
know that no other process is currently accessing the node
or can reach it (by following a sequence of pointers). Hazard
pointers [15, 18] provide a very popular memory reclamation
scheme for use with concurrent data structures. However,
when a deleted node can point to other deleted nodes, as in
the chromatic tree, hazard pointers cannot be used. There
are alternative memory reclamation schemes for such data
structures (surveyed in [6]), but they are significantly more
complicated. Because many concurrent data structures in-
volve a lot of copying and, thus, create a lot of garbage,
memory reclamation can have a significant impact on their
performance. Thus, choosing (or possibly constructing) a
good memory reclamation scheme is an important compo-
nent of building a concurrent data structure.

2. EVALUATION
Papers about concurrent data structures range from the

presentation of new algorithmic techniques and the design
and analysis of new data structures to experimental compar-
ison of different data structures and algorithmic engineering.

If the focus of the paper is algorithmic, the work must in-
clude rigorous proofs of correctness. Researchers should not
rely on high level proof sketches. Concurrent data structures
can be sensitive to seemingly insignificant reordering of op-
erations and some errors are quite subtle. Unfortunately,
there are numerous examples of incorrect concurrent data
structures that have been published (or would have been
published, but for a dedicated expert reviewer). It is the
responsibility of researchers to ensure that their data struc-
tures are correct. Verification tools are being developed, but,
so far, they are difficult to use and have only been applied
to relatively simple concurrent data structures.

Complexity analyses of concurrent data structures should
also be provided. For wait-free algorithms, determining the
worst-case step complexity is usually straightforward and is
often part of the proof of wait-freedom. However, lock-free
data structures require an amortized or average-case analy-
sis. This is typically much more involved [9]. As is the case
for papers about sequential data structures, an interesting
analysis (and, especially, new analytical techniques) can be
an important contribution of a paper.

If the focus of the paper is experimental, the experiments
should be reproducible and, ideally, vetted (for example,
through artifact evaluation, as is done in some systems con-
ferences). It is important that experiments are measuring
the right aspects of concurrent data structures. For exam-
ple, one concurrent data structure may appear to be more
efficient than another, but, in reality, the differences can
be due to small optimizations, better coding, or a different
memory reclamation scheme. Even when two different data
structures are evaluated using the same experimental setup,
on the same hardware, using the same operating system and
the same memory reclamation scheme, there may be signif-
icant overhead in the experimental setup that masks sub-
stantial differences in their performance. For example, if an
operation takes 1 millisecond and another operation takes
1 microsecond, but the overhead is 1 millisecond, then the
first operation appears to be only a factor of 2 slower, rather
than a factor of 1000 slower. Even more troubling, a set of
experiments performed on two concurrent data structures
on the same machine can lead to opposite conclusions when
performed on a different machine.

When evaluating concurrent data structures, such as bal-
anced search trees, which are designed for good worst-case
behaviour, it is insufficient to only consider randomly gen-
erated input data. Since binary search trees are likely to
remain relatively balanced under random sequences of inser-
tions and deletions, the overhead of rebalancing is wasted.
Naturally, unbalanced binary search trees perform signifi-
cantly better in these experiments.

Even when one wants to compare the average case per-
formance of concurrent data structures, one has to be care-
ful how one chooses the data. For example, for multi-sets
(which can contain multiple copies of the same key), us-
ing different proportions of insertions and deletions might
lead to data structures that become empty or grow without
bound. However, this is provably not the case for sets.

Comprehensive experiments that fairly evaluate a variety
of concurrent data structures can be very valuable. Experi-
ments should be chosen to not only present the relative per-
formance of different concurrent data structures, but provide
some understanding about why one performs better than an-
other under various conditions. For example, one might use
experiments to determine when it is faster to replace a small
subtree with a new copy rather than update information in
that subtree. It is also interesting to compare concurrent
data structures using real-world data to determine which is
best for a particular application or class of applications and
which optimizations are useful.

Papers which describe a slightly new concurrent data struc-
ture (for example, using known techniques to obtain a small
variation of an existing data structure), together with exper-
iments on which it performs better than some other existing
data structures, are not worthy of publication in top con-
ferences and journals. Unfortunately, many such papers are
submitted.

On the other hand, a paper with a new and interesting al-
gorithmic idea, but with performance results that are com-
parable to (or slightly worse than) existing data structures
(or even with no experiments), should not be automatically
rejected “since it isn’t practical.” Other researchers may be
able to build on the approach or combine it with other ex-
isting approaches to engineer a very efficient data structure,
possibly for a specific application.

152



Acknowledgments
This work was supported by by the Natural Science and
Engineering Research Council of Canada.

3. REFERENCES
[1] Y. Afek, M. Hakimi, and A. Morrison. Fast and

scalable rendezvousing. Distributed Computing,
26(4):243–269, 2013.

[2] R. Bayer and M. Schkolnick. Concurrency of
operations on B-trees. Acta Inf., 9:1–21, 1977.

[3] J. Boyar, R. Fagerberg, and K. S. Larsen.
Amortization results for chromatic search trees, with
an application to priority queues. Journal of
Computer and System Sciences, 55(3):504–521, 1997.

[4] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun.
A practical concurrent binary search tree. In Proc.
15th ACM Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 257–268, 2010.

[5] T. Brown. Brief announcement: Faster data structures
in transactional memory using three paths. In Proc.
29th International Symposium on Distributed
Computing (DISC), pages 671–672, 2015.

[6] T. Brown. Reclaiming memory for lock-free data
structures: There has to be a better way. In Proc.
34rd ACM Symposium on Principles of Distributed
Computing (PODC), pages 261–270, 2015.

[7] T. Brown, F. Ellen, and E. Ruppert. Pragmatic
primitives for non-blocking data structures. In Proc.
32nd ACM Symposium on Principles of Distributed
Computing (PODC), pages 13–22, 2013.

[8] T. Brown, F. Ellen, and E. Ruppert. A general
technique for non-blocking trees. In Proc. 19th ACM
Symposium on Principles and Practice of Parallel
Programming (PPoPP), pages 329–342, 2014.

[9] F. Ellen, P. Fatourou, J. Helga, and E. Ruppert. The
amortized complexity of non-blocking binary search
trees. In Proc. 33rd ACM Symposium on Principles of
Distributed Computing (PODC), pages 332–340, 2014.

[10] F. Ellen, P. Fatourou, E. Ruppert, and F. van
Breugel. Non-blocking binary search trees. In Proc.
29th ACM Symposium on Principles of Distributed
Computing (PODC), pages 131–140, 2010.

[11] F. E. Fich, V. Luchangco, M. Moir, and N. Shavit.
Obstruction-free algorithms can be practically
wait-free. In Proc. 19th International Conference on
Distributed Computing (DISC), pages 78–92, 2005.

[12] M. Fomitchev and E. Ruppert. Lock-free linked lists
and skip lists. In Proc. 23rd ACM Symposium on
Principles of Distributed Computing (PODC), pages
50–59, 2004.

[13] G. Giakkoupis, M. Helmi, L. Higham, and P. Woelfel.
An O(

√
n) space bound for obstruction-free leader

election. In Proc. 27th International Symposium on
Distributed Computing (DISC), pages 46–60, 2013.

[14] T. L. Harris. A pragmatic implementation of
non-blocking linked-lists. In Proc. 15th International
Conference on Distributed Computing (DISC), pages
300–314, 2001.

[15] M. Herlihy, V. Luchangco, P. A. Martin, and M. Moir.
Nonblocking memory management support for
dynamic-sized data structures. ACM Trans. Comput.
Syst., 23(2):146–196, 2005.

[16] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 2012.

[17] U. Manber. On maintaining dynamic information in a
concurrent environment (preliminary version). In
Proc. 16th Annual ACM Symposium on Theory of
Computing (STOC), pages 273–278, 1984.

[18] M. Michael. Hazard pointers: Safe memory
reclamation for lock-free objects. IEEE Transactions
on Parallel and Distributed Systems, 15(6):491–504,
2004.

[19] M. Moir and N. Shavit. Concurrent data structures. In
Handbook of Data Structures and Applications.
Chapman and Hall/CRC Press, 2004.

[20] E. Petrank and S. Timnat. Lock-free data-structure
iterators. In Proc. 27th International Symposium on
Distributed Computing (DISC), pages 224–238, 2013.

[21] A. Prokopec, N. Bronson, P. Bagwell, and
M. Odersky. Concurrent tries with efficient
non-blocking snapshots. In Proc. 17th ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 151–160, 2012.

[22] N. Shavit and G. Taubenfeld. The computability of
relaxed data structures: Queues and stacks as
examples. In Proc. 22nd International Colloquium on
Structural Information and Communication
Complexity (SIROCCO), pages 414–428, 2015.

[23] N. Shavit and D. Touitou. Elimination trees and the
construction of pools and stacks. Theory Comput.
Syst., 30(6):645–670, 1997.

[24] S. Timnat and E. Petrank. A practical wait-free
simulation for lock-free data structures. In Proc. ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 357–368, 2014.

[25] J. D. Valois. Lock-free linked lists using
compare-and-swap. In Proc. 14th ACM Symposium on
Principles of Distributed Computing (PODC), pages
214–222, 1995.

153




