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Abstract
The introduction of hardware transactional memory (HTM) into
commercial processors opened a door for designing and imple-
menting scalable synchronization mechanisms. One example for
such a mechanism is transactional lock elision (TLE), where
lock-based critical sections are executed concurrently using hard-
ware transactions. So far, however, the effectiveness of TLE and
other HTM-based mechanisms has been assessed mostly on small,
single-socket machines.

This paper investigates the behavior of hardware transactions on
a large multi-socket machine. Using TLE as an example, we show
that a system can scale as long as all threads run on the same socket,
but a single thread running on a different socket can wreck perfor-
mance. We identify the reason for this phenomenon, and present
a simple adaptive technique that overcomes this problem by throt-
tling threads as necessary to optimize system performance. Throt-
tling decisions are made on a per-lock basis, and we demonstrate
that our technique performs well even in workloads where the best
decision is different for each lock.

1. Introduction
To perform well on modern multiprocessor systems, applications
must exploit the increasing core count on these systems by execut-
ing operations concurrently on different cores without introducing
too much overhead in synchronizing these operations. Recent sys-
tems have introduced hardware transactional memory (HTM) [16]
to support efficient synchronization, and previous work has shown
that it can be used effectively [2, 10, 13–15, 21, 28]. However, until
recently, HTM has been available only on relatively small single-
socket systems. In this paper, we investigated the behavior of HTM
on a large multi-socket machine and observed that it differs from
the behavior of the smaller systems in ways that present challenges
for scaling the performance on the larger machine.

For example, consider the graph on the left in Figure 1, which
shows the speedup over single-thread execution of a microbench-
mark in which we continually insert and delete items in an AVL tree
[1]. Operations on the tree are protected by a single lock, to which
we apply transactional lock elision (TLE) [8], a popular technique
for exploiting HTM in which lock-based critical sections are exe-
cuted concurrently using hardware transactions, and which is im-
plemented on top of the Intel Haswell TSX/RTM interface. The
machine has two sockets, each with 18 hyper-threaded cores, for a
total of 72 threads. We bind threads so that the first 36 all run on
one socket, and the last 36 threads run on the other socket. (This mi-
crobenchmark is described in more detail in Section 3.) As we can
see, performance improves until we reach 36 threads, even though
the scaling is much more moderate after 12 threads. As soon as any
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Figure 1. AVL tree microbenchmark on a large HTM system (left),
and a small HTM system (right). The workload is 100% updates
with key range [0, 2048).

thread executes on the second socket, however, the performance
drops dramatically. Performance continues to decline until the ma-
chine is saturated, at which point its performance is barely better
than with a single thread. This behavior is in stark contrast to the
one measured on a smaller single-socket (4 hyper-threaded cores)
machine, shown on the right in Figure 1, in which the performance
continues to improve until the machine is saturated.

Not all benchmarks exhibit this pathology: with only lookup
operations (i.e., a read-only workload), for example, performance
scales all the way to 72 threads (i.e., the full capacity of the ma-
chine). We experimented with a variety of microbenchmarks to
identify the causes of this performance pathology, as well as other
differences between the behaviors of HTM on the large and small
machines. In this paper we describe several of these experiments
and their results, and the conclusions we draw from them.

Informed by these results, we explored several ways, described
in the latter half of this paper, to use HTM effectively on the
multi-socket machine. The technique we found most effective is to
adaptively throttle the number of threads to optimize performance.
At a high level, the idea is to profile TLE performance and decide,
separately for each lock, whether critical sections protected by
that lock should be executed by threads on multiple sockets, or
only on a single socket. Through a set of experiments with several
microbenchmarks we show that this simple approach avoids sharp
performance degradation for workloads that do not scale beyond
one socket while exploiting additional sockets for workloads that
do scale. We describe this technique in greater detail and present
experimental results that demonstrate its effectiveness.

2. Background
The machine we are studying is an Oracle Server X5-2, a two-
socket system with two Intel Xeon E5-2699 v3 processors. Each
processor has 18 cores, each with 2 hardware threads (i.e., 72
threads in all), running Ubuntu 15.04 at 2.30GHz. Because of its
two-socket design, this machine has non-uniform memory access
(NUMA): Cores on the same processor share an L3 cache, so



communication between threads running on the same processor is
much faster than inter-socket communication. For comparison, the
other (smaller) machine we used in Figure 1 is a single-socket 4-
core hyperthreaded Haswell Core i7-4770 (also with 2 threads per
core, so 8 threads in all) running Oracle Linux 7 at 3.40GHz.

Both systems provide “best effort” hardware transactional mem-
ory (HTM): transactions are not guaranteed to commit, but any
transaction that commits appears to other threads to have been exe-
cuted atomically. A transaction that does not commit is aborted: its
writes to memory are discarded and are never made visible to other
threads. A transaction that aborts sets a condition code indicating
the cause, and then jumps to a fallback code path specified at the
beginning of the transaction. This condition code allows to distin-
guish, for instance, between transactions that abort because some
internal buffer overflowed and those that abort due to conflict with
another thread. It also includes a hint bit that indicates whether,
according to the hardware, the transaction is likely to succeed if
retried.

We use transactional lock elision (TLE) [8] as a vehicle to study
the behavior of HTM. TLE is a practical synchronization technique
for exploiting HTM that can be applied without requiring changes
to code that uses traditional lock-based synchronization: it co-opts
the LockAcquire and LockRelease operations that bracket a critical
section, attempting to elide the lock acquisition (and subsequent
release) by executing within a transaction. If the transaction com-
mits, it ensures that the critical section executes without interfer-
ence from other threads. If the transaction aborts, the critical sec-
tion may be retried in another transaction or it may be executed in
the traditional fashion by acquiring the lock. (A transaction execut-
ing a critical section must check that the associated lock is free to
avoid executing concurrently with a critical section executed under
lock.) If the transaction aborts due to overflow (for which typically
the hint bit is not set), it is common to not retry at all.

Numerous studies have observed that TLE provides nearly ideal
speedups when applied to workloads in which threads have few
data conflicts and transactions do not overflow [10, 14, 21, 22, 28].
However, when these conditions do not hold, the performance of
TLE deteriorates quickly. Several recent papers have suggested
ways to improve the performance of TLE in these scenarios, em-
ploying various approaches such as adaptively tuning retry poli-
cies [10, 13] and introducing auxiliary locks [2, 15]. All these pa-
pers, however, evaluated TLE and suggested improvements using
relatively small, single-socket machines.

Most of our experiments use TLE applied to an AVL tree im-
plementation that uses a single global lock to synchronize access
to the tree. An AVL tree [1] is a balanced binary search tree that
ensures that the heights of the left and right subtrees of any node
differ by at most 1. Whenever an operation disrupts this balance
(by adding or deleting a node), it “rotates” the node and/or its an-
cestors to restore the balance. Most insert and delete operations do
not conflict with other operations because they update only a few
nodes at the bottom of the tree, but a few operations may rebalance
even the root node, and so conflict with every other operation.

The effects of NUMA on the performance of multithreaded sys-
tems has been an area of active research in the past few decades [4–
6, 17, 18, 25, 26]. This research is motivated by the observation
that remote memory accesses and remote cache misses (i.e., cache
misses served from another cache located on a different socket) are
expensive, and therefore should be reduced. Dice et al. [12], for in-
stance, achieve this goal through the design of a series of NUMA-
aware cohort locks, which allow threads running on the same socket
to pass the lock among themselves (and thus exploit cache locality
within the socket) before releasing the lock so that it can be ac-
quired by a thread on a different socket. Other researchers attempt

to colocate threads and the data they access through thread migra-
tion [4, 19] or data migration and replication [26].

Prior work in various contexts has considered restricting con-
currency to improve system performance. Multiple papers, for in-
stance, observe that using fewer threads than the available cores can
lead to better performance [7, 23, 24], and suggest ways to tune
the number of running threads to achieve that. In the context of
software transactional memory, several papers consider contention
management mechanisms that throttle some of the conflicting soft-
ware transactions to increase the chance that remaining transactions
succeed [3, 27]. In the context of TLE, Diegues et al. [15] suggest
using core locks, which synchronize between hardware transactions
running on same core when those transactions abort due to over-
flow. In the same context, Afek et al. [2] consider adding an aux-
iliary lock to TLE, which is acquired by conflicting transactions.
The above mentioned cohort locks [12] are perhaps most relevant
to the concurrency restriction ideas that we consider in this paper.
They throttle threads running on sockets other than the one holding
the lock, thus sacrificing short-term fairness for higher throughput.

Delegation is another approach aimed at reducing remote cache
misses. The idea of delegation is to mediate access to a data struc-
ture or critical section by one or more server threads, which execute
requests from client threads. Client and server threads communi-
cate via message passing implemented on top of shared memory.
As an example, Lozi et al. [20] propose structuring a client-server
system in which server threads running on dedicated cores execute
critical sections on behalf of client threads. Calciu et al. [6] in-
vestigate different approaches for implementing message passing
and show that while delegation can be effective, the communica-
tion overhead of message passing often outweighs its benefits.

3. HTM on a Large Machine
In this section, we present and analyze the results of several experi-
ments we ran to better understand the behavior of HTM on the large
(72-thread) NUMA system. In most of these experiments, threads
repeatedly invoke insert, delete and lookup operations on imple-
mentations of an abstract set (e.g., an AVL tree) using a key selected
uniformly at random from a specified key range. The set is pre-
filled with approximately half the keys. We specify the percentage
of lookup operations, with the remaining operations being evenly
split between insert and delete operations (collectively update op-
erations) to keep the set approximately half filled. Unless stated
otherwise, in our experiments on this system threads are pinned so
that threads 1-36 run on the first socket, and threads 37-72 run on
the second socket. (We describe alternative pinning policies in Sec-
tion 6). As we show next in Section 3.1, some of our results do not
necessarily relate to NUMA, but rather to the fact that our system
has a large number of cores. Section 3.2 details findings that are
more NUMA-specific.

3.1 Going beyond 8-12 cores
We tested whether the conventional wisdom about retry polices in
TLE on small systems is appropriate for the large system. Figure 2
shows the results of a microbenchmark on the large HTM system
wherein threads perform insertions and deletions (i.e., no lookup
operations) in an AVL tree with key range [0, 131072) (i.e., con-
taining approximately 65536 keys) using different retry policies.
(This tree fits in the L3 cache but is large enough that there is a
very little chance for two concurrent operations to conflict.) TLE-5
fallback on overflow implements a policy commonly used in small
HTM systems: we attempt to execute a critical section using a trans-
action up to 5 times before falling back to the lock. We do not count
attempts that fail because the lock is held (in which case the trans-
action is not retried until the lock is released in order to avoid the
lemming effect [9]). However, if a transaction aborts due to over-



Figure 2. TLE using different retry policies on a large HTM sys-
tem with 100% updates on an AVL tree with key range [0, 131072).

Figure 3. Histogram showing how many transactional attempts
are made before a transaction successfully commits in a workload
with 100% updates on an AVL tree with key range [0, 131072).
After 20 attempts, the lock is taken. Note the log-scale.

flow, we fall back to the lock immediately. TLE-20 fallback on
overflow implements the same policy except that 20 attempts are
allowed before falling back to the lock. TLE-5 and TLE-20 are sim-
ilar except that they do not fall back to the lock immediately when
a transaction aborts due to overflow.

The difference between TLE-5 fallback on overflow and TLE-20
fallback on overflow demonstrates that it may be useful to attempt
to execute a critical section transactionally more than 5 times on a
large HTM system. This reflects the greater cost of falling back to
the lock on a system running 72 threads than on one running only
8, because a thread that takes the lock blocks every other thread.
Thus, in the large system, we can tolerate more failed transactions
to avoid taking the lock.

Perhaps surprisingly, contrary to the intuition that a transaction
that fails due to overflow will continue to fail if it is retried, we
observed that subsequent attempts often succeed. Thus, the “opti-
mization” of falling back immediately when a transaction aborts
due to overflow caused threads to fall back to the lock unnecessar-
ily, and eliminating it significantly improves performance. (For in-
stance, at 36 threads, TLE-20 achieves more than twice the perfor-
mance of TLE-20 fallback on overflow.) Allowing 20 transactional
attempts rather than only 5 also improves performance, though to a
lesser extent.

Might raising the limit on transactional attempts beyond 20 im-
prove performance even more? Figure 3 shows how many attempts
were needed to complete each operation using TLE-20. The last

Figure 4. An AVL tree on a large HTM system. The workload is
100% lookup on the left, and 2% updates (i.e., 98% lookups) on the
right, with key range [0, 2048).

point (labeled lock) shows the number of operations that fall back
to taking the lock after 20 failed attempts, a small fraction of the
total number of operations (note the log scale the figure). Nonethe-
less, we experimented with varying the limit over a wide range,
up to hundreds of millions of retries, and, unsurprisingly, we were
not able to consistently improve performance beyond that achieved
with 20 attempts. In the rest of this paper, unless otherwise speci-
fied, we report on results for TLE-20.

3.2 How NUMA affects HTM
For the workload depicted in Figure 2, performance does not signif-
icantly decrease when threads run on two sockets. This is because
operations on a large AVL tree are only lightly contended, and in
fact, as demonstrated by Figure 3, most of them succeed on HTM in
the very first attempt. In a smaller tree, however, concurrent oper-
ations are more likely to conflict, and thus the performance suffers
greatly once threads execute on the second socket. We already saw
this in Figure 1, which depicted TLE-20 in an AVL tree with key
range [0, 2048): Adding a single thread on the second socket cut
performance in half, and performance at 72 threads was reduced al-
most to that of a single thread. This drop in performance is caused
by NUMA effects (i.e., the increased latency of inter-socket com-
munication).

It is possible to scale to the full capacity of the large HTM
system. As an example, in a read-only workload, TLE scales all the
way to 72 threads. However, performing just 2% updates flattens
the curve after 36 threads, completely negating the benefit of the
second socket (see Figure 4).

Although NUMA effects are well known to negatively impact
performance, this impact is amplified by the use of HTM. Figure 5
shows the results of a simple experiment in which threads repeat-
edly search for a randomly chosen key and then write the key found
in the last node visited by this search into the key field of that node.
(This might not be the key chosen because that key may not be
in the set). This search-and-replace operation can be implemented
without any synchronization because it does not actually change
the key (i.e., it writes the same value that is already in the field).
As we can see from this figure, NUMA effects impact TLE much
more than the algorithm with no synchronization. The algorithm
with no synchronization drops from 12.1x speedup (over a single
thread) at 36 threads to 8.9x speedup at 72 threads (a 26% decrease
in performance). However, the TLE algorithm experiences a much
larger drop from 6.4x speedup at 36 threads to 1.6x speedup at 72
threads (a 75% decrease in performance).

To understand why TLE suffers so greatly from NUMA effects,
consider Figure 6, which shows how many transaction attempts
aborted, and the reasons (i.e., the condition code) they did so. The
fraction of transactions that abort dramatically increases as threads
are added on the second socket, from 10% at 36 threads to 33%
at only 42 threads. Beyond 36 threads, the vast majority of these
aborts are reported by hardware as data conflicts.



Figure 5. Comparison of TLE vs. no synchronization in a work-
load doing search-and-replace operations on an AVL tree with key
range [0, 4096).

Figure 6. Abort rate for the TLE curve in Figure 5. (Note: the x-
axis is not to scale near x=37). The workload is 100% updates with
key range [0, 2048).

We hypothesize that these aborts occur because cross-socket
cache invalidations lengthen the time needed to complete a transac-
tion, which, in turn, lengthens the “window of contention” during
which it may conflict with other transactions, increasing the likeli-
hood of such conflicts. In contrast, when a cacheline is invalidated
by a thread on the same socket, it can be restored much faster be-
cause the threads share an L3 cache.

Our hypothesis explains why performance is poor with even a
single thread on the second socket (operations performed on the
second socket cause expensive cache misses on the first socket),
why read-only workloads scale on both sockets (threads do not
cause cross-socket cache invalidations), and why the impact of
NUMA effects on TLE-20 is more severe in Figure 1 than in
Figure 2 (in the small tree, there is a higher chance of conflicts, and
operations complete more frequently, so more cache invalidations
occur).

To confirm our hypothesis, we ran a 36-thread single-socket
experiment that added some artificial delay (spinning) just before
committing each transaction.1 The results in Figure 7 show that,
with a certain amount of delay, the abort rate jumps significantly,
mimicking the results on two sockets, and that once the abort rate

1 The delay was implemented by varying a number of loop iterations, each
consisting of a small, constant number of instructions. The average length
of successful transactions increased from about 61ns (without the delay)
to about 43 µs (with the maximal delay of 10K iterations). Even with the
maximal delay, transactions are short enough so that the chance for aborts
imposed by context switch interrupts is negligible.
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Figure 7. Abort rate (left) and fraction of transactions aborting due
to conflict (right) for a 36-thread single-socket experiment in which
delay is inserted before committing each transaction. The workload
is 100% updates in an AVL tree with key range [0, 131072).

Figure 8. Comparison between an AVL tree and a leaf-oriented
BST, with 20% updates and key range [0, 2048).

increases, most transactions that abort do so because of conflicts,
mimicking the phenomenon in Figure 6. These results provide
strong evidence for our hypothesis.

Our hypothesis predicts that NUMA effects will be less signifi-
cant for unbalanced leaf-oriented trees, where each update modifies
a leaf, or the parent of a leaf. In such a tree, threads can only cause
cross-socket cache invalidations near leaves, so the top of the tree
is likely to remain cached. We tested this prediction by comparing
the AVL tree to an unbalanced leaf-oriented binary search tree. As
we can see in Figure 8, which shows the result of a workload with
20% updates and a key range of [0, 2048), the leaf-oriented BST
scales much better than the AVL tree.

An alternative explanation for this behavior is that a transaction
may abort whenever it experiences a last-level cache (LLC) miss
(as it does, for example, whenever it experiences a page fault).
To rule out this possibility, we designed a simple experiment in
which a single thread allocates a one gigabyte array of bytes, and
then iterates over the cells of this array, starting a transaction,
reading a word, and committing. This array is too large to fit in
cache, so many of the thread’s reads cause LLC misses. There is
one complication: Whenever a thread reads a location in memory,
modern Intel processors fetch the entire cache line containing the
memory location, and also prefetch the next cache line. To avoid
prefetching effects, the thread skips two cache lines (128 bytes)
in between each pair of reads. In this experiment, nearly every
read should incur a LLC miss, so we can approximate the number
of LLC misses that should occur: 230

128
= 223. Using the Linux

tool perf, we confirmed that the number of LLC misses was
approximately 223. However, the number of transactional aborts
was extremely small (less than 100), which proves that LLC misses
do not necessarily cause transactions to abort. A similar experiment
was done to rule out the possibility that cross-socket LLC misses
cause transactions to abort.



4. Dealing with NUMA
In this section we briefly describe a few unsuccessful approaches
to deal with NUMA effects that we tried, and then concentrate on
one simple technique that did work.

One approach to deal with NUMA effects is to delegate each
operation to the socket on which it should ideally execute (i.e., the
socket on which most of its accesses would be local). If a thread
gets an operation that should be executed on a different socket, it
packages it up and sends it to the other socket. We implemented
a number of delegation algorithms, in which we manually decided
which socket to send each operation to by checking whether its
key fell into the lower or upper half of the key range. The results
showed that while delegation doubled performance per unit of time
spent executing delegated operations, the overhead of involved
coordination between threads was too high. This experience echoes
the results of previous work, which has shown that the benefit of
delegation is often outweighed by the overhead of implementing
it [6]. We note that increasing the size of critical sections (or more
precisely, the amount of shared data accesses), e.g., by packing and
delegating multiple AVL tree operations, helped to extract some
benefit out of delegation. In our future work, we plan to explore
better delegation techniques and ways to apply them generically
and with reduced overheads.

Another approach to deal with NUMA effects is to restrict the
concurrency of threads executing on different sockets. For instance,
one might allow only a few threads to run on the second socket.
However, as Figure 1 shows, even a single thread running on the
second socket cripples performance. Alternatively, one might force
threads on the second socket to backoff before retrying an aborted
transaction. We tried this approach early in our exploration, and
we found that performance improved only when the backoff was
so long that the second socket was almost completely starved. Al-
though starving the second socket avoids performance degradation
beyond 36 threads, it yields poor performance for workloads that
scale on two sockets.

The most effective solution we found builds on the observation
that, for many workloads, the best performance is achieved either
by letting threads run on a single socket (and starving threads on
the other socket) or by letting threads run on both sockets. In the re-
mainder of this section, we present an algorithm called TLEStarve,
which periodically profiles TLE performance, measuring the num-
ber of critical section executions when threads run only on one of
the sockets and on both sockets, and decides which configuration is
favorable. In particular, if TLEStarve finds out that for some lock,
letting threads run only on one socket yields higher performance, it
will starve threads running on the other socket (and trying to elide
the same lock). Clearly, this approach can be unfair to some of the
threads in its goal to achieve higher throughput. In Section 5 we de-
scribe how TLEStarve can be improved to impose long-term fair-
ness without loosing performance.

For TLEStarve implementation, we augment each lock with a
mode that specifies which threads may execute critical sections
protected by that lock. In our two-socket system, there are three
possible modes: In mode 0 or mode 1, only threads on socket 0 or
1 respectively may execute the critical section (threads on the other
socket simply block until the mode changes); in mode 2, threads on
either socket may do so. In general, the number of modes is equal
to the number of sockets plus one.

To select a mode for each lock, we introduce a new operation,
ProfileAndThrottle. This operation starts a profiling session that
iterates over the lock modes, setting all locks to the current mode,
and measuring the total number of lock acquisitions (over all locks)
for a short, fixed period of time. Then, it sets each lock to the mode
for which it performed best.

As usual with TLE, we co-opt the LockAcquire and LockRelease
operations that bracket the critical section to attempt to elide the
lock acquisition and release using transactions. However, a thread
executing LockAcquire must now first check the mode of the lock
to determine whether it is allowed to execute the critical section.
Pseudocode for LockAcquire, ProfileAndThrottle, and their subrou-
tines, appears in Figure 9. (The LockRelease operation is the same
as usual with TLE.)

The Lock type contains the metadata of the original lock imple-
mentation (lockData), the fastest mode as determined by the most
recent profiling session (fastestMode), and an acquisitions collec-
tion, which is used for profiling. This collection stores, for each
thread and mode, the number of times the lock was acquired by
that thread, in that mode, since the last profiling session began.2

The data in this collection is aggregated and used to decide which
mode is fastest, for each lock.

For simplicity, we assume that an upper bound is known on
the number of threads, and we implement acquisitions using an
array with one slot for each thread and mode. One could eliminate
this assumption by using, e.g., a linked list in which each thread
maintains its statistics in a separate node.

There are two shared variables: locksToProfile is an array of
pointers to Locks; profileStartTime is a lock whose value is nonzero
when a profiling session is in progress. When it is locked, it con-
tains −1, and when unlocked, it contains either 0, or the start time
of the last profiling session.

ProfileAndThrottle takes an array, locks, of pointers to the locks
that should be profiled, as its argument. It begins by attempting to
lock profileStartTime using compare-and-swap (CAS). If this CAS
fails, then a profiling session is already in progress. Otherwise, the
acquisitions collections of all locks in locks are reset to contain all
zeros, locksToProfile is set to locks (so information about which
locks are being profiled can be accessed elsewhere in the code),
and profileStartTime is set to the current time. This has the effect of
starting a profiling session.

LockAcquire starts by invoking a subroutine called getMode to
compute the lock’s current mode, and then determines which socket
the current thread is running on by invoking a subroutine called get-
Socket (which may be implemented as a system call). It then checks
whether the current mode permits the thread to acquire the lock. If
so, it increments the appropriate element in the acquisitions col-
lection and invokes the lock acquisition procedure provided by the
underlying TLE implementation (LockAcquireTLE). Otherwise, it
retries from the beginning.

getMode begins by getting the time when the last profiling ses-
sion began (startTime), and recording the current time (now). It then
computes how many lock modes have been profiled since start-
Time, and uses this information to determine whether the profil-
ing session that began at startTime is ongoing. If so, the current
mode is simply returned. Suppose, however, that the profiling ses-
sion which began at startTime is finished. To make use of the re-
sults collected during profiling, some thread must compute the best
mode for each lock by invoking a subroutine called computeBest-
LockModes. getMode reserves the right to invoke computeBest-
LockModes by locking profileStartTime, and then does so. com-
puteBestLockModes needs only be invoked once each time a profil-
ing session finishes. So, before getMode locks profileStartTime and
invokes computeBestLockModes, it verifies that startTime is greater

2 Technically, each member of the acquisitions collection is an upper bound
on the number of lock acquisitions by a given thread in a given mode.
The elements are reset to zero non-atomically in preparation for a new
profiling session, just before the profiling session begins. Consequently,
some elements may be incremented after being set to zero, but before the
new profiling session starts. Any error in these elements affects throttling
decisions, but does not affect correctness.



type Lock {
lock_t lockData; // original lock metadata

// fields added for ProfileAndThrottle
long acquisitions [][];

// acquisitions [i][m] = number of lock
// acquisitions for thread i and mode m

int fastestMode;
};

Lock ** locksToProfile;
// set of locks currently being profiled

long profileStartTime = 0;
// lock guarding metadata for all instances of Lock
// 0: unlocked and not currently profiling
// >0: unlocked and currently profiling
// -1: locked (and not currently profiling)

int getMode(Lock * lock) {
long startTime = profileStartTime;
long now = getCurrentTime ();
int mode = (now - startTime) / PROFILE_MODE_TIME;
if (mode < NUM_MODES) { // if still profiling

return mode;
} else { // profiling is finished

if (startTime > 0) {
// if the best mode for each lock has not been

determined , try to lock profileStartTime
if (CAS(& profileStartTime , startTime , -1)) {

computeBestLockModes ();
profileStartTime = 0; // unlock

} }
return lock ->fastestMode;

} }

void computeBestLockModes () {
for each lock in locksToProfile {

// compute fastest mode for lock
long acqs [];
for (int m = 0; m < NUM_MODES; m++) {

// sum acquisitions in mode m for all threads
acqs[m] = 0;
for (int j = 0; j < NUM_THREADS; j++) {

acqs[m] += lock ->acquisitions[j][m];
} }
lock ->fastestMode = index of largest elem of acqs

} }

int LockAcquire(Lock * lock) {
while (true) {

// check if we are allowed to acquire the lock
int mode = getMode(lock);
if (mode == NUM_MODES -1 || mode == getSocket ()) {

++lock ->acquisitions[getTid ()][mode];
return LockAcquireTLE(lock);

} } }

void ProfileAndThrottle(Lock ** locks) {
// try to lock profileStartTime
if (CAS(& profileStartTime , 0, -1)) {

for each lock in locks {
set all entries of lock ->acquisitions to 0

}
locksToProfile = locks;
profileStartTime = getCurrentTime (); // unlock

} }

Figure 9. Pseudocode for ProfileAndThrottle, LockAcquire and
their subroutines.

than zero. If not, then another thread already invoked computeBest-
LockModes and set profileStartTime to zero before it was read by
this invocation of getMode. It can be shown that, if getMode fails to
lock profileStartTime, then another thread has already locked pro-
fileStartTime to invoke computeBestLockModes. The implementa-
tion of computeBestLockModes itself is straightforward.

As an optimization, one can invoke getMode and getSocket only
once per C invocations of LockAcquire, and the results of the
last invocation of each can be saved in thread local variables. For
instance, in our experiments we invoke these subroutines only once
per 128 invocations of LockAcquire.

Naturally, the success of profiling depends on the workload be-
ing somewhat homogeneous. The ProfileAndThrottle operation al-
lows a programmer who knows that the program is about to begin
a homogeneous workload to manually trigger profiling, optimizing
performance with minimal effort. However, there are other ways
that ProfileAndThrottle could be used. For instance, if a program-
mer knows that a workload consists of one or more relatively long,
homogeneous phases, but has no compile-time knowledge of when
phases begin or end, s/he could simply invoke ProfileAndThrottle
periodically. Alternatively, ProfileAndThrottle could be invoked in-
ternally by LockAcquire, without any modification to user code.
The set of locks passed to ProfileAndThrottle could be maintained
internally using static variables, by having each lock register itself
the first time it is passed to an invocation of LockAcquire.

5. Fairness
As described thus far, TLEStarve may cause threads on one socket
to starve: even if ProfileAndThrottle is called repeatedly, it may
always select mode 0, for example, in which case threads on socket
1 will never get to execute the critical section.

Starving threads may be acceptable in certain scenarios, e.g.,
when each thread acquires a global lock, retrieves a job from a work
queue, performs it, and releases the lock. There, blocking threads
on the second socket does not impede the progress of threads on the
first socket, and there is no work that can be done only by threads
on the second socket. However, in many scenarios, it is desirable to
provide some form of fairness, so that no threads starve.

We address this problem by introducing time sharing to allow
threads on both sockets to run. Recall that, in TLEStarve, each lock
stores the mode wherein it performs best. In this new algorithm,
TLEShare, each lock additionally stores its second best mode. Con-
ceptually, we divide the execution into fixed time quanta (e.g., 10
milliseconds), and each lock spends some fraction of the quantum
executing in its fastest mode, and the remaining time executing in
its second fastest mode3.

The amount of time given to each of these modes represents a
trade-off between achieving fairness and ideal single-socket per-
formance. One seemingly reasonable policy is to give each mode
a time slice that is proportional to the performance of the lock in
that mode. However, a particularly interesting case arises in, for ex-
ample, the update-heavy workload in Figure 1, when there are 36
threads on the first socket, and one thread on the second socket. In
this case, the best mode is to throttle one socket, and the second
best mode is to let both sockets run. Since the throughput when
both sockets run is approximately half of the throughput when a
single socket runs, approximately one third of the execution time
is allocated to let both sockets run. However, since the only rea-
son we time share in this case is to avoid starving the single thread
on the second socket, one-third is too much time to allocate to run
both sockets. We avoid this problem by expressing the time slices
we give to the fastest and second fastest modes as a function of the
performance of the lock in modes where only a single socket can
run. Thus, we would allocate approximately 1/36th of the execution
time to let both sockets run. The pseudo-code for the TLEShare im-
plementation is provided in Appendix A.

The length of a time quantum is another factor in the trade-off
between achieving fairness and ideal single-socket performance.

3 More precisely, we do so only if the fastest mode requires only one socket.
Otherwise, we use both sockets for the whole duration of the quantum.



Figure 10. Overhead caused in six different workloads by the
choice of time quantum length. All data points represent the per-
formance of TLEShare, relative to TLEStarve, with 72 threads.

Shorter time quantums promote a higher degree of fairness, but
introduce greater overhead, as the sockets pollute each others’
caches more frequently. Figure 10 shows the results of a simple
experiment that we ran to illustrate the overhead introduced by
different quantum lengths in six different workloads. The results
show that there is little overhead when time quanta are at least 30
milliseconds. Additionally, smaller quanta appear to be feasible,
except under high contention.

6. Experimental Results
In this section, we present a selection of results from a large suite
of microbenchmarks. We designed three different implementations
of the set ADT: an AVL tree, an unbalanced binary search tree
(BST), and a skip-list. We then paired each data structure with
TLE, TLEStarve, TLEShare, a recent TLE implementation called
TLESCM that performs contention management using an auxiliary
lock for conflicting transactions [2], and a new variant of TLESCM
called TLEShareSCM that uses ProfileAndThrottle. The latter is
interesting, because it demonstrates that our technique can be ap-
plied to different TLE algorithms. TLEStarve, TLEShare and TLE-
ShareSCM profile each lock mode for 30 milliseconds before mov-
ing on to the next mode. TLEShare and TLEShareSCM use 100
millisecond quanta for time sharing. That is, each lock changes
modes twice every 100 milliseconds.

Each data point in our graphs is an average of five timed tri-
als, each lasting approximately 10 seconds. In each trial, a fixed
number of threads repeatedly perform random operations accord-
ing to some workload, on uniformly random keys drawn from a
fixed key range. Before a trial begins, the data structure is pre-
filled so that it contains half of its key range. For TLEStarve, TLE-
Share and TLEShareSCM, ProfileAndThrottle is invoked by the
main thread approximately 50 milliseconds after a trial starts (to
give all threads time to begin working and warm up their caches
before profiling begins). Profiling is done only once per trial. We
note that our experiments (not included) show that even if profiling
is done more frequently, e.g., every second, it has a negligible cost
on performance. This makes our techniques suitable also for work-
loads that are not completely homogenous. In all experiments, we
use an HTM-friendly memory allocator [11]. To reduce noise from
the power management system, the machine was set up in perfor-
mance mode (i.e., the power governor was disabled, while all cores
were brought to the highest frequency) with turbo mode disabled.

We first discuss the results for AVL trees, which appear in Fig-
ure 11. For the read-only workload, all algorithms scale, for both
key ranges [0, 2048) and [0, 131072). The reductions in slope at
18-36 threads and 54-72 threads occur because of hyperthreading.

Figure 11. Experimental results for AVL trees.

(For thread counts 1 through 18, each core on the first socket runs
a single thread. However, for thread counts 19-36, each core runs
two threads. Similar remarks hold for the second socket.)

The scaling worsens as the number of updates increases. In the
small tree, TLE already fails to scale on two sockets with only
20% updates, as there is a higher chance of conflicts, and opera-
tions complete more frequently, so more cache invalidations occur.
Scaling is generally better in the large tree. In all cases, however,
our new algorithms take full advantage of two sockets when work-
loads scale, and have little or no performance degradation above
36 threads for workloads that do not scale. TLESCM and TLE-
ShareSCM sometimes perform slightly better than TLE and TLE-
Share, respectively, and sometimes perform slightly worse. How-
ever, the performance differences are fairly small.

Due to lack of space, the results for experiments with unbal-
anced BSTs and skip lists are provided in Appendix B. At a high
level, when contention is high, TLE performs in skip lists sim-
ilarly to AVL trees, degrading substantially once the number of
threads exceeds the capacity of one socket; TLEShare is able to
avoid this degradation. Along with that, TLE performance in un-
balanced BSTs is less prone to the NUMA effects as operations do
not rotate the tree and thus always modify only nodes at or near
tree leaves. Yet, in the most contended workload (small tree with
100% update operations), TLE performs twice worse at 72 threads
compared to 36 threads, while the performance of TLEShare at 36
and 72 threads is similar.

All of the graphs discussed up to this point in the paper have
shown results for experiments where the first 36 threads are pinned
to the first socket, and the next 36 are pinned to the second socket.
Other thread pinning policies are possible, and we ran all exper-
iments with several different policies. Due to lack of space, we
only include graphs for two alternative policies with 100% up-
dates workload and key range [0, 2048). These graphs appear in
Figure 12. In the left graph, threads are pinned to alternating sock-
ets, i.e., threads 0, 1, 2 and 3 are pinned to sockets 0, 1, 0 and 1,
respectively. In the right graph, threads are not pinned, and the oper-
ating system decides placement. The similarity between these two
graphs suggests that the Linux scheduler attempts to evenly dis-
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Figure 12. Experimental results for AVL trees with different
thread pinning policies. The workload is 100% updates with key
range [0, 2048).

tribute the load across sockets. Since 100% updates workload with
key range [0, 2048) does not scale on two sockets, the benefit of
TLEShare and TLEStarve is much more significant, and becomes
evident much earlier (starting at just two threads).

We now describe a pair of experiments with more sophisticated
workloads, involving multiple AVL trees.

Smart tree & dumb tree. In this experiment, there are two AVL
trees (a so-called smart tree and dumb tree) and three independent
groups of threads performing operations. The dumb tree is accessed
by one group of threads, which contains half of the total number of
threads. Each thread performs 100% updates workload with key
range [0, 2048). Half of the threads in this group (one quarter of
the total number of threads) are pinned to the first socket, and the
other half are pinned to the second socket. Thus, for example, in
an execution with a total of 8 threads, the dumb tree is accessed by
four threads, two of which are pinned on the first socket, and two
of which are pinned on the second socket. As we saw in Figure 11,
the dumb tree workload does not scale on two sockets.

The smart tree is accessed by two groups of threads, each
containing one quarter of the total number of threads. The first
group is pinned to the first socket, and operates on keys in the key
range [0, 1024). The second group is pinned to the second socket,
and operates on keys in the key range [1024, 2048). Since threads
in the smart tree essentially operate in two separate subtrees, the
workload scales on two sockets. Thus, the optimal decision is to
throttle the dumb tree to run on a single socket, and allow the smart
tree to run on both sockets.

Performance results for this experiment appear in the left half of
Figure 13. Both TLEStarve and TLEShare make correct decisions,
and perform well. The graphs in the bottom two rows of Figure 13,
which break out performance by data structure, show that the poor
scaling of TLE is the result of flat performance of the dumb tree (as
demonstrated in Figure 12). At the same time, TLEShare is able to
achieve scalability for both trees.

The previous experiment demonstrates that our technique can
help when a programmer knows how to partition data so that dif-
ferent parts are accessed by different sockets. The following exper-
iment shows that, even without this knowledge, our technique is
sufficiently intelligent to use two sockets for one AVL tree whose
workload just happens to scale, and only one socket for another
AVL tree whose workload does not.

Small updates & big searches. In this experiment, there are
two AVL trees and two independent thread groups. The first thread
group contains half of the threads, and each thread in this group
performs 100% updates workload with key range [0, 2048) on the
first tree. This workload does not scale on two sockets. The second
thread group contains the other half of the threads, which each
performs 100% searches with key range [0, 131072) on the second
tree. Since threads in the second group do not cause any cross-
socket cache invalidations, this workload scales on two sockets
(as we saw in Figure 11). Thus, the optimal decision is to throttle

Figure 13. Experimental results for workloads involving multiple
AVL trees. The top two graphs compare the performance of the
TLE algorithms. The bottom four graphs each show a single TLE
algorithm, and break out the performance of each data structure.
The area graphs are stacked, meaning that the top of the upper area
represents the aggregate performance for both trees.

threads running on one socket and accessing the smaller tree, and
allow threads accessing the larger tree to run on both sockets.

Performance results for this experiment appear in the right half
of Figure 13. For thread counts up to 36, all threads are pinned to
the first socket. For larger thread counts, the first 36 threads are
pinned to the first socket, and the remaining threads are pinned to
the second socket. As in the previous experiment, both TLEStarve
and TLEShare make the optimal decision, and both significantly
outperform TLE above 36 threads. The graphs that break out per-
formance by data structure show that the drop at 38 threads for
TLE occurs specifically because of a drop in the performance of
the smaller tree.

7. Conclusion
In this paper, we have presented results of experiments we have
done in an investigation into the behavior of HTM on a large 72-
thread dual-socket machine. We have shown that some recommen-
dations and common usage patterns for HTM on smaller single-
socket machines do not carry over to larger machines. In particular,
the NUMA characteristics of the multi-socket machine can have
dramatic effects on the performance of applications that use HTM:
for some applications, using all 72 threads on the machine yields
behavior that is only marginally better than that of single-threaded
execution. On the other hand, other applications may scale to the
full capacity of the machine.

Based on these observations, we proposed a technique for mak-
ing effective use of HTM on large NUMA machines by adaptively
throttling threads as necessary to optimize performance based on
profiling information collected during execution. Our experiments
show that our technique achieves the full performance of both sock-
ets for workloads that scale, and avoids the performance degrada-
tion that cripples TLE for workloads that do not.
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int getMode(Lock * lock) {
long startTime = profileStartTime;
long now = getCurrentTime ();
int mode = (now - startTime) / PROFILE_MODE_TIME;
if (mode < NUM_MODES) { // if still profiling

return mode;
} else { // profiling is finished

if (startTime > 0) {
// if the best mode for each lock has not been

determined , try to lock profileStartTime
if (CAS(& profileStartTime , startTime , -1)) {

computeBestLockModes ();
profileStartTime = 0; // unlock

} }
// compute time elapsed in the current quantum
long quantumElapsed = now % QUANTUM;
if (quantumElapsed > lock ->fastestModeSlice) {

return lock ->alternateMode;
}
return lock ->fastestMode;

} }

void computeBestLockModes () {
for each lock in locksToProfile {

// compute fastest mode for lock
long acqs [];
for (int m = 0; m < NUM_MODES; m++) {

// sum acquisitions in mode m for all threads
acqs[m] = 0;
for (int j = 0; j < NUM_THREADS; j++) {

acqs[m] += lock ->acquisitions[j][m];
} }
lock ->fastestMode = index of largest element of

acquisitions
lock ->alternateMode = index of second largest

element of acquisitions

if (lock ->fastestMode == NUM_MODES -1) {
// the fastest mode lets both sockets run , so

there ’s no point in alternating modes.
lock ->fastestModeSlice = QUANTUM;

} else {
// the fastest mode lets a single socket run.

We divide the quantum between fastestMode
and alternateMode according to the solo
performance of each socket.

lock ->fastestModeSlice = QUANTUM *
acqs[lock ->fastestMode] /

(acqs[lock ->fastestMode] +
acqs[1 - lock ->fastestMode ]);

} } }

Figure 15. Pseudocode for time sharing between lock modes.

A. Implementation details for TLEShare

type Lock {
lock_t lockData; // original lock metadata

// fields added for ProfileAndThrottle
long acquisitions [][];

// acquisitions [i][m] = number of lock
// acquisitions for thread i and mode m

int fastestMode;
int alternateMode;
long fastestModeSlice;

// time slice out of each quantum for which
// the lock mode should be fastestMode

};

Figure 14. Lock data type for time sharing between modes.

Pseudocode for TLEShare appears in Figure 14 and Figure 15.
The implementations of ProfileAndThrottle, LockAcquire and Lock-
Release are omitted, since they are the same as in TLEStarve.

computeBestLockModes is similar to the implementation for
TLEStarve, but it also saves the second best mode (in the variable

Figure 16. Experimental results for unbalanced BSTs.

Figure 17. Experimental results for skip-lists.

alternateMode), and computes how much of each time quantum
should be allocated to the fastest mode. If the fastest mode is to let
both sockets run, then the lock simply lets both sockets run, and
does not alternate modes. Otherwise, it decides how much time to
give to the fastest mode using the number of lock acquisitions in
modes zero and one that were recorded in the last profiling phase.

getMode is similar to the implementation for TLEStarve except
that instead of simply returning the fastest mode, it uses the current
time to determine whether the lock is currently in its fastest mode,
or its second fastest mode.

B. Additional experimental results
In this section, we present additional experimental results with
other implementations of the set ADT. Figure 16 shows the results
for the unbalanced BST microbenchmark. The graphs for the 100%
searches workload are omitted as they are similar to those for the
AVL tree.

For the unbalanced BST, we see much less performance degra-
dation for TLE when threads run on both sockets. In fact, TLE
continues to scale on two sockets for 20% updates workload with
the small key range, where it plummeted for the AVL tree. Even
100% updates workload with the large key range scales beyond
one socket. As we mentioned in Section 3, this is in line with our
hypothesis about cross socket cache invalidations. In 100% updates
workload with key range [0, 2048), TLESCM has a significant per-



formance advantage over TLE. Despite this, TLEShareSCM and
TLEShare achieve approximately the same performance. One plau-
sible explanation is that the concurrency restrictions imposed by
TLESCM to improve performance become irrelevant when threads
running on one of the sockets are throttled.

Next, we discuss the results for the skip-list, which appear
in Figure 17. Similarly to the unbalanced BST, the graphs for
the 100% searches workload are omitted. The skip-list performs
more similarly to the AVL tree for the small key range, while it
is more similar to the unbalanced BST with the large key range.
The performance degradation of TLE when the second socket is
in use is slightly less severe than for the AVL tree, but it is still
debilitating. TLEShare is able to avoid this degradation.
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