Minimum Cost Spanning Trees

CSC263 Tutorial 10

Minimum cost spanning tree (MCST)

 What is a minimum cost spanning tree?

— Tree

* No cycles; equivalently, for each pair of nodes u and v,
there is only one path fromutov

— Spanning
* Contains every node in the graph

— Minimum cost

* Smallest possible total weight of any spanning tree

Minimum cost spanning tree (MCST)

e Let’s think about simple MCSTs on this graph:

Minimum cost spanning tree (MCST)

* Black edges and nodesareinT
* |[sT a minimum cost spanning tree?

* Not spanning; disnotinT.

Minimum cost spanning tree (MCST)

* Black edges and nodesareinT
* |[sT a minimum cost spanning tree?

* Not a tree; has a cycle.

Minimum cost spanning tree (MCST)

* Black edges and nodesareinT
* |[sT a minimum cost spanning tree?

 Not minimum cost; can swap edges 4 and 2.

Minimum cost spanning tree (MCST)

* Which edges form a MCST?

Quick Quiz

* |f we build a MCST from a graph G = (V, E),
how may edges does the MCST have?

* When can we find a MCST for a graph?

An application of MCSTs

* Electronic circuit designs (from Cormen et al.)

— Circuits often need to wire together the pins of
several components to make them electrically
equivalent.

— To connect n pins, we can use n - 1 wires, each
connecting two pins.

— Want to use the minimum amount of wire.

— Model problem with a graph where each pin is a
node, and every possible wire between a pair of
pins is an edge.

A few other applications of MCSTs

* Planning how to lay network cable to connect
several locations to the internet

* Planning how to efficiently bounce data from
router to router to reach its internet destination

* Creating a 2D maze (to print on cereal boxes, etc.)

ik

=.I=_I1

Mt

Building a MCST

* Prim’s algorithm takes a graph G = (V, E)
and builds an MCST T

* PrimMCST(V, E) S—

— Pick an arbitrary node r fromV | terminology, we find

—AddrtoT a light edge crossing
the cut (T, V-T)

— While T contains < |V| nodes

* Find a minimum weight edge (u, v) The book proves
whereu €Tandv &T that adding |V]-1

e AddnodevitoT such edges will
create a MCST

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Running Prim’s algorithm

Start at an arbitrary node, say, h.
Blue: not visited yet

Red: edges from
nodes € T to
nodes & T

Black: in T

Minimum

Cost: 47 o 3 0

Implementing Prim’s Algorithm

* Recall the high-level algorithm:

* PrimMCST(V, E)
— Pick an arbitrary node r from V
—AddrtoT

— While T contains < |V| nodes

* Find a minimum weight edge (u, v) | How can we do this
whereu € Tandv &T efficiently?

e Add nodevtoT

Finding lots of minimums?
Use a priority queue!

Adding a priority queue

PrimMCST(V, E)
— Pick an arbitrary node r fromV

e What should we store
in the priority queue?

—AddrtoT
— Edges — While T contains < |V| nodes
— From nodesinT * Find a minimum weight edge (u, v)

whereu € Tandv &T

tonodesnotinT . Add node v to T

 What should we use
as the key of an edge?

— Weight of the edge

Prim’s Algorithm with a priority queue

* PrimMCST(V, E, r) | where ris any arbitrary starting node

— Q := new priority queue
— For each u in V: inTree[u] = false, parent[u] = nil

— inTree(r] = true, parent[r] =r

— Add every edge that touches r to Q

— While Q is not empty
* Do Q.Extract-Min to get edge e = (u, v)
* If not inTree[v] then
— inTree[v] = true, parent|[v] = u

— Add every edge that touches vto Q

Small optimization
* PrimMCST(V, E, r)

— Q := new priority queue

— For each u in V: infreefu}=-+False; parent[u] = nil

—infreefr}=+true; parent|r] =r
— Add every edge that touches r to Q

— While Q is not empty
* Do Q.Extract-Min to get edge e = (u, v)
* If petinTreeps parent[v] = nil then
— infreepH=-+true; parent[v] = u
— Add every edge that touches vto Q

Analysis of running time

o(|VI)

1

©(|adj(r)| log |E[)

1

O(|E| log |E[)

—

S(log |E])

1

6(|adj(v)| log |E[)

!

—

PrimMCST(V, E, r)
— Q := new priority queue
— For each u in V: inTree[u] = false

— inTree[r] = true, parent[r] = nil
— Add every edge that touches r to Q

— While Q is not empty
* Do Q.Extract-Min to get edge e = (u, v)
* If not inTree[v] then
— inTree[v] = true, parent[v] = u
— Add every edge that touches vto Q

* O(|E| log [E]) =O(|E]| log (|V[?))
2 log |V])
log |V])

e =0
e =0

E
E

Java Implementation - 1

55 [
56
57
58
59
&0
81
62
63
4
65
1
&7
&8
&9
70
71
72
73
74

static int[] prim(int n, ArrayList<ArraylList<Edge>> adj,
TreeSet<Edge>|q = new TreeSet<>{();

int[] parent = new int[n]:;
for (int i=0:;i<parent.length:;++1i) parent[i] = -1:
parent|[=tart] = =start;

for (int i=0;i<adj.get (start).size():;++i) {
g.add (ad]j.get (start) .get (1))

H
while ('g.isEmptv()) {
Edge e = g.pollFirst():
if (parent[e.bk] = -1) {
parent[e.b] = e.a:
for {(int i=0;i<adj.get({e.b).size():;++1) {
g.add (adj.get({e.b).get (1))
H
}
¥

return parent;

int =tart)

{

Java Implementation - 2

49 [
50
51 =]
52
53 |
@[
55
56
57
58
55
&0
61
62| |
@[
64

ae -

static class Edge implements Comparable<BEdge> {
int a, b, w;
Edge (final int a, final int b, final int w)
this.a = a; this.b = b; thi=s.w = W;
H
public int compareTo (BEdge o) {

if (w <« o.w) return -1:
if (w > o.w) return 1;
if (a2 € 0.a) return -1:;
if (2 > 0.a) return 1;
if (b < o.bB) return -1:
if (b > o.b) return 1;
return 0;

H

public 5tring toString() {
return "(" + 2a + ", "+ b+ ", " 4+ w 4

H

i

An example input

=t
[8 £

1 + II: E I + II:

L3 L3 |]
1 g Lo
+ +
1|
i I
I|:'| n'l L
o
|
[I o O S
1 |
L3
=
h]
oy
|
|

|
|

I
ot
o
.
I|:'|
=
L
[4]
I|:'|
o
Ll

L B I
1 | |
| L3
4=
o+ + o+
] = | | = |
o LnoLr
Lo
L o kD
[N I]
+ + +
Mo LnoLn
oo
| R
[
4=
+ -
= | L
4
g
|
[y} s

|
.
+
L1
+
I_
I|:'|
[FR]

Ln
[
4=
o
I
Ll

Java Implementation - 3

13 (-] public =static void main (String[] args) {

14 int n = 10;

15 String edges =

lé "O1 8"+ "D 28"+ "3 14"

17 + "1 08 "™ + "1l 46" 4+ "1 G J "

18 + "2 08"+ "2 3 AN N2ZET4LT2e 11T
15 + "3 014 "+ "3 29" "I e+ T T
20 + "4 1 6™ 4+ "4 5 1 "4 Mg g 2"

21 + "5 1 10 ™ 4+ "5 27T " 4+ "5 41" 4+ "5 6 12"
22 + "5 82 5 "+ " 940"

23 + "6 2 11 " + " 3 8" 4+ "g 5 12" 4+ " T e "™
24 + "7T 37T "+ " 66"

25 + "3 4 2"+ "3 5 5"+ "3 5 3"

26 + "9 5 4 "™ 4+ " § 3W;

27 ArravList<ArraylList<Edge>> ad]j = new ArravList<>{():
28 for (int 1i=0;i<n;++1i) adj.add(new ArrayList<BEdge>{()):
29 Scanner in = new Scanner (edges);

30 while (in.hasHext()) {

31 int a = in.nextInt{):

32 int b = in.nextInt ()

33 int w = in.nextInt():

34 adj.get (a) .add (new Edge(a, b, wW)):

35 X

36 int[] tree = prim(n, adj, 6):

Java Implementation - 4

e Outputting the answer:

36
37
38
ER)
40
41

int[] tree = prim(n, adj, &);
for (int i=0;i<tree.length;++i) {

System.out.printc ((i>072?", """} 4+ " (" + 1 4+ "

Svstem.out.println{):;

" + tree[i] + "

"

e The answer:

TEET

(1, 4y, (£, 3y, (3, 7y, (4, 5), (5, 2}, (&, &),]
BUILD STUCCESSFUL (total time: 0 seconds)

e What does this look like?

Recall: the root is
its own parent.

Drawing the answe

(g, 2), (1, 4), (2, 3), (3, "), (4, 5), (5, 2), |

=]
[w}]
K}
oy
L
(K

[w}
[u

Recall our earlier solution
by hand:

Fun example: generating 2D mazes

* Prim’s algorithm maze building video

* How can we use Prim’s algorithm to do this?

1. Create a graph that is
a regular m x n grid.

[\

2. Set all edge weights
to random values!

N /

3. Run Prim’s algorithm
starting from any node.

Fun example: generating 2D mazes

* After Prim’s, we end up with something like:

