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Abstract. We present a linearizable, non-blocking k-ary search tree
(k-ST) that supports fast searches and range queries. Our algorithm
uses single-word compare-and-swap (CAS) operations, and tolerates any
number of crash failures. Performance experiments show that, for work-
loads containing small range queries, our k-ST significantly outperforms
other algorithms which support these operations, and rivals the perfor-
mance of a leading concurrent skip-list, which provides range queries that
cannot always be linearized.

1 Introduction and Related Work

The ordered set abstract data type (ADT) represents a set of keys drawn from
an ordered universe, and supports three operations: INSERT (key), DELETE(key),
and FIND(key). We add to these an operation RANGEQUERY (a, b), where a < b,
which returns all keys in the closed interval [a,b]. This is useful for various
database applications.

Perhaps the most straightforward way to implement this ADT is to employ
software transactional memory (STM) [14]. STM allows a programmer to specify
that certain blocks of code should be executed atomically, relative to one another.
Recently, several fast binary search tree algorithms using STM have been intro-
duced [7,2]. Although they offer good performance for INSERTs, DELETEs and
FiNDs, they achieve this performance, in part, by carefully limiting the amount
of data protected by their transactions. However, since computing a range query
means protecting all keys in the range from change during a transaction, STM
techniques presently involve too much overhead to be applied to this problem.

Another simple approach is to lock the entire data structure, and compute a
range query while it is locked. One can refine this technique by using a more fine-
grained locking scheme, so that only part of the data structure needs to be locked
to perform an update or compute a range query. For instance, in leaf-oriented
trees, where all keys in the set are stored in the leaves of the tree, updates to
the tree can be performed by local modifications close to the leaves. Therefore,
it is often sufficient to lock only the last couple of nodes on the path to a leaf,
rather than the entire path from the root. However, as was the case for STM,



a range query can only be computed if every key in the range is protected, so
typically every node containing a key in the range must be locked.

Persistent data structures [12] offer another approach. The nodes in a per-
sistent data structure are immutable, so updates create new nodes, rather than
modifying existing ones. In the case of a persistent tree, a change to one node
involves recreating the entire path from the root to that node. After the change,
the data structure has a new root, and the old version of the data structure
remains accessible (via the old root). Hence, it is trivial to implement range
queries in a persistent tree. However, significant downsides include contention at
the root, and the duplication of many nodes during updates.

Brown and Helga [9] presented a k-ST in which each internal node has k
children, and each leaf contains up to k — 1 keys. For large values of k, this
translates into an algorithm which minimizes cache misses and benefits from
processor pre-fetching mechanisms. In some ways, the k-ST is similar to a per-
sistent data structure. The keys of a node are immutable, but the child pointers
of a node can be changed. The structure is also leaf-oriented, meaning that all
keys in the set are stored in the leaves of the tree. Hence, when an update adds
or removes a key from the set, the leaf into which the key should be inserted, or
from which the key should be deleted, is simply replaced by a new leaf. Since the
old leaf’s keys remains unmodified, range queries using this leaf need only check
that it has not been replaced by another leaf to determine that its keys are all
in the data structure. To make this more efficient, we modify this structure by
adding a dirty-bit to each leaf, which is set just before the leaf is replaced.

Braginsky and Petrank [5] presented a non-blocking BT tree, another search
tree of large arity. However, whereas the k-ST’s nodes have immutable keys, the
nodes of Braginsky’s BTtree do not. Hence, our technique for performing range
queries cannot be efficiently applied to their data structure.

Snapshots offer another approach for implementing range queries. If we could
quickly take a snapshot of the data structure, then we could simply perform a
sequential range query on the result. The snapshot object is a vector V of data
elements supporting two operations: UPDATE(i, val), which atomically sets V;
to val, and SCAN, which atomically reads and returns all of the elements of V.
SCAN can be implemented by repeatedly performing a pair of COLLECTs (which
read each element of V' in sequence and return a new vector containing the
values it read) until the results of the two COLLECTSs are equal [1]. Attiya, et al.
[3] introduced partial snapshots, offering a modified SCAN(i1, is, ..., i, ) operation
which operates on a subset of the elements of V. Their construction requires
both CAS and fetch-and-add.

Recently, two high-performance tree structures offering O(1) time snapshots
have been published. Both structures use a lazy copy-on-write scheme that we
now describe.

Ctrie is a non-blocking concurrent hash trie due to Prokopec et al. [13]. Keys
are hashed, and the bits of these hashes are used to navigate the trie. To facilitate
the computation of fast snapshots, a sequence number is associated with each
node in the data structure. Each time a snapshot is taken, the root is copied and



its sequence number is incremented. An update or search in the trie reads this
sequence number seq when it starts and, while traversing the trie, it duplicates
each node whose sequence number is less than seq. The update then performs a
variant of a double-compare-single-swap operation to atomically change a pointer
while ensuring the root’s current sequence number matches seq. Because keys are
ordered by their hashes in the trie, it is hard to use Ctrie to efficiently implement
range queries. To do so, one must iterate over all keys in the snapshot.

The second structure, Snap, is a lock-based AVL tree due to Bronson et al.
[6]. Whereas Ctrie added sequence numbers, Snap marks each node to indicate
that it should no longer by modified. Updates are organized into epochs, with
each epoch represented by an object in memory containing a count of the number
of active updates belonging to that epoch. A snapshot marks the root node, ends
the current epoch, and blocks further updates from starting until all updates in
the current epoch finish. Once updates are no longer blocked, they copy and
mark each node they see whose parent is marked. Like Ctrie, this pushes work
from snapshots onto subsequent updates. If these snapshots are used to compute
small range queries, this may result in excessive duplication of unrelated parts
of the structure.

If we view shared memory as a contiguous array, then our range queries are
similar to partial snapshots. We implement two optimizations specific to our data
structure. First, when we traverse the tree to perform our initial COLLECT, we
need only read a pointer to each leaf that contains a key in the desired range
(rather than reading each key). This is a significant optimization when k is large,
e.g., 64. Second, instead of performing a second COLLECT (which would involve
saving the parent of each leaf or traversing the tree again), we can simply check
the dirty-bit of each node read by the first COLLECT. As a further optimization,
range queries can return a sequence of leaves, rather than copying their keys into
an auxiliary structure.

Contributions of this work:

e We present a new, provably correct data structure, and demonstrate exper-
imentally that, for two very different sizes of range queries, it significantly
outperforms data structures offering O(1) time snapshots. In many cases, it
even outperforms a non-blocking skip-list, whose range queries cannot always
be linearized.

e We contribute to a better understanding of the performance limitations of the
O(1) time snapshot technique for this application.

The structure of the remainder of this paper is as follows. In Sec. 2, we
describe the data structure, how updates are performed, and our technique for
computing partial snapshots of the nodes of the tree. We give the details of
how range queries are computed from these partial snapshots of nodes in Sec. 3.
A sketch of a correctness proof is presented in Sec. 4. (The full version of this
paper [8] contains a detailed proof.) Experimental results are presented in Sec. 5.
Future work and conclusions are discussed in Sec. 6.
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Fig. 1. the four k-ST update operations.

2 Basic Operations and Validate

The k-ST is a linearizable, leaf-oriented search tree in which each internal node
has k children and each leaf contains up to k—1 keys. Its non-blocking operations,
FIND, INSERT and DELETE, implement the set ADT. FIND(key) returns TRUE
if key is in the set, and FALSE otherwise. If key is not already in the set, then
INSERT(key) adds key and returns TRUE. Otherwise it returns FALSE. If key
is in the set, then DELETE(key) removes key and returns TRUE. Otherwise it
returns FALSE. The k-ST can be extended to implement the dictionary ADT,
in which a value is associated with each key (described in the technical report
for [9]). Although a leaf-oriented tree occupies more space than a node-oriented
tree (since it contains up to twice as many nodes), the expected depth of a key
or value is only marginally higher, since more than half of the nodes are leaves.
Additionally, the fact that all updates in a leaf-oriented tree can be performed
by a local change near the leaves dramatically simplifies the task of proving that
updates do not interfere with one another.

Basic k-ST operations These operations are implemented as in [9]. FIND is
conceptually simple, and extremely fast. It traverses the tree just as it would
in the sequential case. However, concurrent updates can prevent its termination
(see [11]). INSERT and DELETE are each split into two cases, for a total of four
update operations: sprouting insertion, simple insertion, pruning deletion and
simple deletion (see Fig. 1). An INSERT into leaf [ will be a sprouting insertion
when [ already has k — 1 keys. Since [ cannot accommodate any more keys, it is
atomically replaced (using CAS) by a newly created sub-tree that contains the
original k — 1 keys, as well as the key being inserted. Otherwise, the INSERT will
be a simple insertion, which will atomically replace [ with a newly created leaf,
containing the keys of [, as well as the key being inserted. A DELETE from leaf
[ will be a pruning deletion if [ has one key and exactly one non-empty sibling.
Otherwise, the DELETE will be a simple deletion, which will atomically replace
| with a newly created leaf, containing the keys of [, except for the key being
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Fig. 2. A VALIDATE is in progress on the leaves containing a and b. Before it can check
the dirty bits of these leaves at line 2, an update INSERT(c) sets the dirty bit of the
leaf containing b. After this, the VALIDATE is doomed to return FALSE. The INSERT(c)
then changes its child pointer and finishes.

deleted. Note that if [ has one key, then [ will be empty after a simple deletion.
With this set of updates, it is easy to see that the keys of a node never change,
and that internal nodes always have k — 1 keys and k children.

The non-blocking progress property is guaranteed by a helping scheme that
is generalized from the work of Ellen et al. [11], and is somewhat similar to the
cooperative technique of Barnes [4]. Every time a process p performs an update
U, it stores information in the nodes it will modify to allow any other process to
perform U on p’s behalf. When a process is prevented from making progress by
another operation, it helps that operation complete, and then retries its own.

Validate We include a VALIDATE subroutine, which is used in the RANGEQUERY
algorithm in Sec. 3. It is closely related to a partial snapshot operation when
memory is viewed as an array of locations. VALIDATE takes as argument a se-
quence of pointers to leaves which were reached by following child pointers from
the root.

VALIDATE(p1, P2, -, Pn) {
check the dirty bit of each leaf pointed to by an element of {p1,...,pn}
if any dirty bit is TRUE {
return FALSE

} else {

return TRUE

b}

The dirty field is a single bit included in each leaf [ that is initially FALSE,
and is irrevocably set to TRUE just before any CAS that will remove or replace
l. (See Fig. 2 for an illustration of how a dirty bit causes a snapshot to retry.)
Thus, a FALSE dirty bit in a leaf [ that was visited in the tree implies that [
is in the tree. Hence, if each I € {p1,...,p,} satisfies l.dirty = FALSE, then we
know each [ was in the tree when the its dirty bit was read at line 2 by the
algorithm. Furthermore, since the keys of a node never change, I’s FALSE dirty
bit means that all of the keys in [ are in the tree. Hence, if VALIDATE returns
TRUE, all of the keys contained in the leaves in the snapshot are in the tree when
the VALIDATE began. If VALIDATE returns FALSE, then there is a leaf that has
been or is in the process of being replaced.

N O s W N e



14 subtype Leaf of Node {

8 type Node { 11 subtype Internal of Node { 15 boolean dirty
9 Key U {0} ai,...,ak—1 12 Node ci,...,ck initially F
10 3 13} > (initially FALSE)

16

17 RANGEQUERY(Key lo, Key hi) : List of Nodes {

> Precondition: lo, hi # oo, and lo < hi
18 List snap := new List()

> DFS to populate snap with all leaves that could possibly contain a key in [lo, hi]
19 Stack s := new Stack()

20 s.push(root.cy)
21 while |s| > 0 {
22 Node u := s.pop()
23 if u is a Leaf then do snap.add(u)
> Determine which children of u to traverse

24 int 4:=1
25 while ¢ < k and u.a; < lo { > Find first sub-tree that intersects [lo, co0)
26 =1+ 1
27
28 ifi=1{ > Boundary case: don’t test u.ag below
29 s.push(u.c;)
30 =1+ 1
31
32 while i < k and w.a;—1 < hi { > Push sub-trees until all keys are in (h%, c0)
33 s.push(u.c;)
34 i:=1+1
35 3

> Validate (check the nodes in snap have not changed)
36 if not VALIDATE(snap) then retry (i.e., go back to line 18)

> Return all leaves in snap that contain some key in range [lo, hi]
37 List result := new List()

38 for each u in snap {

39 if at least one of u’s keys is in range [lo, hi] then do result.add(u)
40 }

41 return result

42}

Fig. 3. Abridged type definitions and pseudocode for RANGEQUERY. RANGEQUERY
accepts two keys, lo and hi, as arguments, and returns all leaves that (a) were in the
tree at the linearization point, and (b) have a key in the closed interval [lo, hi].

3 Range Queries in a k-ST

An abridged description of the type definitions of the data structure and Java-
like pseudocode for the RANGEQUERY operation are given in Fig. 3. We borrow
the concept of a reference type from Java. In this psuedocode, variables of any
type E ¢ {int, boolean} are references to objects of type E. A reference z is like
pointer, but is automatically dereferenced when a field of the object is accessed
with the (.) operator, as in: z.field (which means the same as x->field in C).
References take on the special value NULL when they do not point to any object.
(However, no field of any node is ever NULLL.)

We now take a high-level tour through the RANGEQUERY algorithm. The
algorithm begins by declaring a list snap at line 18 to hold pointers to all leaves
which may contain a key in [lo, hi]. In lines 19-35 the algorithm traverses the



tree, saving pointers in snap. It uses a depth-first-search (DFS), implemented
with a stack (instead of recursion), except that it may prune some of the children
of each node, and avoid pushing them onto the stack. The loop at line 25 prunes
those children that are the roots of sub-trees with keys strictly less than lo. The
loop at line 32 then pushes children onto the stack until it hits the first child
that is the root of a sub-tree with keys strictly greater than hi. Both of these
loops use the fact that keys are maintained in increasing order within each node.
It follows that all paths that could lead to keys in [lo, hi] are explored, and all
terminal leaves on these paths are placed in snap at line 23.

RANGEQUERY then calls VALIDATE (described in the previous section). If
this validation is successful, then each element of snap that points to a leaf
containing at least one key in [lo, hi] is copied into result by the loop at lines 38-
40. The range query can be modified to return a list of keys instead of nodes
simply by changing the final loop (since the keys of a node never change).

4 Correctness

We now present a simple, modular proof of correctness. Despite the simplicity
of the modification to the code of the original k-ary search tree (k-ST), the full
code appears in Figure 5 and Figure 6. We consider the proof of correctness
appearing in the Appendix of [10], and note that adding a dirty bit to each leaf,
and setting this dirty bit just before each child CAS does not affect any result
contained therein, since no operation reads the dirty bit, and only simple writes
are performed on it (which can only delay processes from other work). Next, we
observe that, since RANGEQUERY does not modify shared memory, its addition
cannot affect the correctness of FIND, INSERT or DELETE. Finally, we conclude
the proof with the main result, demonstrating that range queries give correct
(linearizable) results, and that all operations are non-blocking (building on the
proof in [10] to argue progress).

Let us now explore these claims in greater detail. Starting from the data
structure of [10] and the proof of correctness in its Appendix, we add a dirty bit
to leaves, which is initially FALSE upon leaf creation, and we modify INSERT and
DELETE to set this dirty bit immediately before executing the Rchild CAS and
Pchild CAS steps, respectively. Note that, after these preliminary changes to the
data structure of [10], no operation ever reads the dirty bit of any leaf, and the
dirty bit is only modified (by simple writes) immediately before a child CAS step.
Thus, the steps that set the dirty bit affect the original algorithm in precisely
the same way that regular scheduling delays (e.g., because the operating system
performs a context switch and temporarily suspends execution of a process) do—
simply by delaying a process from the “real” work of the algorithm. This implies
that these changes cannot possibly affect the correctness of FIND, INSERT or
DELETE, or cause any of them to become blocking operations, and the original
proof carries through, without change.



43 > Type definitions:

44  type Node { 60 subtype PruneFlag of UpdateStep {
45 final Key U {0} a1,...,ak_1 61 final Node I, p, gp
46} 62 final UpdateStep ppending
47 subtype Leaf of Node { 63 final int gpindex
48 final int keyCount 64
49 boolean dirty 65 subtype Mark of UpdateStep {
> (initially FALSE) 66 final PruneFlag pending
50 67 }
51 subtype Internal of Node { 68 subtype Clean of UpdateStep { }
i ggjcate“sl e ding 69 b Initialization:
70 shared Internal root

> (initially a new Clean() object)
54}

55 type UpdateStep { }

56 subtype ReplaceFlag of UpdateStep {
57 final Node I, p, newChild

58 final int pindex

Fig. 4. Type definitions and initialization.

Before we consider the addition of RANGEQUERY, we establish some results
pertaining to the dirty bits of leaves. Note that we call a leaf dirty when its dirty
bit is set. We lead with a few simple observations.

Observation 1. A leaf’s dirty bit only changes from FALSE to TRUE.

Observation 2. Apart from child pointers, nodes are never modified. To insert
or delete a key, INSERT and DELETE replace affected node(s) with newly created
node(s).

The following definition, excerpted from [10], is needed for Lemma 4.

Definition 3. If a Flag CAS stores a pointer to a ReplaceFlag or PruneFlag ob-
ject f, then we say the Flag CAS belongs to f. Mark, child, unflag and backtrack
CAS steps all use information from an UpdateStep object that is the argument
to the HELPPRUNE, HELPREPLACE or HELPMARKED invocation that performs
the CAS step. Each of these CAS steps is also said to belong to the UpdateStep
object. When an UpdateStep object is created, some information comes from an
invocation of SEARCH, which is also said to belong to the UpdateStep object.

Lemma 4. If no INSERT or DELETE operations are executing, then there are
no dirty leaves reachable by following child pointers from root.

Proof. In order to derive a contradiction, suppose that no INSERT or DELETE
operations are executing, but some leaf [ with [.dirty = TRUE can be reached
by traversing from root.

Since I’s dirty bit can only be changed from FALSE to TRUE at line 159 or by
the loop at line 165 (where [ = op.l), this change will be followed by a Child CAS
belonging to op. By Lemma 23 of [10], the first Child CAS belonging to op must
succeed. Note that this first Child CAS will come after [’s dirty bit is changed
to TRUE. Thus, it remains only to show (a) that an invocation of INSERT or



71 SeArRCH(Key key) : (Internal, Internal, Leaf, UpdateStep, UpdateStep) {
> Used by INSERT, DELETE and FIND to traverse the k-ST
> SEARCH satisfies following postconditions:
> (1) leaf points to a Leaf node, and parent and gparent point to Internal nodes
> (2) parent.cpindes has contained leaf, and gparent.cgpinder has contained parent
> (3) parent.pending has contained ppending,
and gparent.pending has contained gppending

72 Node gparent, parent := root, leaf := parent.cl

73 UpdateStep gppending, ppending := parent.pending

74 int gpindex, pindex := 1

75 while type(leaf) = Internal { > Save details for parent and grandparent of leaf

76 gparent := parent; gppending := ppending

s parent := leaf; ppending := parent.pending

78 gpindex := pindex

79 (leaf, pindex) := (appropriate child of parent by the search tree property,
index such that parent.cpindes is read and stored in leaf)

80

81 return (gparent, parent,leaf, ppending, gppending, pindex, gpindex)

82 }

83 FIND(Key key) : boolean {

84 if Leaf returned by SEARCH(key) contains key, then return TRUE, else return FALSE

8 }

86 INSErRT(Key key) : boolean {
87 Node p, newChild

88 Leaf [

89 UpdateStep ppending

90 int pindex

91 while TRUE {

92 (—,p, 1, ppending, —, pindex, —) := SEARCH(key)

93 if [ already contains key then return FALSE

94 if type(ppending) # Clean then {

95 HELP(ppending) > Help the operation pending on p
96 } else {

97 if I contains k — 1 keys { > Sprouting insertion

98 newChild := new Internal node with pending := new Clean(),

and with the k — 1 largest keys in S = {key} U keys of [,
and k new children, sorted by keys, each having one key from S

99 } else { > Simple insertion

100 newChild := new Leaf node with keys: {key} U keys of [

101

102 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)

103 boolean result := CAS(p.pending, ppending, op) > Rflag CAS
104 if result then { > Rflag CAS succeeded

105 HELPREPLACE(op) > Finish the insertion

106 return TRUE

107 } else { > Rflag CAS failed

108 HELP(p.pending) > Help the operation pending on p
109 } } }}

110 HeLp(UpdateStep op) {
> Precondition: op # NULL has appeared in z.pending for some internal node x
111 if type(op) = ReplaceFlag then HELPREPLACE(op)
112 else if type(op) = PruneFlag then HELPPRUNE(op)
113 else if type(op) = Mark then HELPMARKED (op.pending)

Fig. 5. Pseudocode for SEARCH, FIND, INSERT and HELP. They are excerpted, without
modification, from [10].
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115 DELETE(Key key) : boolean {

116 Node gp, p

117 UpdateStep gppending, ppending
118 Leaf [

119 int pindex, gpindex

120 while TRUE {

121 (gp, p, l, ppending, gppending, pindez, gpindex) := SEARCH(key)

122 if I does not contain key, then return FALSE

123 if type(gppending) # Clean then {

124 HELP(gppending) > Help the operation pending on gp

125 } else if type(ppending) # Clean then {

126 HELP(ppending) > Help the operation pending on p

127 } else { > Try to flag gp

128 int ccount := number of non-empty children of p (by checking them in sequence)
129 if ccount = 2 and [ has one key then > Pruning deletion

130 PruneFlag op := new PruneFlag(l, p, gp, ppending, gpindex)

131 boolean result = CAS(gp.pending, gppending, op) > Pflag CAS
132 if result then { > Pflag CAS successful-now delete or unflag
133 if HELPPRUNE(op) then return TRUE;

134 } else { > Pflag CAS failed

135 HELP(gp.pending) > Help the operation pending on gp

136

137 } else { > Simple deletion

138 Node newChild := new copy of [ with key removed

139 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)

140 boolean result := CAS(p.pending, ppending, op) > Rflag CAS
141 if result then { > Rflag CAS succeeded

142 HELPREPLACE (op) > Finish inserting the replacement leaf
143 return TRUE

144 } else { > Rflag CAS failed

145 HELP(p.pending) > Help the operation pending on p

146 1} 1)}

147 HELPPRUNE(PruneFlag op) : boolean { > Precondition: op is not NULL

148 boolean result := CAS(op.p.pending, op.ppending, new Mark(op)) > Mark CAS
149 UpdateStep newValue := op.p.pending

150 if result or newValue is a Mark with newValue.pending = op then {

151 HELPMARKED (0p) > Marking successful-complete the deletion
152 return TRUE

153 } else { > Marking failed

154 HELP(newV alue) > Help the operation pending on p

155 CAS(op.gp.pending, op, new Clean()) > Unflag op.gp > Backtrack CAS
156 return FALSE

157 } }

158 HELPREPLACE(ReplaceFlag op) { > Precondition: op is not NULL

159 op.l.dirty := TRUE
160 CAS(0p.p-Cop.pindex, 0P-1, op.newChild) > Replace | by newChild ©> Rchild CAS

161 CAS(op.p.pending, op, new Clean()) > Unflag p > Runflag CAS
162
163 HELPMARKED(PruneFlag op) { > Precondition: op is not NULL

164 Node other := any non-empty child of op.p different from op.l

(found by visiting each child of op.p), or op.p.c1 if none found

165 for each child u of op.p, u # other {

166 w.dirty := TRUE

167}

168 CAS(op.gp-Cop.gpindex OP-P, other) > Replace p by other > Pchild CAS
169 CAS(op.gp.pending, op, new Clean()) > Unflag gp > Punflag CAS
170 }

Fig. 6. Pseudocode for DELETE, HELPPRUNE, HELPREPLACE and HELPMARKED.
DELETE and HELPPRUNE are excerpted, without modification, from [10].
HELPREPLACE (HELPMARKED) is modified to set the dirty bit of the leaf being re-
placed (deleted) to TRUE just before performing the Rchild CAS (Pchild CAS) step.
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DELETE calls the function that changes I’s dirty bit to TRUE and (b) that [ is
removed from the tree before this INSERT or DELETE terminates. We consider
two cases.

Case I: I’s dirty bit is changed to TRUE in HELPREPLACE(op) at line 159.
In this case, the first Child CAS will change a child pointer of op.p from op.l to
op.newChild, which is the root of a sub-tree of three newly created nodes that
have never before appeared in the tree (by Corollary 15 of [10]). Moreover, since
the tree is always a k-ary search tree (by Lemma 22 of [10]), we know that op.
cannot appear elsewhere in the tree, so this Child CAS will remove op.l from
the tree. Further, we note that the argument op to HELPREPLACE must have
been created by an INSERT or DELETE, since these are the only places where
ReplaceFlag objects can be created. Thus, an INSERT or DELETE wrote op into
the tree at line 103 or line 140, and subsequently invoked HELPREPLACE(op)
at line 105 or line 142. HELPREPLACE(op) then set op.l.dirty := TRUE, and
invoked a Child CAS, which either succeeded, or was preceded by a successful
Child CAS belonging to op (since the first Child CAS belonging to op must
succeed), removing op.l from the tree.

Case II: I’s dirty bit is changed to TRUE in HELPMARKED(op) by the loop
at line 165. Observe that HELPMARKED is only called from HELPPRUNE at
line 151 or from HELP at line 113. We demonstrate that, in the latter case,
HELPPRUNE(0p) was previously invoked. This allows us to reason about one
case only—when HELPMARKED (op) is called from HELPPRUNE(op). To this end,
suppose HELPMARKED (op) was called from HELP(mk). We know that mk was a
Mark object and, since Mark objects are only created in HELPPRUNE at line 148,
we also know that mk.pending = op (by the constructor of Mark objects). Thus,
HELPPRUNE(0op) was previously invoked.

Consider such an invocation of HELPPRUNE(op). Since its argument, op, is a
PruneFlag, it must have been created by a DELETE (since this is the only func-
tion that creates PruneFlag objects). Thus, an invocation of DELETE wrote op
into the tree at line 131, and subsequently invoked HELPPRUNE(op) at line 133.
As explained previously, since op.l’s dirty bit is set, we know that a Child CAS
will be executed at the following line which, by Lemma 23 of [10], will (a) be
successful or (b) be preceded by a successful Child CAS belonging to op. By
Corollary 27 of [10], we know that the existence of a successful Child CAS be-
longing to op implies that this invocation of DELETE must return TRUE. Thus,
its call to HELPPRUNE(0op) must return TRUE. This requires the test at line 150
to evaluate to TRUE, which means it will invoke HELPMARKED(op), where it
will attempt a Child CAS that will either be successful, or will have been pre-
ceded by a successful Child CAS belonging to op. This successful Child CAS
will change a child pointer of op.gp from op.p to the only non-empty sibling of
op.l, by Corollary 16 of [10]. As in the previous case, since the tree is always a
k-ary search tree, we know that op.l cannot appear elsewhere in the tree, so this
Child CAS will remove op.l from the tree. O

Next, we consider the addition of RANGEQUERY. Crucially, RANGEQUERY
does not modify any location in shared memory. It only performs regular reads
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from shared memory, and writes to local memory. Clearly, it follows that RANGEQUERY
cannot affect the correctness of FIND, INSERT or DELETE. Thus, it remains only
to show that RANGEQUERY is correct, and that all operations are non-blocking.

Theorem 5. All operations are non-blocking.

Proof. In order to see that all operations are non-blocking after the addition of
RANGEQUERY we suppose that, after time ¢, the system blocks. In other words,
suppose that after the first ¢ steps of an execution, all processes continue to take
steps forever, but no operation ever completes. We consider two cases.

Case I: only queries (FIND and RANGEQUERY) execute after time ¢. Then,
since queries do not modify any location in shared memory, they cannot interfere
with one another. Thus, the proof that FIND is non-blocking follows immediately
from the original proof. A RANGEQUERY first does a depth first search (DFS) on
the tree, which is finite and unchanging, since there are no concurrent INSERT or
DELETE operations. Hence, in the worst case, the DFS will eventually traverse
the entire tree, and terminate. However, a RANGEQUERY also performs valida-
tion of the leaves that it collected during its DF'S, and this can force it to restart
if (and only if) the dirty bit of a node has been set. Thus, in order to prove
progress for RANGEQUERY, it suffices to prove that a DFS cannot find a node
whose dirty bit has been set, but this is precisely what is shown in Lemma 4.
This implies that some invocation of RANGEQUERY or FIND executing after time
t will eventually terminate, contradicting our initial assumption.

Case II: at least one update (INSERT or DELETE) executes after time t¢.
Then, since queries have no effect on updates (since they do not write to shared
memory), the argument in [10] carries through without modification, and up-
dates are known to be non-blocking. Thus, some invocation of INSERT or DELETE
executing after time ¢ must eventually terminate, contradicting our initial as-
sumption.

Thus, all operations are non-blocking. a

Finally, we prove the correctness of RANGEQUERY. To do this, we must
specify its linearization point, and demonstrate that RANGEQUERY (lo, hi) re-
turns precisely the leaves in the tree that have a key in the range [lo, hi] at the
time the RANGEQUERY is linearized. We linearize each completed invocation
of RANGEQUERY immediately before performing VALIDATE for the last time.
Before we prove this main result, we first give some lemmas.

The following definition is excerpted from [10].

Definition 6. For any configuration C, let T be the k-ary tree formed by the
child references in configuration C. We define the search path for key a in
configuration C to be the unique path in To that would be followed by the ordinary
sequential k-ST search procedure.

We also turn the preceding definition on its head to obtain the following.

Definition 7. We define the range of a leaf u in configuration C' to be the set
R of keys such that, for any key a € R, u is the terminal node on the search
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path for a in configuration C. (Consequently, if u is not in the tree, its range is
the empty set.)

To simplify the statements of upcoming results, we also make two more simple
definitions. A node is #n the tree if it is reachable by following child pointers
from the root. A node is initiated if it has ever been in the tree.

Lemma 8. If an initiated leaf is not dirty, then it is in the tree.

Proof. Equivalently, we prove the contrapositive: if an initiated leaf u is not in
the tree, then u.dirty = TRUE. A leaf can only be removed from the tree by a
Child CAS step at line 160 or line 168 (since these are the only places where the
structure of the tree is changed). We consider two cases.

Case I: u is removed by an Rchild CAS at line 160. By Corollary 15 of [10],
u = op.l, which has its dirty field set to TRUE at the previous line.

Case II: u is removed by a Pchild CAS at line 168. It follows from Corol-
lary 16 of [10] that u is a child of op.p, and u # other, and that u has been a child
of op since the end of the invocation of SEARCH in the invocation of DELETE
that produced op. Thus, u.dirty is set to TRUE in the preceding for-loop. a

Corollary 9. If a leaf is not in the tree, then it is dirty.
Proof. This is the contrapositive of Lemma 8. ad

Lemma 10. If a key is inserted into or deleted from the range of a leaf u, and
u is in the tree at the linearization point of the INSERT or DELETE, then u is
removed from the tree just after the linearization point.

Proof. Consider an update U on key a (i.e., INSERT(a) or DELETE(a)) that
returns TRUE, and let S be the last SEARCH invoked by U at line 92 or line 121
(depending on whether U is an INSERT or DELETE). By Corollary 21 of [10],
the node [ returned by S is a leaf that has a in its range. We now prove that
this ! is removed by a Child CAS in HELPREPLACE or HELPMARKED (the
only two places where the structure of the tree is changed). The ReplaceFlag or
PruneFlag passed to HELPREPLACE or HELPMARKED is created at line 102, 130
or 139. In each of these places, the resulting object op satisfies op.l = [. Then,
by Corollary 15 of [10], we know that an Rchild CAS in HELPREPLACE will
remove op.l = [ from the tree. Similarly, by Corollary 16 of [10], we know that a
Pchild CAS in HELPMARKED will remove all children of op.p except for other
from the tree, and that op.l = [ is a child of op.p just before the Pchild CAS.
By the for loop immediately preceding the Pchild CAS, we know that other # I.
Thus, [ is removed from the tree in each case.

We have proved that a leaf [ will be removed from the tree, and that the
range of [ contained key a at some point. If we can use this to prove that range
of [ contains a when U is linearized (at its first Child CAS) then, by the k-ary
search tree property, we will have argued that [ is the unique leaf on the search
path for a when the at this point (meaning u = [ is the node that is removed).
However, this is easy to show, given a few facts.
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— As argued above, [ was on the search path for a when S was linearized

— By Corollary 15 or Corollary 16 of [10] (depending on whether U was an
INSERT or DELETE), it is still in the tree when U is linearized

— By Lemma 7 of [10], U is linearized after S

Because of these facts, Lemma 19 of [10] applies, implying that [ is still on the
search path for a when U is linearized. This proves the lemma. a

Now we are able to prove the main result.

Theorem 11. Each invocation of RANGEQUERY(lo, hi) returns a list contain-
ing precisely the set of leaves in the tree that have a key in the range [lo, hi] at
the time the RANGEQUERY is linearized.

Proof. Consider an invocation r of RANGEQUERY(lo, hi) that returns a list
result. Before r returns result, it must execute the loop at lines 0-0, and see that
u.dirty = FALSE for each u in snap. We use this fact to prove that no INSERT(k)
or DELETE(k) was linearized for any key k in the range of u in between when u
was read at line 29 and when w.dirty was found to be FALSE at line 0.

In order to derive a contradiction, suppose the opposite. That is, suppose
that some update (INSERT(k) or DELETE(k)) was linearized for some key k in
the range of u in between the two aforementioned lines. Then, if u was already
removed when the update was linearized, we know by Corollary 9 that u is dirty,
which contradicts our assumption that w.dirty is subsequently read and found
to be FALSE. Otherwise, u was in the tree when the update was linearized, so
Lemma 10 implies that u was removed from the tree and, as in the previous case,
Corollary 9 yields a contradiction. Thus, such an update cannot have occurred.

Now that we have established that no key in the range of any node in snap
has been inserted into or deleted from the tree in between when the nodes in
snap were read (at line 29) and validated (at line 0), it remains only to show
that the union of the ranges of nodes in snap covers the entire range [lo, hi].
However, this claim follows immediately from the following facts.

(a) In every configuration C, the tree is a full k-ary tree and the sub-tree rooted
at root.c; satisfies the k-ary search tree property

(b) The depth-first search (DFS) in the first loop of RANGEQUERY starts its
traversal at root.cy, and adds every leaf it visits to snap

(¢) The only sub-trees that are not traversed by the DFS are those that cannot
possibly (ever) contain a key in range [lo, hi]

Fact (a) follows from Lemma 14 and Lemma 22 of [10]. Fact (b) is immediate
from the pseudocode.

We now prove fact (¢) by considering an execution of RANGEQUERY(lo, hi),
and considering any child w.c; of a node u that is not pushed onto the stack s.
There are two reasons u.c; might not be pushed onto the stack.

Case I: i is skipped by the loop at line 25. In this case, u.a; < lo. Since the
tree is a k-ary search tree, this implies that all keys in the sub-tree rooted at
u.c; must be strictly less than lo.
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Case II: ¢ is skipped because the loop at line 32 exits without calling
s.push(u.c;). In this case, either ¢ > k or w.a;—; > hi. If i > k, then ¢
is not pushed because it does not exist. (Note that u has only k children:
€1, ..., ¢k.) Thus, it remains only to deal with the sub-case wherein 1 < i < k and
u.a;—1 > hi. Of course, by the k-ary search tree property, all keys in the sub-tree
rooted at u.c; must be greater than or equal to w.a;_1 and, in turn, greater than
hi.

This proves the claim. a

5 Experiments

In this section, we present the results of experiments comparing the performance
of our k-ST (for k = 16,32,64) with Snap, Ctrie, and SL, the non-blocking,
randomized skip-list of the Java Foundation Classes. We used the authors’ im-
plementations of Snap and Ctrie. Java code for our k-ST is available on-line [8].
All of these data structures implement the dictionary ADT, where INSERT (key)
returns FALSE if an element with this key is already in the dictionary. For SL,
a RANGEQUERY is performed by executing the method subSet(lo, true, hi,
true), which returns a reference to an object permitting iteration over the keys
in the structure, restricted to [lo, hi], and then copying each of these keys into
an array. This does not involve any sort of snapshot, so SL’s range queries are
not always linearizable. For Snap, a RANGEQUERY is performed by following
the same process as SL: i.e., executing subSet, and copying keys into an array.
However, unlike SL, iterating over the result of Snap’s subSet causes a snapshot
of the data structure to be taken. Since keys are ordered by their hashed values
in Ctrie, it is hard to perform range queries efficiently. Instead, we attempt to
provide an approximate lower bound on the computational difficulty of comput-
ing RANGEQUERY(lo, hi) for any derivative of Ctrie which uses the same fast
snapshot technique. To do this, we simply take a snapshot, then iterate over the
first (hi—lo+1)/2 keys in the snapshot, and copy each of these keys into an array.
We explain below that (hi —lo + 1)/2 is the expected number of keys returned
by a RANGEQUERY. To ensure a fair comparison with the other data structures,
our k-ST’s implementation of RANGEQUERY returns an array of keys. If it is
allowed to return a list of leaves, its performance improves substantially.

Our experiments were performed on two multi-core systems. The first is a
Fujitsu PRIMERGY RX600 S6 with 128GB of RAM and four Intel Xeon E7-4870
processors, each having 10 x 2.4GHz cores, supporting a total of 80 hardware
threads (after enabling hyper-threading). The second is a Sun SPARC Enterprise
T5240 with 32GB of RAM and two UltraSPARCT2+ processors, each having
8 x 1.2GHz cores, for a total of 128 hardware threads. On both machines, the
Sun 64-bit JVM version 1.7.0_3 was run in server mode, with 512MB minimum
and maximum heap sizes. We decided on 512MB after performing preliminary
experiments to find a heap size which was small enough to regularly trigger
garbage collection and large enough to keep standard deviations small. We also
ran the full suite of experiments for both 256 MB and 15GB heaps. The results
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were quite similar to those presented below, except that the 256MB heap caused
large standard deviations, and the total absence of garbage collection with the
15GB heap slightly favoured Ctrie.

For each experiment in {5i-5d-40r-size10000, 5i-5d-40r-sizel00, 20i-20d-1r-
size10000, 20i-20d-1r-size100}, each algorithm in {KST16, KST32, KST64, Snap,
Ctrie, SL}, and each number of threads in {4, 8,16, 32,64,128}, we ran 3 trials,
each performing random operations on keys drawn uniformly randomly from
the key range [0, 10°) for ten seconds. Operations were chosen randomly accord-
ing to the experiment. Experiment “zi-yd-zr-sizes” indicates % probability of
a randomly chosen operation to be an INSERT, y% probability of a DELETE,
2% probability of RANGEQUERY(r,r + s), where r is a key drawn uniformly
randomly from [0, 10%), and the remaining (100 — 2 — y — 2)% probability of a
FIND. Our graphs do not include data for 1 or 2 threads, since the differences
between the throughputs of all the algorithms was very small. However, we did
include an extra set of trials at 40 threads for the Intel machine, since it has 40
cores. Each data structure was pre-filled before each trial by performing random
INSERT and DELETE operations, each with 50% probability, until it stabilized
at approximately half full (500,000 keys). Each data structure was within 5%
of 500,000 keys at the beginning and end of each trial. This is expected since,
for each of our experiments, at any point in time during a trial, the last update
on a particular key has a 50% chance of being an INSERT, in which case it will
be in the data structure, and a 50% chance of being a DELETE, in which case
it will not. Thus, (hi — lo 4+ 1)/2 is the expected number of keys in the data
structure that are in [lo, hi]. In order to account for the “warm-up” time an ap-
plication experiences while Java’s HotSpot compiler optimizes its running code,
we performed a sort of pre-compilation phase before running our experiments.
During this pre-compilation phase, for each algorithm, we performed random
INSERT and DELETE operations, each with 50% probability, for twenty seconds.
Our experiments appear in Fig. 7. Error bars are drawn to represent one stan-
dard deviation. A vertical bar is drawn at 40 threads on the graphs for the Intel
machine, marking the number of cores in the machine.

Broadly speaking, our experimental results from the Sun machine look simi-
lar to those from the Intel machine. If we ignore the results on the Intel machine
for thread counts higher than 40 (the number of cores in the machine), then the
shapes of the curves and relative orderings of algorithms according to perfor-
mance are similar between machines. A notable exception to this is SL, which
tends to perform worse, relative to the other algorithms, on the Intel machine
than on the Sun machine. This is likely due to architectural differences between
the two platforms. Another Intel Xeon system, a 32-core X7560, has also shown
the same scaling problems for SL (see [9] technical report).

We now discuss similarities between the experiments 5i-5d-40r-size100 and
20i-20d-1r-size100, which involve small range queries, before delving into their
details. The results from these experiments are highly similar. In both experi-
ments, all k-STs outperform Snap and Ctrie by a wide margin. Each range query
causes Snap (Ctrie) to take a snapshot, forcing all updates (updates and queries)
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Fig. 8. Sun (left) and Intel (right) results for experiment 5i-5d-7r-100 wherein we vary
the probability of range queries. Note: as we describe in Sec. 5, Ctrie is merely per-
forming a partial snapshot, rather than a range query. The Sun machine is running 128
threads, and the Intel machine is running 80 threads.

to duplicate nodes continually. Similarly, SL significantly outperforms Snap and
Ctrie, but it does not exceed the performance of any k-ST algorithm. Ctrie
always outperforms Snap, but the difference is often negligible. In these exper-
iments, at each thread count, the k-ST algorithms either perform comparably,
or are ordered KST16, KST32 and KST64, from lowest to highest performance.

Experiment 5i-5d-40r-size100 represents the case of few updates and many
small range queries. The k-ST algorithms perform extremely well in this case. On
the Sun machine (Intel machine), KST16 has 5.2 times (5.3 times) the through-
put of Ctrie at four threads, and 38 times (61 times) the throughput at 128
threads. The large proportion of range queries in this case allows SL, with its
extremely fast, non-linearizable RANGEQUERY operation, to nearly match the
performance of KST16 on the Sun machine.

Experiment 20i-20d-1r-size100 represents the case of many updates and few
small range queries. The k-STs are also strong performers in this case. On the
Sun machine (Intel machine), KST16 has 4.7 times (3.4 times) the throughput
of Ctrie at four threads, and 13 times (12 times) the throughput at 128 threads.
In contrast to experiment 5i-5d-40r-sizel00, since there are few range queries,
KST32 and KST64 do not perform significantly better than KST16. Similarly,
with few range queries, the simplicity of SL’s non-linearizable RANGEQUERY op-
eration does not get a chance to significantly affect SL’s throughput. Compared
to experiment 5i-5d-40r-size100, the throughput of SL significantly decreases, rel-
ative to the k-ST algorithms. Whereas KST16 only outperforms SL by 5.2% at
128 threads on the Sun machine in experiment 5i-5d-40r-size100, it outperforms
SL by 37% in experiment 20i-20d-1r-size100.

We now discuss similarities between the experiments 5i-5d-40r-size10000 and
20i-20d-1r-size10000, which involve large range queries. In these experiments, at
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Fig. 9. Sun (left) and Intel (right) results showing the performance of the k-ST for
many values of k, and for various operation mixes. The Sun machine is running 128
threads, and the Intel machine is running 80 threads.

each thread count, the k-ST algorithms are ordered KST16, KST32 and KST64,
from lowest to highest performance. Since the size of its range queries is fairly
large (5,000 keys), Ctrie’s fast snapshot begins to pay off and, for most thread
counts, its performance rivals that of KST16 or KST32 on the Sun machine. How-
ever, on the Intel machine, it does not perform nearly as well, and its throughput
is significantly lower than that of SL and the k-ST algorithms. Ctrie always out-
performs Snap, and often does so by a wide margin. SL performs especially
well in these experiments, no doubt due to the fact that its non-linearizable
RANGEQUERY operation is unaffected by concurrent updates.

Experiment 5i-5d-40r-size10000 represents the case of few updates and many
large range queries. In this case, SL ties KST32 on the Sun machine, and KST16
on the Intel machine. However, KST64 outperforms SL by between 38% and 43%
on the Sun machine, and by between 89% and 179% on the Intel machine. On
the Sun machine, Ctrie’s throughput is comparable to that of KST16 between
4 and 64 threads, but KST16 outperforms Ctrie by 61% at 128 threads. KST64
outperforms Ctrie by between 44% and 230% on the Sun machine, and offers
between 3.1 and 10 times the performance on the Intel machine.

Experiment 20i-20d-1r-size10000 represents the case of many updates and
few large range queries. On the Sun machine, SL has a considerable lead on the
other algorithms, achieving throughput as much as 116% higher than that of
KST64 (the next runner up). The reason for the k-ST structures’ poor perfor-
mance relative to SL is two-fold. First, SL’s non-linearizable range queries are
not affected by concurrent updates. Second, the extreme number of concurrent
updates increases the chance that a range query of the k-ST will have to retry.
On the Intel machine, KST64 still outperforms SL by between 21% and 136%. As
in the previous experiment, Ctrie ties KST16 in throughput on the Sun machine.
However, KST64 achieves 127% (270%) higher throughput than Ctrie with four
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threads, and 37% (410%) higher throughput at 128 threads on the Sun machine
(Intel machine).

As we can see from Fig. 8, in the total absence of range queries, Ctrie outper-
forms the k-ST structures. However, mixing in just one range query per 10,000
operations is enough to bring it in line with the k-ST structures. As the prob-
ability of an operation being a range query increases, the performance of Ctrie
decreases dramatically. Snap performs similarly to the k-ST structures in the ab-
sence of range queries, but its performance suffers heavily with even one range
query per 100,000 operations.

We also include a pair of graphs in Fig. 9 for the Intel and Sun machines,
respectively, which show the performance of the k-ST over many different values
of k, for each of the four experiments. Results for both machines are similar,
with larger values of k generally producing better results. On both machines,
the curve for experiment 20i-20d-1r-size100 flattens out after k = 24, and 5i-5d-
40r-sizel00 begins to taper off after k = 32. Throughput continues to improve up
to k = 64 for the other experiments. The scale of the graphs makes it difficult to
see the improvement in 5i-5d-40r-size10000 but, on the Sun (Intel) machine, its
throughput at k = 64 is 6 times (16 times) its throughput at k& = 2. This seems
to confirm our belief that larger degrees would improve performance for range
queries. Surprisingly, on the Intel machine, experiment 20i-20d-1r-size10000 sees
substantial throughput increases after & = 24. It would be interesting to see
precisely when a larger k£ becomes detrimental for each curve.

6 Future Work and Conclusion

Presently, the k-ST structure is unbalanced, so there are pathological inputs
that can yield poor performance. We are currently working on a general scheme
for performing atomic, non-blocking tree updates, and we believe the results of
that work will make it a simple task to design and prove the correctness of a
balancing scheme for this structure.

Another issue is that, in the presence of continuous updates, range queries
may starve. We may be able to mitigate this issue by having the RANGEQUERY
operation write to shared memory, and having other updates help concurrent
range queries complete. It is possible to extend the flagging and marking scheme
used by the k-ST so that range queries flag nodes, and are helped by concurrent
updates. While this will likely alleviate starvation in practice, it is an imperfect
solution. First, it will not eliminate starvation, for the same reason that updates
in the k-ST are not wait-free. More specifically, if helpers assist in flagging all of
the nodes involved in a RANGEQUERY, they must do so in a consistent order to
avoid deadlock. Moreover, the nodes of the tree do not have parent pointers, so
only top-down flagging orders make sense. Therefore, it is possible to continually
add elements to the end of the range and prevent the RANGEQUERY from termi-
nating. Second, if range queries can be helped, we must answer questions such
as how helpers should avoid duplicating work when a RANGEQUERY involves
many nodes. Since nodes must be flagged in a consistent order by all helpers,
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one cannot simply split helpers up so they start flagging at different nodes. One
possibility is to have helpers collaborate through a work-queue.

Despite the potential for starvation, we believe our present method of per-
forming range queries is practical in many cases. First, range queries over small
intervals involve few nodes, minimizing the opportunity for concurrent updates
to interfere. Second, for many database applications, a typical workload has
many more queries (over small ranges) than updates. For example, consider an
airline’s database of flights. Only a fraction of the queries to their database are
from serious customers, and a customer may explore many different flight options
and date ranges before finally purchasing a flight and updating the database.

It would be interesting to measure and compare the amount of shared mem-
ory consumed by each data structure over the duration of a trial, as well as the
amount of local memory used by our range query algorithm.

In this work, we described an implementation of a linearizable, non-blocking
k-ary search tree offering fast searches and range queries. Our experiments show
that, under several workloads, this data structure is the only one with scalable,
linearizable range queries. When compared to other leading structures, ours
exhibits superior spatial locality of keys in shared memory. This makes it well
suited for NUMA systems, where each cache miss is a costly mistake.
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