
CSC263 Tutorial 1

Big-O, Ω, ϴ

Trevor Brown

(tabrown@cs.utoronto.ca)

Big-O and Big-Ω

• Many students think Big-O is “worst case” and Big-Ω

is “best case.” They are WRONG! Both O(x) and Ω(x)

describe running time for the worst possible input!

• What do O(x) and Ω(x) mean?

• How do we show an algorithm is O(x) or Ω(x)?

Algorithm is O(x) Algorithm is Ω(x)

The algorithm takes at most c*x steps

to run on the worst possible input.

The algorithm takes at least c*x steps

to run on the worst possible input.

Algorithm is O(x) Algorithm is Ω(x)

Show: for every input, the algorithm

takes at most c*x steps.

Show: there is an input that makes the

algorithm take at least c*x steps.

Analyzing algorithms using O, Ω, ϴ

• First, we analyze some easy algorithms.

• We can easily find upper and lower bounds

on the running times of these algorithms by

using basic arithmetic.

Example 1

for i = 1..100

print *

• Running time: 100*c, which is ϴ(1) (why?)

• O(1), Ω(1) => ϴ(1)

Example 2

for i = 1..x

print *

• Running time: x*c

• O(x), Ω(x) => ϴ(x)

• In fact, this is also Ω(1) and O(n^2), but these

are very weak statements.

x

Example 3

for i = 1..x

for j = 1..x

print *

• O(x^2), Ω(x^2) => ϴ(x^2)
x

x

Example 4a

for i = 1..x

for j = 1..i

print *

• Big-O: i is always ≤ x, so j always iterates up to at most
x, so this at most x*x steps, which is O(x^2).

• Big-Ω:
• When i=1, the loop over j performs “print *” once.

• When i=2, the loop over j performs “print *” twice. […]

• So, “print *” is performed 1+2+3+…+x times.

• Easy summation formula: 1+2+3+…+x = x(x+1)/2

• x(x+1)/2 = x^2/2+x/2 ≥ (1/2) x^2, which is Ω(x^2)

Example 4b

for i = 1..x

for j = 1..i

print *

• Big-Ω:
– Useful trick: consider the iterations of the

first loop for which i >= x/2.

– In these iterations, the second loop iterates
from j=1 to at least j=x/2.

– Therefore, the number of steps performed
in these iterations is at least x/2*x/2 = (1/4)
x^2, which is Ω(x^2).

– The time to perform ALL iterations is even
more than this so, of course, the whole
algorithm must take Ω(x^2) time.

– Therefore, this function is ϴ(x^2).

>= for i = x/2..x

for j = 1..x/2

print *

i ≥ x/2

j ≤ x/2

x/2

x/2

for i = 1..x

for j = 1..i

for k = 1..j
print *

• Big-O: i, j, k ≤ x, so we know total number of steps is ≤ x*x*x = O(x^3).

• Big-Ω:

– Consider only the iterations of the first loop from x/2 up to x.

– For these values of i, the second loop always iterates up to at least x/2.

– Consider only the iterations of the second loop from x/4 up to x/2.

– For these values of j, the third loop always iterates up to at least x/4.

– For these values of i, j and k, the function performs “print *” at least:
x/2 * x/4 * x/4 = x^3/32 times, which is Ω(x^3).

– Therefore, this function is ϴ(x^3).

Example 5

for i = x/2..x

for j = 1..i

for k = 1..j

print *

for i = x/2..x

for j = 1..x/2

for k = 1..j

print *

for i = x/2..x

for j = x/4..x/2

for k = 1..j

print *

for i = x/2..x

for j = x/4..x/2

for k = 1..x/4

print *

Analyzing algorithms using O, Ω, ϴ

• Now, we are going to analyze algorithms

whose running times depend on their inputs.

• For some inputs, they terminate very quickly.

• For other inputs, they can be slow.

Example 1

LinearSearch(A[1..n], key)

for i = 1..n

if A[i] = key then return true

return false

• Might take 1 iteration… might take many...

• Big-O: at most n iterations, constant work per
iteration, so O(n)

• Big-Ω: can you find a bad input that makes the
algorithm take Ω(n) time?

Example 2
int A[n]

for i = 1..n

binarySearch(A, i)

• Remember: binarySearch is O(lg n).

• O(n lg n)

• How about Ω?
• Maybe it’s Ω(n lg n), but it’s hard to tell.

• Not enough to know binary search is Ω(lg n), because the
worst-case input might make only one invocation of binary
search take c*lg n steps (and the rest might finish in 1 step).

• Would need to find a particular input that causes the
algorithm to take a total of c(n lg n) steps.

• In fact, binarySearch(A, i) takes c*lg n steps when i is not in A,
so this function takes c(n lg n) steps if A[1..n] doesn’t contain
any number in {1,2,…,n}.

Example 3

• Your boss tells you that your group needs to
develop a sorting algorithm for the company's
web server that runs in O(n lg n) time.

• If you can't prove that it can sort any input of
length n in O(n lg n) time, it's no good to him. He
doesn't want to lose orders because of a slow
server.

• Your colleague tells you that he's been working
on this piece of code, which he believes should fit
the bill. He says he thinks it can sort any input of
length n in O(n lg n) time, but he doesn't know
how to prove this.

Example 3 continued

WeirdSort(A[1..n])

last := n

sorted := false

while not sorted do

sorted := true

for j := 1 to last-1 do

if A[j] > A[j+1] then

swap A[j] and A[j+1]

sorted := false

last := last-1

