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Minimum cost spanning tree (MCST)

• What is a minimum cost spanning tree?

– Tree

• No cycles; equivalently, for each pair of nodes u and v, 

there is only one path from u to v

– Spanning

• Contains every node in the graph

– Minimum cost

• Smallest possible total weight of any spanning tree



Minimum cost spanning tree (MCST)

• Let’s think about simple MCSTs on this graph:
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Minimum cost spanning tree (MCST)

• Black edges and nodes are in T

• Is T a minimum cost spanning tree?

• Not spanning; d is not in T.
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Minimum cost spanning tree (MCST)

• Black edges and nodes are in T

• Is T a minimum cost spanning tree?

• Not a tree; has a cycle.
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Minimum cost spanning tree (MCST)

• Black edges and nodes are in T

• Is T a minimum cost spanning tree?

• Not minimum cost; can swap edges 4 and 2.
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Minimum cost spanning tree (MCST)

• Which edges form a MCST?
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Quick Quiz

• If we build a MCST from a graph G = (V, E), 

how may edges does the MCST have?

• When can we find a MCST for a graph?



An application of MCSTs

• Electronic circuit designs (from Cormen et al.)

– Circuits often need to wire together the pins of 

several components to make them electrically 

equivalent.

– To connect n pins, we can use n - 1 wires, each 

connecting two pins.

– Want to use the minimum amount of wire.

– Model problem with a graph where each pin is a 

node, and every possible wire between a pair of 

pins is an edge.



A few other applications of MCSTs

• Planning how to lay network cable to connect 

several locations to the internet

• Planning how to efficiently bounce data from 

router to router to reach its internet destination

• Creating a 2D maze (to print on cereal boxes, etc.)



Building a MCST

• Prim’s algorithm takes a graph G = (V, E)

and builds an MCST T

• PrimMCST(V, E)

– Pick an arbitrary node r from V

– Add r to T

– While T contains < |V| nodes

• Find a minimum weight edge (u, v)

where � ∈ � and � ∉ �

• Add node v to T

In the book’s 

terminology, we find 

a light edge crossing 

the cut (T, V-T)

The book proves 

that adding |V|-1 

such edges will 

create a MCST



Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T
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Running Prim’s algorithm

• Start at an arbitrary node, say, h.

• Blue: not visited yet

• Red: edges from

nodes ∈ � to

nodes ∉ �

• Black: in T

• Minimum

Cost: 47
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Implementing Prim’s Algorithm

• Recall the high-level algorithm:

• PrimMCST(V, E)

– Pick an arbitrary node r from V

– Add r to T

– While T contains < |V| nodes

• Find a minimum weight edge (u, v)
where � ∈ � and � ∉ �

• Add node v to T

How can we do this 

efficiently?

How can we do this 

efficiently?

Finding lots of minimums?

Use a priority queue!



Adding a priority queue

• What should we store 

in the priority queue?

– Edges

– From nodes in T

to nodes not in T

• What should we use 

as the key of an edge?

– Weight of the edge



Prim’s Algorithm with a priority queue

• PrimMCST(V, E, r)

– Q := new priority queue

– For each u in V: inTree[u] = false, parent[u] = nil

– inTree[r] = true, parent[r] = r

– Add every edge that touches r to Q

– While Q is not empty

• Do Q.Extract-Min to get edge e = (u, v)

• If not inTree[v] then

– inTree[v] = true, parent[v] = u

– Add every edge that touches v to Q

where r is any arbitrary starting node



Small optimization

• PrimMCST(V, E, r)

– Q := new priority queue

– For each u in V: inTree[u] = false, parent[u] = nil

– inTree[r] = true, parent[r] = r

– Add every edge that touches r to Q

– While Q is not empty

• Do Q.Extract-Min to get edge e = (u, v)

• If not inTree[v] parent[v] = nil then

– inTree[v] = true, parent[v] = u

– Add every edge that touches v to Q



Analysis of running time

• O(|E| log |E|) = O(|E| log (|V|2))

• = O(|E| 2 log |V|)

• = O(|E| log |V|)

ϴ(|V|)

ϴ(|adj(r)| log |E|)

ϴ(log |E|)

ϴ(|adj(v)| log |E|)

ϴ(|E| log |E|)



Java Implementation - 1



Java Implementation - 2



An example input
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Java Implementation - 3



Java Implementation - 4

• Outputting the answer:

• The answer:

• What does this look like?
Recall: the root is 

its own parent.



Recall our earlier solution 

by hand:

Drawing the answer
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Fun example: generating 2D mazes

• Prim’s algorithm maze building video

• How can we use Prim’s algorithm to do this?

2. Set all edge weights 

to random values!

3. Run Prim’s algorithm 

starting from any node.

1. Create a graph that is 

a regular m x n grid.



Fun example: generating 2D mazes

• After Prim’s, we end up with something like:


