

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 2

Scalable Transactions on NUMA systems

Trevor Brown
Joint work with Alex Kogan, Yossi Lev, Victor Luchangco

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 3

• Hardware transactional memory (HTM) is starting to
become a reality
• Intel 4-core processor with HTM in 2013
• New Intel 18-core processor with HTM (Q3-2014)
– Can be configured with two sockets and 36-cores
– First commodity processor that supports multiple sockets and HTM

Large scale systems with HTM

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 4

• Do existing HTM-based algorithms scale with more cores?
– If not, how can we achieve scaling on larger HTM systems?
• How do NUMA effects impact transactions?

Research questions

Our study
• Try to answer the research questions using transactional

lock elision (TLE) as an example

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 5

• Non-uniform memory architecture (NUMA)
– Very different costs for a processor to access its own cache(s),

a different processor’s cache(s), or main memory
• Hardware transactional memory (HTM)
– Perform arbitrary code blocks atomically
– Best effort – can fail for any reason

Background

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 6

• Start with a critical section protected by a single lock
• Replace lock()/unlock() with begin/end transaction
• Invocations of the critical section are executed in parallel,

and the HTM system aborts conflicting transactions
• If a process aborts too many times, it falls back to

acquiring a lock (instead of starting a transaction)

Transactional lock elision (TLE)

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 7

How NUMA affects HTM

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 8

TLE AVL tree with read-only workload

2 x 18-core processor2 x 18-core processor 4-core processor4-core processor

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 9

TLE AVL tree with 2% update workload

0% updates0% updates 2% updates2% updates

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 10

TLE AVL tree with 100% update workload

2 x 18-core processor2 x 18-core processor 4-core processor4-core processor

Drop at 37 threads:
One thread on the

second socket

Drop at 37 threads:
One thread on the

second socket

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 11

• Experiment
– Each thread repeatedly:

performs a search, and then
overwrites the key of the
last node it reaches

• x-axis: number of threads
• y-axis: operations/second

 (up is good)

NUMA effects are worse with HTM

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 12

• Abort rates increase
dramatically with threads
on a second socket
• Claim: cross-socket cache

invalidations lengthen
transactions, which
increases their windows
of contention

Why NUMA hurts HTM

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 13

• Claim: cross-socket cache
invalidations lengthen
transactions, which
increases their windows
of contention
• Experiment: run single

socket, and add artificial
delay just before commit

Abort rates for longer transactions

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 14

Dealing with NUMA

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 15

• Threads back off when their transactions abort
– Even one thread on the second socket can be too many
• Starve all but one socket
– Poor performance for workloads that scale on multiple sockets

Naïve approaches

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 16

• Example: TLE in a system with multiple locks
• Associate a mode with each lock
–Mode 1: socket 1 only
• The lock can be acquired only by threads on socket 1

(and threads on other sockets will simply block on lock())
–Mode 2: socket 2 only
• The lock can be acquired only by threads on socket 2
–Mode 3: both sockets
• The lock can be acquired by threads on either socket

Our approach

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 17

• New primitive for programmers – AdaptToContention
• AdaptToContention starts a profiling session which will:
– For each mode x,
• Set all locks to mode x, and
• Measure the total number of lock acquisitions for a short,

fixed period of time,
– Then, set each lock to the mode for which it performed best.

Our approach

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 18

TLE AVL tree with 100% update workload

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 19

TLE AVL tree with read-only workload

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 20

• Workload:
– AVL tree #1: small tree,

100% updates
– AVL tree #2: large tree,

100% searches

TLE AVL tree with sophisticated workload 1

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 21

• Workload:
– AVL tree #1: threads

perform operations all over
the tree

– AVL tree #2: threads
running on socket 1 operate
on the smaller half of the
key range (and vice versa
for socket 2)

TLE AVL tree with sophisticated workload 2

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 22

● For some applications, it is not a good idea to starve threads
● Solution: time sharing to allow starved threads to run
● Each lock remembers the best mode, and the second best

mode, and regularly alternates between these two modes,
giving more time to the faster mode

● The amount of time given to a mode is a function of the
performance of the lock for each mode

Fairness

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 23

TLE AVL tree with 100% update workload

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 24

TLE AVL tree with read-only workload

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 25

• Workload:
– AVL tree #1: small tree,

100% updates
– AVL tree #2: large tree,

100% searches

TLE AVL tree with sophisticated workload 1

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 26

• Workload:
– AVL tree #1: threads

perform operations all over
the tree

– AVL tree #2: threads
running on socket 1 operate
on the smaller half of the
key range (and vice versa
for socket 2)

TLE AVL tree with sophisticated workload 2

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 27

● Divide the execution
into quanta and run
two lock modes in
each quantum

● Very little overhead
for 30ms+ quantum

● A smaller quantum
is feasible except
under very high
contention

Overhead of providing fairness

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 28

• Profiling
–When should profiling be done? (Manually? Periodically?)
–How long should a profiling session run?

• Fairness
–When do we switch modes?
–How much time should be devoted to each mode?

•What if there are more than two sockets?

Some details to think about

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 29

● Many algorithms designed for small HTM systems have poor
policies for retrying transactions, e.g.,
– Retrying transactions at most 5 times before executing the fallback path
– Going straight to the fallback path when a transaction experiences a

capacity/overflow abort
● These policies do not scale on a large HTM system

– Larger numbers of retries are often necessary, and the impact of taking a
global lock on the fallback path is much greater

– Capacity/overflow aborts are common, and are often resolved by retrying

Retrying after aborts

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 30

Retrying after aborts

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 31

Retrying after aborts

Cannot do significantly
better without retrying
after overflow aborts

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 32

• Assumption: each operation has a socket on which it should execute.
If executed there, it will mostly access data that is local to that socket.

• Idea: send each operation to the socket where it should execute
• Developed interesting algorithms which yield 2x throughput per unit

of time spent executing delegated operations, but high overhead
– Overhead would be smaller for longer operations, but longer operations are more

likely to abort…
– Limited success (~15% improvement) for some workloads by grouping simple

operations together in larger transactions and delegating the large transactions

Another approach: delegation

Copyright © 2014 Oracle and/or its affiliates. All rights reserved. | 33

● Found significant differences between NUMA and non-NUMA
machines with HTM
– NUMA has an especially large impact on HTM-based algorithms
– Cross-socket communication causes high abort rates

(even with a single thread on the second socket)

● Presented an extension to TLE for throttling sockets on a per-lock basis
– Achieves the full performance of two sockets for workloads that scale
– Avoids performance degradation for workloads that do not scale

● Developed delegation algorithms that reduce L3 cache misses and abort
rates. Future work: find workloads that can benefit, despite overhead.

Conclusion

	Slide 1
	Slide 2
	Large scale systems with HTM
	Research questions
	Background
	Transactional lock elision (TLE)
	How NUMA affects HTM
	TLE AVL tree with read-only workload
	TLE AVL tree with 1% update workload
	TLE AVL tree with 100% update workload
	NUMA effects are worse with HTM
	Why NUMA hurts HTM
	Slide 13
	Dealing with NUMA
	Naïve approaches
	Our approach
	Our approach
	TLE AVL tree with 100% update workload
	TLE AVL tree with read-only workload
	TLE AVL tree with sophisticated workload 1
	TLE AVL tree with sophisticated workload 2
	Fairness
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	[graphs showing approach with fairness]
	Some details to think about
	Retrying after aborts
	Slide 30
	Slide 31
	Another approach: delegation
	Conclusion
	Slide 34

