
Probability theory and

average-case complexity



Review of probability theory



Review of probability theory:

outcome

• Examples:

– Rolling a die and getting 1

– Rolling a die and getting 6

– Flipping three coins and getting H, H, T

– Drawing two cards and getting 7 of hearts, 9 of clubs

• NOT examples:

– Rolling a 6-sided die and getting an even number 

(this is more than one outcome—3 to be exact!)

– Drawing a card and getting an ace (4 outcomes!)



Review of probability theory:

event

• Defn: one or more possible outcomes

• Examples:

– Rolling a die and getting 1

– Rolling a die and getting an even number

– Flipping three coins and getting at least 2 “heads”

– Drawing five cards and getting one of each suit



Review of probability theory:

sample space

• Defn: A set of events

• Examples:

Flipping 3 coins

Rolling 2 dice

Drawing a card



Review of probability theory:

probability distribution

• Idea: take a sample space S and add probabilities 

for each event

• Defn: mapping from events of S to real numbers

– Pr � ≥ 0 for any event A in S

– ∑ Pr ��∈	 = 1

• Example:

Flipping 3 biased coins

75% heads, 25% tails

0.75

0.25

0.75*0.75 0.753

0.25*0.25 0.253

0.75*0.25

0.752*0.25
0.752*0.25

0.75*0.252

0.752*0.25

0.75*0.252

0.75*0.252

0.25*0.75



Review of probability theory:

probability of an event A

• Defn: Pr � = ∑ Pr ��
�����������∈� 	
• Example:

– Pr(roll a die and get even number) = Pr(roll a 2) + 

Pr(roll a 4) + Pr(roll a 6)



Review of probability theory:

random variable

• Idea: turn events into numbers

• Let S be a sample space

• Defn: mapping from events to real numbers

• Example:

X = the number on a die after a roll

event “rolling a 1” -> 1

event “rolling a 2” -> 2

…

event “rolling a 6” -> 6

Technically, X is a function,

so we can write:

X(rolling a 1) = 1

X(rolling a 2) = 2

…

X(rolling a 6) = 6



Review of probability theory:

expected value of a random variable

• Idea: “average” value of the random variable

• Remember: random variable X is a mapping from 
events in a sample space S to numbers

• Defn: Expected value of X = E X =
	 � � ����
 Pr � = � ����
 	
�����∈	

	
• Short form: E X = 	∑ 	 Pr � =  !
• Example: X = number on die after rolling

" � = � 	 Pr � =  
#$!$%

= 116 + 216 +⋯+ 616 = 7
2

Here, x = X(event)



Expected running time of an algorithm



Expected running time of an algorithm

• Let A be an algorithm.

• Let Sn be the sample space of all inputs of size n.

• To talk about expected (/average) running time, 

we must specify how we measure running time.

– We want to turn each input into a number (runtime).

– Random variables do that…

• We must also specify how likely each input is.

– We do this by specifying a probability distribution 

over Sn.



Expected running time of an algorithm

• Recall: algorithm A, sample space Sn

• We define a random variable

tn(I) = number of steps taken by A on input I

• We then obtain:

" 
� = � 
� , Pr ,
-∈	.

• In this equation, I is an input in Sn, and

Pr(I) is the probability of input I according to the 

probability distribution we defined over Sn

• / 01 is the average running time of A, given Sn



Example time!



Example time: searching an array

• Let L be an array containing 8 distinct keys
Search(k, L[1..8]):

for i = 1..8

if L[i].key == k then return true

return false

• What should our sample space S9 of inputs be?

• Hard to reason about all possible inputs.

– (In fact, there are uncountably infinitely many!)

• Can group inputs by how many steps they take!



Grouping inputs by how long they take

Search(k, L[1..8]):

for i = 1..8

if L[i].key == k then return true

return false

• What causes us to return in loop iteration 1?

• How about iteration 2?  3? … 8? After loop?

• S9 = { L[1]=k, L[2]=k, …, L[8]=k, k not in L }

• Now we need a random variable for S9!



Using a random variable

to capture running time

Search(k, L[1..8]):

for i = 1..8

if L[i].key == k then return true

return false

• S9 = { L[1]=k, L[2]=k, …, L[8]=k, k not in L }

• Let T(e) = running time for event e in S9

• T(L[1]=k) = 2, T(L[2]=k) = 4, …, T(L[i]=k) = 2i

• T(k not in L) = 2*8+1 = 17

• We then obtain: / 2 = ∑ 2 3 45(3)3∈89

For simplicity: assume each iteration takes 2 steps.

1 step

Do we have enough information to 

compute an answer?



What about a probability distribution?

• We have a sample space and a random variable.

• Now, we need a probability distribution.

• This is given to us in the problem statement.

– For each i, Pr : ; = < = #
#%

– Pr <	��
	;�	=;>
 = #
?

• If you don’t get a probability distribution from the 

problem statement, you have to figure out how 

likely each input is, and come up with your own.



Computing the average running time

• We now know:	/ 2 = ∑ 2 3 45(3)3∈89
• T(e) = running time for event e in S9

• T(L[i]=k) = 2i          T(k not in L) = 17

• S9 = { L[1]=k, L[2]=k, …, L[8]=k, k not in L}

• Probability distribution:

– For each i, Pr : ; = < = #
#%

– Pr <	��
	;�	=;>
 = #
?

• Therefore: / 2 = @ : 1 = < AB : 1 = < +
⋯+ @ : 8 = < AB : 8 = < +
@ <	��
	;�	: AB(<	��
	;�	:)



The final answer

• Recall:    T(L[i]=k) = 2i          T(k not in L) = 17

– For each i, Pr : ; = < = #
#%

– Pr <	��
	;�	=;>
 = #
?

• / 2 = @ : 1 = < AB : 1 = < +⋯+
@ : 8 = < AB : 8 = < +
@ <	��
	;�	: AB <	��
	;�	: = ?

#%+
D
#%+

⋯+ #%
#%+

#E
? = 13

• Thus, the average running time is 13.



Slightly harder problem: L[1..n]

Search(k, L[1..n]):

for i = 1..n

if L[i].key == k then return true

return false

• Problem: what is the average running time of 

Search, given the following probabilities?

– Pr : ; = < = #
?�

– Pr <	��
	;�	: = #
?



Computing E[T]: part 1

Search(k, L[1..n]):

for i = 1..n

if L[i].key == k then return true

return false

• What is our sample space?

– Sn+1 = { L[1]=k, L[2]=k, …, L[n]=k, k not in L }

• What is our random variable?

– Let T(e) = running time for event e in Sn+1

• What is the running time of each event?

– T(L[i]=k) = 2i, T(k not in L)=2n+1



Computing E[T]: part 2

• What we know:

– Sn+1 = { L[1]=k, L[2]=k, …, L[n]=k, k not in L }

– T(L[i]=k) = 2i, T(k not in L)=2n+1

– Pr <	��
	;�	: = #
?	 and   Pr : ; = < = #

?�
• Now we can compute / 2 = ∑ 2 3 45 33∈81GH .

– / 2 =
T L 1 = k 	Pr L 1 = k +
T L 2 = k Pr L 2 = k +⋯+
T L n = k Pr L n = k +
T <	��
	;�	: 	Pr	(<	��
	;�	:)

– / 2 = 2 #
?� + 4 #

?N +⋯+ 2n #
?N+ 2n + 1 #

?



Computing E[T]: part 3

– / 2 = 2 #
?� + 4 #

?N +⋯+ 2n #
?N + 2n + 1 #

?
– / 2 = #

� 1 + 2 +⋯+ � + 2� + 1 #
?

– / 2 = #
�
�(�O#)

? + ?�O#
? = �O#

? + ?�O#
? = P�

? + 1
– Thus, Search(k, L[1..n]) has expected (or average) 

running time 3n/2+1 for the given probabilities.


