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Abstract. This paper presents the first concurrent non-blocking k-ary
search tree. Our data structure generalizes the recent non-blocking binary
search tree of Ellen et al. [5] to trees in which each internal node has k
children. Larger values of k decrease the depth of the tree, but lead
to higher contention among processes performing updates to the tree.
Our Java implementation uses single-word compare-and-set operations
to coordinate updates to the tree. We present experimental results from
a 16-core Sun machine with 128 hardware contexts, which show that our
implementation achieves higher throughput than the non-blocking skip
list of the Java class library and the leading lock-based concurrent search
tree of Bronson et al. [3].
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1 Introduction

With the arrival of machines with many cores, there is a need for efficient,
scalable linearizable concurrent implementations of often-used abstract
data types (ADTs) such as the set. Most existing concurrent implemen-
tations of the set ADT are lock-based (e.g., [3, 9]). However, locks have
some disadvantages (e.g., [7]). Other implementations use operations not
directly supported by most hardware, such as load-link/store-conditional
[2] and multi-word compare-and-swap (CAS) [8]. Software transactional
memory (STM) has been used to implement the set ADT (e.g., [10]), but
this approach is currently inefficient [3].

Most multicore machines support (single-word) CAS operations. Non-
blocking implementations of dictionaries have been given based on skip
lists and binary search tree structures. Sundell and Tsigas [12], Fomitchev
and Ruppert [6], and Fraser [8] have implemented a skip list using CAS
operations. A binary search tree implementation using only CAS oper-
ations was sketched by Valois [13], but the first complete algorithm is
due to Ellen et al. [5]. The non-blocking property ensures by definition
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that, while a single operation may be delayed, the system as a whole will
always make progress. (Some refer to this property as lock-freedom.)

In this paper, we generalize the binary search tree of Ellen et al. (BST)
to a k-ary search tree (k-ST) in which nodes have up to k− 1 keys and k
children. This required generalizing the existing BST update operations to
k-ary trees, creating new kinds of updates to handle insertion and deletion
of keys from nodes, and verifying that the coordination scheme works with
the new updates. Using larger values of k decreases the average depth of
nodes, but increases the local work done at each internal node in routing
searches and performing updates to the tree. However, the increased work
at each node is offset by the improved spatial locality offered by larger
nodes. By varying k, we can balance these factors to suit a particular
system architecture, expected level of contention, or ratio of updates to
searches. Searches are extremely simple and fast. Oblivious to concurrent
updates, they behave exactly as they would in the sequential case.

We have implemented both the BST and our k-ST in Java, and have
compared these implementations with ConcurrentSkipListMap (SL) of
the Java class library, and the lock-based AVL tree of Bronson et al.
(AVL) [3]. The AVL tree is the leading concurrent search tree imple-
mentation. It has been compared in [3] with SL, a lock-based red-black
tree, and a red-black tree implemented using STM. Since SL and AVL
drastically outperform the red-black tree implementations, we have not
included the latter in our comparison. In our experiments, the BST and
4-ST (k-ST with k = 4) algorithms are top performers in both high and
low contention cases. We did not observe significant benefits when using
values of k greater than four, but we expect this will change with algorith-
mic improvements to the management of keys within nodes. This paper
also provides the first performance data for the BST of Ellen et al. [5].

The BST and k-ST are both unbalanced trees. All performance tests in
this paper use uniformly distributed random keys. If keys are not random
then, in certain cases, SL (which uses randomization to maintain balance)
and AVL (a balanced tree) will take the lead. Extending the techniques
in this paper to provide balanced trees is the subject of current work.

2 k-ary Search Trees

2.1 The Structure

We use a leaf-oriented, non-blocking k-ST to implement the set ADT. A
set stores a set of keys from an ordered universe. It does not admit dupli-
cate keys. Here, we define the operations on the ADT to be Find(key),
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Insert(key), and Delete(key). The Find operation returns True if
key is in the set, and False otherwise. An Insert(key) operation re-
turns False if key was already present in the set. Otherwise, it adds
key to the set and returns True. A Delete(key) returns False if key
was not present. Otherwise, it removes key and returns True. The other
implementations we compare to the k-ST and BST can additionally asso-
ciate a value with each key, and it is a simple task to modify our structure
accordingly (discussed in [4]).

The k-ST is leaf-oriented, meaning that at all times, the keys in the
set ADT are the keys in the leaves of the tree. Keys in internal nodes of
the k-ST serve only to direct searches down the tree.

Each leaf in a BST contains one key. Each internal node has exactly
two children and one key. In a k-ST, each leaf has at most k − 1 keys.
It is permitted for a leaf to have zero keys, in which case it is said to be
an empty leaf. Each internal node has exactly k children and k − 1 keys.
Inside each node, keys are maintained in increasing order.

The search tree property for k-STs is a natural generalization of the
familiar BST property. For any internal node with keys a1, a2, ..., ak−1,
sub-tree 1 (leftmost) contains keys a < a1, sub-tree k (rightmost) contains
keys a > ak−1, and sub-tree 1 < i < k contains keys ai ≤ a < ai+1.

2.2 Modifications to the Tree

We first describe a sequential implementation of the set operations, and
subsequently transform it into a concurrent and non-blocking implemen-
tation. Since the k-ST is leaf-oriented, the Insert and Delete proce-
dures always operate on leaves. Inserting a key into the set replaces a leaf
by a “larger” leaf (with one more key), or by a small sub-tree if the leaf
is already full (has k−1 keys). Deleting a key replaces a leaf by a smaller
leaf (with one less key), or prunes the leaf and its parent out of the tree.

More precisely, the operation Insert(key) first searches for key. If it
is found, the Insert returns False. Otherwise, it proceeds according to
two cases as follows (see Fig. 1). Let l be the leaf into which key should
be inserted. If l is full (has k− 1 keys) then Insert replaces l by a newly
created sub-tree of k+ 1 nodes. This sub-tree consists of an internal node
n whose keys are the k − 1 greatest out of the k − 1 keys in l and the
new key key. The children of n are k new nodes, each containing one of
the k aforementioned keys. We call this first type of insertion a sprouting
insertion. Otherwise, if l has fewer than k−1 keys, Insert simply replaces
l by a new leaf that includes key in addition to all of the keys that were
in l. We call this second type of insertion a simple insertion.
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Fig. 1. The four types of modifications performed on the tree by an insertion or dele-
tion. Asterisks indicate that nodes are newly created in freshly allocated memory.

The operation Delete(key) first searches for key. If it is not found,
then False is returned. Otherwise, it proceeds according to two cases (see
Fig. 1). Let l be the leaf from which key should be deleted. If l has only
one key and the parent of l has exactly two non-empty children, then the
entire leaf l can be deleted (since it will be empty after the deletion) and,
because it has only one non-empty sibling s, the parent node is no longer
useful (since its keys just direct searches). Thus, the Delete procedure
simply replaces the parent with s. We call this first type of deletion a
pruning deletion. Otherwise, if l has more than one key or the parent of l
has more than two non-empty children, Delete replaces l by a new leaf
with all of the keys of l except for key.We call this second type of deletion
a simple deletion. Simple deletion can yield empty leaves. However, with
this insertion and deletion scheme an internal node always has at least
two non-empty children. One might be tempted to use Null instead of
empty children, but then child pointers would suffer the ABA problem.

Note that a pruning deletion changes a child pointer of the grand-
parent of l to point to l’s only non-empty sibling. To avoid dealing with
degenerate cases when there is no parent or grandparent of l, we initialize
the tree with two dummy internal nodes and 2k − 1 empty leaves at the
top, as shown in Fig. 2(a). These internal nodes will not be deleted or
replaced by an insertion. When k = 2, our algorithm is simply the BST of
Ellen et al. [5], with some slight modifications, where nearly all insertions
and deletions are sprouting insertions and pruning deletions (except for
an Insert into an empty tree and a Delete on the last key in a tree).

2.3 Coordination Between Updates

Without some form of coordination, interactions between concurrent up-
dates would produce incorrect results. Suppose that a pruning deletion
and a simple insertion are performed concurrently in the 2-ary tree on
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(a) (b)

Fig. 2. (a) The initial state of the k-ary search tree. The root and its leftmost child have
k−1 keys valued∞ (a special key, larger than any key in the set). All other children of
these nodes are empty leaves. Keys in the set are stored in the sub-tree rooted at the
leftmost grandchild of the root. (b) Example of the danger of uncoordinated concurrent
updates. Faintly shaded nodes are no longer in the tree. If gp.right is changed to s by
a Delete(b), and p.left is changed to l′ by a concurrent Insert(d), then the new key
d is lost.

the left in Fig. 2(b). If the steps of the Insert(d) and Delete(b) are
interleaved in a particular order, key d may be inserted as a grandchild
of p, and erroneously deleted along with b.

To avoid situations such as this, each internal node is augmented to
contain an UpdateStep object that indicates an operation has exclusive
access to the child pointers of a node. This coordination scheme extends
the work of Ellen et al. [5]. UpdateStep objects serve as something similar
to locks, because all processes operate under the following agreement.
When an operation intends to modify a child pointer of an internal node
n, it first stores an UpdateStep object at n (using CAS). An operation
cannot store an UpdateStep at node n if another operation x has already
stored an UpdateStep at n, until x has relinquished control of n. Thus,
UpdateStep objects behave like locks that are owned by an operation,
rather than by a process, and this allows us to guarantee the non-blocking
property by using the helping mechanism described in Sec. 2.4.

UpdateStep objects are divided into flags and marks. A flag is placed
on a node to reserve its child pointers for exclusive access, indicating that
one will be changed by an operation. A mark is similar to a flag except,
where a flag is temporary (removed once a modification is completed), a
mark is permanent, and is placed on a node that is to be removed from the
tree. The mark permanently prevents the child pointers of the node from
ever changing after it is removed. The final type of UpdateStep object is
the Clean object which, if stored at a node x, indicates that no operation
has exclusive access to x, and any operation is allowed to store a flag or
mark there.
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The details of the Insert and Delete operations, including flagging
and marking steps, are as follows. In the following, l is the target leaf for
insertion or deletion of a key, p is its parent, and gp is its grandparent.
A simple insertion or simple deletion (see Fig. 1) creates the new leaf,
flags p with a ReplaceFlag object (with a flag CAS ), changes the child
pointer of p (with a child CAS ), and unflags p (with an unflag CAS ) by
writing a new Clean object. Similarly, a sprouting insertion creates the
new sub-tree, flags p with a new ReplaceFlag object, changes the child
pointer of p, and unflags p. A pruning deletion flags gp with a PruneFlag
object, then attempts to mark p with a mark CAS. If the mark CAS is
successful, then the child pointer of gp is changed, finishing the deletion,
and gp is unflagged. Otherwise, if the marking step fails, then the Delete
must unflag gp (with a Backtrack CAS ) and try again from scratch.

We now return to Fig. 2(b) to illustrate how flagging and marking
resolves the issue. After Delete(b) has successfully stored a PruneFlag
at gp, it must store a Mark at p. Say the Mark is successfully stored at p.
Then it is safe to prune l and p out of the tree, since no child pointer of p
will ever change, and l is a leaf (which has no mutable fields). Once l and p
are pruned out of the tree, gp is unflagged by an unflag CAS that replaces
the PruneFlag stored by Delete(b) by a newly created Clean object. If
Insert(a) subsequently tries to change a child reference belonging to p,
it will first have to store a ReplaceFlag at p, which is impossible, since p is
already marked. Otherwise, if the Mark cannot be successfully be stored
at p (because p is already flagged or marked by another operation), then
Delete(b) will execute a Backtrack CAS, storing a new Clean object at
gp (relinquishing control of gp to allow other operations to work with it),
and retry from scratch.

2.4 Helping

To overcome the threat of deadlock that is created by the exclusive access
that flags and marks grant to a single operation, we follow the approach
taken by Ellen et al. [5], which has some similarities to Barnes’ cooperative
technique [1]. Suppose that a process P flags or marks a node hoping to
complete some tree modification C. The flag or mark object is augmented
to contain sufficient information so that any process can read the flag or
mark and complete C on P ’s behalf. This allows the entire system to
make progress even if individual processes are stalled indefinitely.

Unfortunately, while helping guarantees progress, it can mean dupli-
cation of effort. Several processes may come across the same UpdateStep
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1 . Type definitions:
2 type Node {
3 final Key ∪ {∞} a1, ..., ak−1

4 }
5 subtype Leaf of Node {
6 final int keyCount
7 }
8 subtype Internal of Node {
9 Node c1, ..., ck
10 UpdateStep pending

. (initially a new Clean() object)
11 }

12 type UpdateStep { }
13 subtype ReplaceFlag of UpdateStep {
14 final Node l, p, newChild
15 final int pindex
16 }

17 subtype PruneFlag of UpdateStep {
18 final Node l, p, gp
19 final UpdateStep ppending
20 final int gpindex
21 }
22 subtype Mark of UpdateStep {
23 final PruneFlag pending
24 }
25 subtype Clean of UpdateStep { }

26 . Initialization:
27 shared Internal root := the structure

described in Fig. 2(a), with the pending
fields of root and root.c1 set to refer to
new Clean objects.

Fig. 3. Type definitions and initialization.

object and perform the work necessary to advance the operation by per-
forming some local work, followed by a mark CAS, child CAS, or un-
flag CAS, but only one process can successfully perform each CAS, so
the local work performed by all other processes is wasted. For this rea-
son it is advantageous to limit helping as much as possible. To this end, a
search ignores flags and marks in our implementation, and proceeds down
the tree without helping any operation. An Insert or Delete helps only
those operations that interfere with its own completion. Thus, an Insert
will only help an operation that has flagged or marked p, and a Delete
will only help an operation that has flagged or marked p or gp (although
they may help other operations recursively). After an Insert or Delete
helps another operation, it restarts, performing another search from the
top of the tree. An Insert or Delete operation is repeatedly attempted
until it successfully modifies the tree or finds that it can return False.

2.5 Pseudocode

Java-like pseudocode for all operations is found in Fig. 3 through Fig. 5.
We borrow the concept of a reference type from Java. Any variable x of
type C, where C is a type defined in Fig. 3, is a reference to an instance
(or object) of type C. Such an x behaves like a C pointer, but does not
require explicit dereferencing. References can point to an object or take on
the value Null, and management of their memory is automatic: memory
is garbage-collected once it is unreachable from any executing thread. We
use a.b to refer to field b of the object referred to by a. We also adopt a
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Java-like definition of CAS, that atomically compares a field R with an
expected value exp and either writes a new value and returns true (if R
contains exp), or returns false (otherwise).

The Search(key) operation is straightforward. Beginning at the left-
most child of root (line 29) and continuing until it reaches a leaf (line 32),
it compares its argument key with each key stored at the current node
and follows the appropriate child reference (line 36), saving some informa-
tion along the way. (Keys of a node can be naively inspected in sequence
because the keys of a node never change.) The Find(key) operation re-
turns True if the Search(key) operation finds a leaf containing key;
otherwise it returns False.

To perform an Insert(key), a process P locates the leaf l and its
parent p, and stores the parent’s pending field in ppending and the index
of the child reference of gp that contained p in pindex (line 49). If key
is already in l, then the operation simply returns False (line 50). Oth-
erwise, P checks whether the parent’s pending field was of type Clean
when it was read (line 51). If not, then p.pending was occupied by a flag
or mark belonging to some other operation x in progress at p. P helps
x complete, and then re-attempts its own operation from scratch. Other-
wise, if p.pending was Clean, P tries to flag p by creating newChild, a
new leaf or sub-tree depending on which insertion case applies (lines 54
to 58), the ReplaceFlag object op (line 59), and executing an Rflag CAS
to store it in the pending field of p (line 60). If the Rflag CAS succeeds,
P calls HelpReplace(op) to finish the insertion (line 62) and the oper-
ation returns True. Otherwise, if the Rflag CAS failed, another process
must have changed p’s pending field to a ReplaceFlag object, a PruneFlag
object, a Mark object, or a new Clean object (different from the one read
at line 49). Process P helps this other operation (if not a Clean object)
complete, and then re-attempts its own operation.

A call to HelpReplace executes a child CAS to change the appro-
priate child pointer of p from l to newChild (line 116), and executes an
Runflag CAS to unflag p (line 117).

When process P performs a Delete(key) operation, it first locates
the leaf l, its parent p and grandparent gp, and stores the parent’s and
grandparent’s pending fields in ppending and gppending, and the indices
of the child references of gp and p that contained p and l, respectively, in
gpindex and pindex (line 78). If l does not contain key, then the opera-
tion simply returns False (line 79). Otherwise, P checks gppending and
ppending to determine whether gp and p were Clean when their pending
fields were read (lines 80 and 82). If either has been flagged or marked
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28 Search(Key key) : 〈Internal, Internal,Leaf,UpdateStep,UpdateStep〉 {
. Used by Insert, Delete and Find to traverse the k-ST
. Search satisfies following postconditions:
. (1) leaf points to a Leaf node, and parent and gparent point to Internal nodes
. (2) parent.cpindex has contained leaf , and gparent.cgpindex has contained parent
. (3) parent.pending has contained ppending,

and gparent.pending has contained gppending
29 Node gparent, parent := root, leaf := parent.c1
30 UpdateStep gppending, ppending := parent.pending
31 int gpindex, pindex := 1
32 while type(leaf) = Internal { . Save details for parent and grandparent of leaf
33 gparent := parent; gppending := ppending
34 parent := leaf ; ppending := parent.pending
35 gpindex := pindex
36 〈leaf, pindex〉 := 〈appropriate child of parent by the search tree property,

index such that parent.cpindex is read and stored in leaf〉
37 }
38 return 〈gparent, parent, leaf, ppending, gppending, pindex, gpindex〉
39 }

40 Find(Key key) : boolean {
41 if Leaf returned by Search(key) contains key, then return True, else return False
42 }

43 Insert(Key key) : boolean {
44 Node p, newChild
45 Leaf l
46 UpdateStep ppending
47 int pindex
48 while True {
49 〈−, p, l, ppending,−, pindex,−〉 := Search(key)
50 if l already contains key then return False
51 if type(ppending) 6= Clean then {
52 Help(ppending) . Help the operation pending on p
53 } else {
54 if l contains k − 1 keys { . Sprouting insertion
55 newChild := new Internal node with pending := new Clean(),

and with the k − 1 largest keys in S = {key} ∪ keys of l,
and k new children, sorted by keys, each having one key from S

56 } else { . Simple insertion
57 newChild := new Leaf node with keys: {key} ∪ keys of l
58 }
59 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)
60 boolean result := CAS(p.pending, ppending, op) . Rflag CAS
61 if result then { . Rflag CAS succeeded
62 HelpReplace(op) . Finish the insertion
63 return True
64 } else { . Rflag CAS failed
65 Help(p.pending) . Help the operation pending on p
66 } } } }

67 Help(UpdateStep op) {
. Precondition: op 6= Null has appeared in x.pending for some internal node x

68 if type(op) = ReplaceFlag then HelpReplace(op)
69 else if type(op) = PruneFlag then HelpPrune(op)
70 else if type(op) = Mark then HelpMarked(op.pending)
71 }

Fig. 4. Pseudocode for Search, Find, Insert and Help.
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72 Delete(Key key) : boolean {
73 Node gp, p
74 UpdateStep gppending, ppending
75 Leaf l
76 int pindex, gpindex
77 while True {
78 〈gp, p, l, ppending, gppending, pindex, gpindex〉 := Search(key)
79 if l does not contain key, then return False
80 if type(gppending) 6= Clean then {
81 Help(gppending) . Help the operation pending on gp
82 } else if type(ppending) 6= Clean then {
83 Help(ppending) . Help the operation pending on p
84 } else { . Try to flag gp
85 int ccount := number of non-empty children of p (by checking them in sequence)
86 if ccount = 2 and l has one key then . Pruning deletion
87 PruneFlag op := new PruneFlag(l, p, gp, ppending, gpindex)
88 boolean result = CAS(gp.pending, gppending, op) . Pflag CAS
89 if result then { . Pflag CAS successful–now delete or unflag
90 if HelpPrune(op) then return True;
91 } else { . Pflag CAS failed
92 Help(gp.pending) . Help the operation pending on gp
93 }
94 } else { . Simple deletion
95 Node newChild := new copy of l with key removed
96 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)
97 boolean result := CAS(p.pending, ppending, op) . Rflag CAS
98 if result then { . Rflag CAS succeeded
99 HelpReplace(op) . Finish inserting the replacement leaf
100 return True
101 } else { . Rflag CAS failed
102 Help(p.pending) . Help the operation pending on p
103 } } } } }

104 HelpPrune(PruneFlag op) : boolean { . Precondition: op is not Null
105 boolean result := CAS(op.p.pending, op.ppending, new Mark(op)) . mark CAS
106 UpdateStep newV alue := op.p.pending
107 if result or newV alue is a Mark with newV alue.pending = op then {
108 HelpMarked(op) . Marking successful–complete the deletion
109 return True
110 } else { . Marking failed
111 Help(newV alue) . Help the operation pending on p
112 CAS(op.gp.pending, op, new Clean()) . Unflag op.gp . Backtrack CAS
113 return False
114 } }

115 HelpReplace(ReplaceFlag op) { . Precondition: op is not Null
116 CAS(op.p.cop.pindex, op.l, op.newChild) . Replace l by newChild . Rchild CAS
117 CAS(op.p.pending, op, new Clean()) . Unflag p . Runflag CAS
118 }

119 HelpMarked(PruneFlag op) { . Precondition: op is not Null
120 Node other := any non-empty child of op.p

(found by visiting each child of op.p), or op.p.c1 if none
121 CAS(op.gp.cop.gpindex, op.p, other) . Replace l by other . Pchild CAS
122 CAS(op.gp.pending, op, new Clean()) . Unflag gp . Punflag CAS
123 }

Fig. 5. Pseudocode for Delete, HelpPrune, HelpReplace and HelpMarked.
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by another operation, P helps complete this operation and re-attempts
its own operation from scratch. Otherwise, it counts the number of non-
empty children of p to determine the deletion case to apply. We shall
explain why counting the children in sequence is not problematic when
we discuss correctness. We consider the two types of deletion separately.

If the operation is a simple deletion (line 94), it creates newChild, a
new copy of leaf l with key removed, and a new ReplaceFlag object op
to facilitate helping (line 96). Next, P attempts an Rflag CAS to store
op in p.pending (line 97) and, if it succeeds, it calls HelpReplace to
finish the deletion (line 99). Otherwise, if the Rflag CAS fails, P helps
any operation that may be pending on p. After helping, P retries its own
operation from scratch. Note that, apart from the creation of the new
leaf, this is identical to simple insertion.

If the operation is a pruning deletion (line 86), P creates a PruneFlag
object (line 87), then attempts a Pflag CAS to store it in the pending
field of gp (line 88). If the Pflag CAS succeeds, P calls HelpPrune(op)
to finish the deletion (line 90) and the operation returns True (more
on HelpPrune later). Otherwise, if the Pflag CAS fails, another pro-
cess must have changed gp’s pending field to a ReplaceFlag object, a
PruneFlag object, a Mark object, or a new Clean object (different from
the one read at line 78). To allow any other operation pending on gp to
make progress, P calls Help(gp.pending) (line 92) before retrying its own
operation from scratch.

The HelpPrune procedure, invoked by the Delete operation (and
by Help), attempts the second (marking) CAS step of a pruning deletion.
Recall that op, created in the Delete routine, contains pointers to l, the
leaf containing the key to be deleted, its parent p, and its grandparent
gp. The HelpPrune procedure begins by attempting to mark the parent
op.p (line 105). If the CAS successfully marks op.p, or another helping
process already stored a mark for this operation, then the mark is con-
sidered to be successful. In this case, HelpMarked is called to finish
the pruning deletion (line 108), and True is returned. Otherwise, if the
CAS failed and the mark was not already stored by a helping process,
then another operation involving op.p has interfered with the Delete. If
the other operation is still in progress, it is helped (line 111), and then
the operation backtracks, unflagging the grandparent op.gp (line 112),
and False is returned by HelpPrune. The process that invoked the
Delete procedure will ultimately retry the operation from scratch.

The HelpMarked procedure performs the final step of a pruning
deletion, pruning out some dead wood by changing the appropriate child
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pointer of op.gp from op.p to point to the only non-empty sibling of op.l.
This sibling of op.l is found at line 120. (It is explained in Sec. 2.6 why
this can be found simply by visiting each child of op.p.) The CAS-Child
routine is invoked to change the child pointer of op.gp (line 121), and an
unflag CAS is executed to unflag op.gp (line 122).

2.6 Correctness

It can be demonstrated that our algorithm exhibits linearizability (de-
fined in [11]), and the argument is very similar to the one made in the
proof in [5]. We simply give the linearization points of operations here,
and defer the proof to Appendix A(see [4]). Consider some invocation of
Search(key). It can be proved that each node on the search path for
key was in the tree at some point during the Search, so we linearize
Search at a point when the leaf it returns was in the tree. An invoca-
tion of Find(key) is linearized at the point its corresponding Search
was linearized. It can be proved that each Insert or Delete invocation
that returns True has executed a successful child CAS. An invocation
of Insert(key) or Delete(key) that returns True is linearized at this
child CAS ; an invocation that returns False is linearized at the same
point as the corresponding Search that discovered key was already in
the tree, or was not in the tree, respectively.

The k-ST algorithm differs significantly from the BST algorithm at
lines 85 and 120, which both involve accessing several children in sequence.
Let P be a process executing line 85. We note that no flagging or marking
has yet been attempted by P , and the expected values to be used by the
CASs at lines 88 and 97 were verified to be Clean a few lines prior. Further,
if any process Q wants to add or remove a key from a child x of p that
P will read at line 85, it must replace x, changing a child pointer of p.
However, it must flag p to change its child pointers, overwriting the Clean
object that was read earlier by P to be used as the expected value for its
flag CAS. It is easy to prove that there is no ABA problem on pending
fields, which implies that the expected value used by P for the CAS can
never appear in p.pending again, so P ’s CAS must fail, and the operation
will be retried. It can then be shown that if an operation op successfully
flags or marks p, ccount contains the number of non-empty children of p
until a child CAS is executed for op, and that only the first child CAS
will be successful (occurring immediately after line 120). Thus, it can be
shown that when line 120 is executed, the children of op.p are precisely
op.l and one other leaf, or else the child CAS will fail, so the value of
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other is irrelevant. This is rigorously demonstrated in the detailed proof
of correctness presented in Appendix A(see [4]).

3 Experiments

In this section we present results from experiments comparing the per-
formance of the BST of Ellen et al. [5], our k-ST algorithm, Concur-
rentSkipListMap (SL) of the Java class library and the lock-based AVL
tree (AVL) of Bronson et al. [3]. Experiments on each structure used
put-if-absent and delete-if-present (set functions), returning True if the
operation could be completed, and False otherwise. Preliminary exper-
iments were run to tune the parameters of the final experimental set to
maximize trial length while keeping standard deviations reasonable. The
final experiments each consisted of selecting a particular algorithm and
executing a sequence of 17 three-second trials, in which a fixed number
of threads randomly perform Inserts, Deletes and Finds according to
a desired probability distribution (e.g., 5% Insert, 5% Delete, 90%
Find), on uniformly distributed random keys, drawn from a particular
key range (e.g., the integers from 0 to 106). The average throughput (op-
erations per second) was recorded for each trial, and the first few trials
were discarded to account for the few seconds of “warm-up” time that
the Java Virtual Machine (VM) needs to perform just-in-time compila-
tion and optimization. We observed that throughput stabilized after the
first three to five seconds of execution, so the first two trials (six seconds)
of each experiment were discarded. Garbage collection was also triggered
in between trials to minimize its haphazard impact on measurements.

Our experiments were run on a Sun machine at the University of
Rochester, with two UltraSPARC-III CPUs, each having eight 1.2GHz
cores capable of running 8 hardware threads apiece (totalling 128 hard-
ware contexts), and 32GB of RAM, running Sun’s Solaris 10 and the Java
64-bit VM version 1.6.0 21 (with 15GB initial and maximum heap sizes).

We call the probability distribution of Inserts and Deletes a ratio,
and denote an experiment with x% Inserts, y% Deletes and (100 −
x − y)% Finds as, simply xi-yd. We denote the key range of integers
from 0 to 10x − 1 by [0, 10x). The experimental results we present herein
used algorithms BST, 4-ST, SL and AVL, key ranges [0, 102) and [0, 106)
and ratios 0i-0d, 5i-5d, 8i-2d and 50i-50d. The key ranges induce high
and low levels of contention, respectively, with small trees increasing the
probability that operations on random keys will coincide. The four ratios
represent situations in which operations consist (1) entirely of searching,
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(2) mostly of searching, (3) mostly of searching, but with far more Inserts
than Deletes, and (4) entirely of updates. Initially, each data structure
was empty for each trial, except when the ratio was 0i-0d, since that
would mean performing all operations on an empty tree. In this case,
each structure was pre-filled at the beginning of each trial by performing
random operations in the ratio 50i-50d until the structure’s size stabilized
(to within 5% of the expected half-full). Additional results, including more
operation mixes and key ranges, and results from a 32-core system at
Intel’s Multicore Testing Lab can be found in [4]. For implementations of
the BST and k-ST, see [4].

We now discuss the graphs presented in Fig. 6. The [0, 102) key range
represents very high contention. There were at most 102 keys in the set,
and as many as 128 threads accessing the tree. Under this load, BST
was the top performer in all experiments. The low degree of BST’s nodes
permits many simultaneous updates to different parts of the tree, and its
simplicity offers strong performance. 4-ST matched BST’s performance
in the 0i-0d and 8i-2d cases, indicating that, in the absence of many
deletions, it can perform just as well under extremely high contention.
For the other two ratios, 4-ST’s performance was similar to the lock-free
SL, surpassing AVL by a fair margin. BST scaled very well in all cases;
4-ST scaled equally well when deletions were few.

The [0, 106) key range represents low contention: with as many as one
million keys and only 128 threads, the chance of collisions in random
keys is quite small. With this level of contention, 4-ST exhibits strong
performance, surpassing BST, and the other algorithms. This is in line
with expectations; as the size of the tree increases, the higher degree of
the 4-ST affords it a shallower depth, allowing all operations to complete
more quickly. Unlike the [0, 102) case, all algorithms scale reasonably well
in the [0, 106) case, approaching linear improvement in throughput with
an increase in the number of hardware threads.

4 Conclusion and Future Work

BST has the greatest advantage in high contention settings. Its simplicity
pushes its performance beyond the other algorithms. As trees get larger
and contention decreases, 4-ST surpasses BST to become the top per-
former. Similar to 4-ST, AVL also performs well as the size of the data
structure increases. SL tends to performs well when its set of keys is small.

AVL is a balanced tree, so it does some extra work in maintaining this
property. However, since our experiments insert random keys, 4-ST and
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BST also are nearly balanced. In this experimental setting, the balancing
work of AVL does not pay off. In a situation where the keys inserted are
not random, AVL might have a significant advantage over 4ST and BST.
Since in many cases BST and 4ST outperform AVL and SL by a fair
margin, we believe that it may be possible to add balancing and remain
competitive, while offering a non-blocking progress guarantee.
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Fig. 6. Experimental results. Error bars are drawn to represent one standard deviation
from the mean. Columns display ranges from which random keys are drawn. Rows
display ratios of Inserts to Deletes to Finds. The y-axis displays average throughput
(millions of operations/s), and the x-axis displays the number of h/w threads.


