
What is a heap?

• Always keep the thing we 

are most interested in 

close to the top (and fast 

to access).

• Like a binary search tree, 

but less structured.

• No relationship between 

keys at the same level 

(unlike BST).



Types of heaps

• Min heap: priority 1 more important than 100

• Max heap: 100 more important than 1

– We are going to talk about max heaps.

• Max heap-order property

– Look at any node u, and its parent p.

– p.priority ≥ u.priority

p:7

u:3



Abstract data type (ADT)

• We are going to use max-heaps to implement the 

(max) priority queue ADT

• A priority queue Q offers (at least) 2 operations:

– Extract-max(Q): returns the highest priority element

– Insert(Q, e): inserts e into Q

• Every time an Insert or Extract-max changes the 

heap, it must restore the max-heap order 

property. (� Prove by induction on the sequence 

of inserts and extract-maxes that occur.)



What can we do with a heap

• Can do same stuff with a BST… why use a heap?

– BST extract-max is O(depth); heap is O(log n)!

• When would we use a BST?

– When we need to search for a particular key.



• Heaps are typically implemented with arrays.

• The array is just a level-order traversal of the heap.

• The children of the node at index i are at 2i and 2i+1.

Storing a heap in memory



Example time

• Interactive heap visualization

• Insert places a key in a new node that is the 

last node in a level-order-traversal of the heap.

• The inserted key is then “bubbled” upwards until 

the heap property is satisfied.

• Extract-max removes the last node in a level-

order-traversal and moves its key into the root.

• The new key at the root is then bubbled down

until the heap property is satisfied.

• Bubbling down is also called heapifying.



• Suppose we want to build a heap from an 

unsorted array: 10, 2, 7, 8, 6, 5, 9, 4, 3, 11.

• We start by interpreting the array as a tree.

Building a max-heap in O(n) time



Building a heap: a helper function

Precondition: trees rooted at L and R are heaps

Postcondition: tree rooted at I is a heap

MaxHeapify(A,I):

L = LEFT(I)

R = RIGHT(I)

If L ≤ heap_size(A) and A[L] > A[I]

then max = L

else max = I

If R ≤ heap_size(A) and A[R] > A[max]

then max = R

If max is L or R then

swap(A[I],A[max])

MaxHeapify(A,max)

I:3

L:7 R:5

Case 1: max = L

Need to fix…

I:7

L:3 R:5

Case 2: max = I

Heap OK!

I:5

L:3 R:7

Case 3: max = R

Need to fix…



Proving MaxHeapify is correct

• How would you formally prove that MaxHeapify is correct?

• Goal: Prove MaxHeapify is correct for all inputs.

“Correct” means: “if the precondition is satisfied when MaxHeapify

is called, then the postcondition will be satisfied when it finishes.”

• How do we prove a recursive function correct?

– Define a problem size, and prove correctness by induction on 

problem size.

– Base case: show function is correct for any input of the smallest 

problem size.

– Inductive step: assume function is correct for problem size j; 

show it is correct for problem size j+1.



Proving MaxHeapify is correct - 2

• Let’s apply this to MaxHeapify.

• Problem size: height of node I.

• Base case: Prove MaxHeapify is correct for every input 

with height(I) = 0.

• Inductive step: Let A and I be any input parameters that 

satisfy the precondition.

Assume MaxHeapify is correct when the problem size is j. 

Prove MaxHeapify is correct when the problem size is j+1.



Proving MaxHeapify is correct - 3

Precondition: trees rooted at L and R are heaps

Postcondition: tree rooted at I is a heap

MaxHeapify(A,I):

L = LEFT(I)

R = RIGHT(I)

If L ≤ heap_size(A) and A[L] > A[I]

then max = L

else max = I

If R ≤ heap_size(A) and A[R] > A[max]

then max = R

If max is L or R then

swap(A[I],A[max])

MaxHeapify(A,max)

I:3

L:7 R:5

Case 1: max = L

Need to fix…

I:7

L:3 R:5

Case 2: max = I

Heap OK!

I:5

L:3 R:7

Case 3: max = R

Need to fix…



The main function

BUILD-MAX-HEAP(A):

for i = heap_size(A)/2 down to 1

MaxHeapify(A,i)



Analyzing worst-case complexity



Analyzing worst-case complexity



• ≤ 2d nodes at depth d

• Node at depth d has height ≤ h-d

• Cost to “heapify” one node at depth d is ≤ c(h-d)

– Don’t care about constants... Ignoring them below…

• Cost to heapify all nodes at depth d is ≤ 2d (h-d)



• So, cost to heapify all nodes over all depths is:




