
Non-blocking k-ary Search Trees

Trevor Brown and Joanna Helga

DisCoVeri Group, Dept. of Computer Science and Engineering, York University
4700 Keele St., Toronto, Ontario, Canada, M3J 1P3

tabrown@cs.toronto.edu, helga@yorku.ca

Abstract. This paper presents the first concurrent non-blocking k-ary
search tree. Our data structure generalizes the recent non-blocking binary
search tree of Ellen et al. [5] to trees in which each internal node has k
children. Larger values of k decrease the depth of the tree, but lead
to higher contention among processes performing updates to the tree.
Our Java implementation uses single-word compare-and-set operations
to coordinate updates to the tree. We present experimental results from
a 16-core Sun machine with 128 hardware contexts, which show that our
implementation achieves higher throughput than the non-blocking skip
list of the Java class library and the leading lock-based concurrent search
tree of Bronson et al. [3].

Keywords: data structures, non-blocking, concurrency, binary search
tree, set

1 Introduction

With the arrival of machines with many cores, there is a need for efficient,
scalable linearizable concurrent implementations of often-used abstract
data types (ADTs) such as the set. Most existing concurrent implemen-
tations of the set ADT are lock-based (e.g., [3, 9]). However, locks have
some disadvantages (e.g., [7]). Other implementations use operations not
directly supported by most hardware, such as load-link/store-conditional
[2] and multi-word compare-and-swap (CAS) [8]. Software transactional
memory (STM) has been used to implement the set ADT (e.g., [10]), but
this approach is currently inefficient [3].

Most multicore machines support (single-word) CAS operations. Non-
blocking implementations of dictionaries have been given based on skip
lists and binary search tree structures. Sundell and Tsigas [12], Fomitchev
and Ruppert [6], and Fraser [8] have implemented a skip list using CAS
operations. A binary search tree implementation using only CAS oper-
ations was sketched by Valois [13], but the first complete algorithm is
due to Ellen et al. [5]. The non-blocking property ensures by definition



2

that, while a single operation may be delayed, the system as a whole will
always make progress. (Some refer to this property as lock-freedom.)

In this paper, we generalize the binary search tree of Ellen et al. (BST)
to a k-ary search tree (k-ST) in which nodes have up to k− 1 keys and k
children. This required generalizing the existing BST update operations to
k-ary trees, creating new kinds of updates to handle insertion and deletion
of keys from nodes, and verifying that the coordination scheme works with
the new updates. Using larger values of k decreases the average depth of
nodes, but increases the local work done at each internal node in routing
searches and performing updates to the tree. However, the increased work
at each node is offset by the improved spatial locality offered by larger
nodes. By varying k, we can balance these factors to suit a particular
system architecture, expected level of contention, or ratio of updates to
searches. Searches are extremely simple and fast. Oblivious to concurrent
updates, they behave exactly as they would in the sequential case.

We have implemented both the BST and our k-ST in Java, and have
compared these implementations with ConcurrentSkipListMap (SL) of
the Java class library, and the lock-based AVL tree of Bronson et al.
(AVL) [3]. The AVL tree is the leading concurrent search tree imple-
mentation. It has been compared in [3] with SL, a lock-based red-black
tree, and a red-black tree implemented using STM. Since SL and AVL
drastically outperform the red-black tree implementations, we have not
included the latter in our comparison. In our experiments, the BST and
4-ST (k-ST with k = 4) algorithms are top performers in both high and
low contention cases. We did not observe significant benefits when using
values of k greater than four, but we expect this will change with algorith-
mic improvements to the management of keys within nodes. This paper
also provides the first performance data for the BST of Ellen et al. [5].

The BST and k-ST are both unbalanced trees. All performance tests in
this paper use uniformly distributed random keys. If keys are not random
then, in certain cases, SL (which uses randomization to maintain balance)
and AVL (a balanced tree) will take the lead. Extending the techniques
in this paper to provide balanced trees is the subject of current work.

2 k-ary Search Trees

2.1 The Structure

We use a leaf-oriented, non-blocking k-ST to implement the set ADT. A
set stores a set of keys from an ordered universe. It does not admit dupli-
cate keys. Here, we define the operations on the ADT to be Find(key),



3

Insert(key), and Delete(key). The Find operation returns True if
key is in the set, and False otherwise. An Insert(key) operation re-
turns False if key was already present in the set. Otherwise, it adds
key to the set and returns True. A Delete(key) returns False if key
was not present. Otherwise, it removes key and returns True. The other
implementations we compare to the k-ST and BST can additionally asso-
ciate a value with each key, and it is a simple task to modify our structure
accordingly (discussed in [4]).

The k-ST is leaf-oriented, meaning that at all times, the keys in the
set ADT are the keys in the leaves of the tree. Keys in internal nodes of
the k-ST serve only to direct searches down the tree.

Each leaf in a BST contains one key. Each internal node has exactly
two children and one key. In a k-ST, each leaf has at most k − 1 keys.
It is permitted for a leaf to have zero keys, in which case it is said to be
an empty leaf. Each internal node has exactly k children and k − 1 keys.
Inside each node, keys are maintained in increasing order.

The search tree property for k-STs is a natural generalization of the
familiar BST property. For any internal node with keys a1, a2, ..., ak−1,
sub-tree 1 (leftmost) contains keys a < a1, sub-tree k (rightmost) contains
keys a > ak−1, and sub-tree 1 < i < k contains keys ai ≤ a < ai+1.

2.2 Modifications to the Tree

We first describe a sequential implementation of the set operations, and
subsequently transform it into a concurrent and non-blocking implemen-
tation. Since the k-ST is leaf-oriented, the Insert and Delete proce-
dures always operate on leaves. Inserting a key into the set replaces a leaf
by a “larger” leaf (with one more key), or by a small sub-tree if the leaf
is already full (has k−1 keys). Deleting a key replaces a leaf by a smaller
leaf (with one less key), or prunes the leaf and its parent out of the tree.

More precisely, the operation Insert(key) first searches for key. If it
is found, the Insert returns False. Otherwise, it proceeds according to
two cases as follows (see Fig. 1). Let l be the leaf into which key should
be inserted. If l is full (has k− 1 keys) then Insert replaces l by a newly
created sub-tree of k+ 1 nodes. This sub-tree consists of an internal node
n whose keys are the k − 1 greatest out of the k − 1 keys in l and the
new key key. The children of n are k new nodes, each containing one of
the k aforementioned keys. We call this first type of insertion a sprouting
insertion. Otherwise, if l has fewer than k−1 keys, Insert simply replaces
l by a new leaf that includes key in addition to all of the keys that were
in l. We call this second type of insertion a simple insertion.



4

Fig. 1. The four types of modifications performed on the tree by an insertion or dele-
tion. Asterisks indicate that nodes are newly created in freshly allocated memory.

The operation Delete(key) first searches for key. If it is not found,
then False is returned. Otherwise, it proceeds according to two cases (see
Fig. 1). Let l be the leaf from which key should be deleted. If l has only
one key and the parent of l has exactly two non-empty children, then the
entire leaf l can be deleted (since it will be empty after the deletion) and,
because it has only one non-empty sibling s, the parent node is no longer
useful (since its keys just direct searches). Thus, the Delete procedure
simply replaces the parent with s. We call this first type of deletion a
pruning deletion. Otherwise, if l has more than one key or the parent of l
has more than two non-empty children, Delete replaces l by a new leaf
with all of the keys of l except for key.We call this second type of deletion
a simple deletion. Simple deletion can yield empty leaves. However, with
this insertion and deletion scheme an internal node always has at least
two non-empty children. One might be tempted to use Null instead of
empty children, but then child pointers would suffer the ABA problem.

Note that a pruning deletion changes a child pointer of the grand-
parent of l to point to l’s only non-empty sibling. To avoid dealing with
degenerate cases when there is no parent or grandparent of l, we initialize
the tree with two dummy internal nodes and 2k − 1 empty leaves at the
top, as shown in Fig. 2(a). These internal nodes will not be deleted or
replaced by an insertion. When k = 2, our algorithm is simply the BST of
Ellen et al. [5], with some slight modifications, where nearly all insertions
and deletions are sprouting insertions and pruning deletions (except for
an Insert into an empty tree and a Delete on the last key in a tree).

2.3 Coordination Between Updates

Without some form of coordination, interactions between concurrent up-
dates would produce incorrect results. Suppose that a pruning deletion
and a simple insertion are performed concurrently in the 2-ary tree on



5

(a) (b)

Fig. 2. (a) The initial state of the k-ary search tree. The root and its leftmost child have
k−1 keys valued∞ (a special key, larger than any key in the set). All other children of
these nodes are empty leaves. Keys in the set are stored in the sub-tree rooted at the
leftmost grandchild of the root. (b) Example of the danger of uncoordinated concurrent
updates. Faintly shaded nodes are no longer in the tree. If gp.right is changed to s by
a Delete(b), and p.left is changed to l′ by a concurrent Insert(d), then the new key
d is lost.

the left in Fig. 2(b). If the steps of the Insert(d) and Delete(b) are
interleaved in a particular order, key d may be inserted as a grandchild
of p, and erroneously deleted along with b.

To avoid situations such as this, each internal node is augmented to
contain an UpdateStep object that indicates an operation has exclusive
access to the child pointers of a node. This coordination scheme extends
the work of Ellen et al. [5]. UpdateStep objects serve as something similar
to locks, because all processes operate under the following agreement.
When an operation intends to modify a child pointer of an internal node
n, it first stores an UpdateStep object at n (using CAS). An operation
cannot store an UpdateStep at node n if another operation x has already
stored an UpdateStep at n, until x has relinquished control of n. Thus,
UpdateStep objects behave like locks that are owned by an operation,
rather than by a process, and this allows us to guarantee the non-blocking
property by using the helping mechanism described in Sec. 2.4.

UpdateStep objects are divided into flags and marks. A flag is placed
on a node to reserve its child pointers for exclusive access, indicating that
one will be changed by an operation. A mark is similar to a flag except,
where a flag is temporary (removed once a modification is completed), a
mark is permanent, and is placed on a node that is to be removed from the
tree. The mark permanently prevents the child pointers of the node from
ever changing after it is removed. The final type of UpdateStep object is
the Clean object which, if stored at a node x, indicates that no operation
has exclusive access to x, and any operation is allowed to store a flag or
mark there.



6

The details of the Insert and Delete operations, including flagging
and marking steps, are as follows. In the following, l is the target leaf for
insertion or deletion of a key, p is its parent, and gp is its grandparent.
A simple insertion or simple deletion (see Fig. 1) creates the new leaf,
flags p with a ReplaceFlag object (with a flag CAS ), changes the child
pointer of p (with a child CAS ), and unflags p (with an unflag CAS ) by
writing a new Clean object. Similarly, a sprouting insertion creates the
new sub-tree, flags p with a new ReplaceFlag object, changes the child
pointer of p, and unflags p. A pruning deletion flags gp with a PruneFlag
object, then attempts to mark p with a mark CAS. If the mark CAS is
successful, then the child pointer of gp is changed, finishing the deletion,
and gp is unflagged. Otherwise, if the marking step fails, then the Delete
must unflag gp (with a Backtrack CAS ) and try again from scratch.

We now return to Fig. 2(b) to illustrate how flagging and marking
resolves the issue. After Delete(b) has successfully stored a PruneFlag
at gp, it must store a Mark at p. Say the Mark is successfully stored at p.
Then it is safe to prune l and p out of the tree, since no child pointer of p
will ever change, and l is a leaf (which has no mutable fields). Once l and p
are pruned out of the tree, gp is unflagged by an unflag CAS that replaces
the PruneFlag stored by Delete(b) by a newly created Clean object. If
Insert(a) subsequently tries to change a child reference belonging to p,
it will first have to store a ReplaceFlag at p, which is impossible, since p is
already marked. Otherwise, if the Mark cannot be successfully be stored
at p (because p is already flagged or marked by another operation), then
Delete(b) will execute a Backtrack CAS, storing a new Clean object at
gp (relinquishing control of gp to allow other operations to work with it),
and retry from scratch.

2.4 Helping

To overcome the threat of deadlock that is created by the exclusive access
that flags and marks grant to a single operation, we follow the approach
taken by Ellen et al. [5], which has some similarities to Barnes’ cooperative
technique [1]. Suppose that a process P flags or marks a node hoping to
complete some tree modification C. The flag or mark object is augmented
to contain sufficient information so that any process can read the flag or
mark and complete C on P ’s behalf. This allows the entire system to
make progress even if individual processes are stalled indefinitely.

Unfortunately, while helping guarantees progress, it can mean dupli-
cation of effort. Several processes may come across the same UpdateStep



7

1 . Type definitions:
2 type Node {
3 final Key ∪ {∞} a1, ..., ak−1

4 }
5 subtype Leaf of Node {
6 final int keyCount
7 }
8 subtype Internal of Node {
9 Node c1, ..., ck
10 UpdateStep pending

. (initially a new Clean() object)
11 }

12 type UpdateStep { }
13 subtype ReplaceFlag of UpdateStep {
14 final Node l, p, newChild
15 final int pindex
16 }

17 subtype PruneFlag of UpdateStep {
18 final Node l, p, gp
19 final UpdateStep ppending
20 final int gpindex
21 }
22 subtype Mark of UpdateStep {
23 final PruneFlag pending
24 }
25 subtype Clean of UpdateStep { }

26 . Initialization:
27 shared Internal root := the structure

described in Fig. 2(a), with the pending
fields of root and root.c1 set to refer to
new Clean objects.

Fig. 3. Type definitions and initialization.

object and perform the work necessary to advance the operation by per-
forming some local work, followed by a mark CAS, child CAS, or un-
flag CAS, but only one process can successfully perform each CAS, so
the local work performed by all other processes is wasted. For this rea-
son it is advantageous to limit helping as much as possible. To this end, a
search ignores flags and marks in our implementation, and proceeds down
the tree without helping any operation. An Insert or Delete helps only
those operations that interfere with its own completion. Thus, an Insert
will only help an operation that has flagged or marked p, and a Delete
will only help an operation that has flagged or marked p or gp (although
they may help other operations recursively). After an Insert or Delete
helps another operation, it restarts, performing another search from the
top of the tree. An Insert or Delete operation is repeatedly attempted
until it successfully modifies the tree or finds that it can return False.

2.5 Pseudocode

Java-like pseudocode for all operations is found in Fig. 3 through Fig. 5.
We borrow the concept of a reference type from Java. Any variable x of
type C, where C is a type defined in Fig. 3, is a reference to an instance
(or object) of type C. Such an x behaves like a C pointer, but does not
require explicit dereferencing. References can point to an object or take on
the value Null, and management of their memory is automatic: memory
is garbage-collected once it is unreachable from any executing thread. We
use a.b to refer to field b of the object referred to by a. We also adopt a



8

Java-like definition of CAS, that atomically compares a field R with an
expected value exp and either writes a new value and returns true (if R
contains exp), or returns false (otherwise).

The Search(key) operation is straightforward. Beginning at the left-
most child of root (line 29) and continuing until it reaches a leaf (line 32),
it compares its argument key with each key stored at the current node
and follows the appropriate child reference (line 36), saving some informa-
tion along the way. (Keys of a node can be naively inspected in sequence
because the keys of a node never change.) The Find(key) operation re-
turns True if the Search(key) operation finds a leaf containing key;
otherwise it returns False.

To perform an Insert(key), a process P locates the leaf l and its
parent p, and stores the parent’s pending field in ppending and the index
of the child reference of gp that contained p in pindex (line 49). If key
is already in l, then the operation simply returns False (line 50). Oth-
erwise, P checks whether the parent’s pending field was of type Clean
when it was read (line 51). If not, then p.pending was occupied by a flag
or mark belonging to some other operation x in progress at p. P helps
x complete, and then re-attempts its own operation from scratch. Other-
wise, if p.pending was Clean, P tries to flag p by creating newChild, a
new leaf or sub-tree depending on which insertion case applies (lines 54
to 58), the ReplaceFlag object op (line 59), and executing an Rflag CAS
to store it in the pending field of p (line 60). If the Rflag CAS succeeds,
P calls HelpReplace(op) to finish the insertion (line 62) and the oper-
ation returns True. Otherwise, if the Rflag CAS failed, another process
must have changed p’s pending field to a ReplaceFlag object, a PruneFlag
object, a Mark object, or a new Clean object (different from the one read
at line 49). Process P helps this other operation (if not a Clean object)
complete, and then re-attempts its own operation.

A call to HelpReplace executes a child CAS to change the appro-
priate child pointer of p from l to newChild (line 116), and executes an
Runflag CAS to unflag p (line 117).

When process P performs a Delete(key) operation, it first locates
the leaf l, its parent p and grandparent gp, and stores the parent’s and
grandparent’s pending fields in ppending and gppending, and the indices
of the child references of gp and p that contained p and l, respectively, in
gpindex and pindex (line 78). If l does not contain key, then the opera-
tion simply returns False (line 79). Otherwise, P checks gppending and
ppending to determine whether gp and p were Clean when their pending
fields were read (lines 80 and 82). If either has been flagged or marked



9

28 Search(Key key) : 〈Internal, Internal,Leaf,UpdateStep,UpdateStep〉 {
. Used by Insert, Delete and Find to traverse the k-ST
. Search satisfies following postconditions:
. (1) leaf points to a Leaf node, and parent and gparent point to Internal nodes
. (2) parent.cpindex has contained leaf , and gparent.cgpindex has contained parent
. (3) parent.pending has contained ppending,

and gparent.pending has contained gppending
29 Node gparent, parent := root, leaf := parent.c1
30 UpdateStep gppending, ppending := parent.pending
31 int gpindex, pindex := 1
32 while type(leaf) = Internal { . Save details for parent and grandparent of leaf
33 gparent := parent; gppending := ppending
34 parent := leaf ; ppending := parent.pending
35 gpindex := pindex
36 〈leaf, pindex〉 := 〈appropriate child of parent by the search tree property,

index such that parent.cpindex is read and stored in leaf〉
37 }
38 return 〈gparent, parent, leaf, ppending, gppending, pindex, gpindex〉
39 }

40 Find(Key key) : boolean {
41 if Leaf returned by Search(key) contains key, then return True, else return False
42 }

43 Insert(Key key) : boolean {
44 Node p, newChild
45 Leaf l
46 UpdateStep ppending
47 int pindex
48 while True {
49 〈−, p, l, ppending,−, pindex,−〉 := Search(key)
50 if l already contains key then return False
51 if type(ppending) 6= Clean then {
52 Help(ppending) . Help the operation pending on p
53 } else {
54 if l contains k − 1 keys { . Sprouting insertion
55 newChild := new Internal node with pending := new Clean(),

and with the k − 1 largest keys in S = {key} ∪ keys of l,
and k new children, sorted by keys, each having one key from S

56 } else { . Simple insertion
57 newChild := new Leaf node with keys: {key} ∪ keys of l
58 }
59 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)
60 boolean result := CAS(p.pending, ppending, op) . Rflag CAS
61 if result then { . Rflag CAS succeeded
62 HelpReplace(op) . Finish the insertion
63 return True
64 } else { . Rflag CAS failed
65 Help(p.pending) . Help the operation pending on p
66 } } } }

67 Help(UpdateStep op) {
. Precondition: op 6= Null has appeared in x.pending for some internal node x

68 if type(op) = ReplaceFlag then HelpReplace(op)
69 else if type(op) = PruneFlag then HelpPrune(op)
70 else if type(op) = Mark then HelpMarked(op.pending)
71 }

Fig. 4. Pseudocode for Search, Find, Insert and Help.



10

72 Delete(Key key) : boolean {
73 Node gp, p
74 UpdateStep gppending, ppending
75 Leaf l
76 int pindex, gpindex
77 while True {
78 〈gp, p, l, ppending, gppending, pindex, gpindex〉 := Search(key)
79 if l does not contain key, then return False
80 if type(gppending) 6= Clean then {
81 Help(gppending) . Help the operation pending on gp
82 } else if type(ppending) 6= Clean then {
83 Help(ppending) . Help the operation pending on p
84 } else { . Try to flag gp
85 int ccount := number of non-empty children of p (by checking them in sequence)
86 if ccount = 2 and l has one key then . Pruning deletion
87 PruneFlag op := new PruneFlag(l, p, gp, ppending, gpindex)
88 boolean result = CAS(gp.pending, gppending, op) . Pflag CAS
89 if result then { . Pflag CAS successful–now delete or unflag
90 if HelpPrune(op) then return True;
91 } else { . Pflag CAS failed
92 Help(gp.pending) . Help the operation pending on gp
93 }
94 } else { . Simple deletion
95 Node newChild := new copy of l with key removed
96 ReplaceFlag op := new ReplaceFlag(l, p, newChild, pindex)
97 boolean result := CAS(p.pending, ppending, op) . Rflag CAS
98 if result then { . Rflag CAS succeeded
99 HelpReplace(op) . Finish inserting the replacement leaf
100 return True
101 } else { . Rflag CAS failed
102 Help(p.pending) . Help the operation pending on p
103 } } } } }

104 HelpPrune(PruneFlag op) : boolean { . Precondition: op is not Null
105 boolean result := CAS(op.p.pending, op.ppending, new Mark(op)) . mark CAS
106 UpdateStep newV alue := op.p.pending
107 if result or newV alue is a Mark with newV alue.pending = op then {
108 HelpMarked(op) . Marking successful–complete the deletion
109 return True
110 } else { . Marking failed
111 Help(newV alue) . Help the operation pending on p
112 CAS(op.gp.pending, op, new Clean()) . Unflag op.gp . Backtrack CAS
113 return False
114 } }

115 HelpReplace(ReplaceFlag op) { . Precondition: op is not Null
116 CAS(op.p.cop.pindex, op.l, op.newChild) . Replace l by newChild . Rchild CAS
117 CAS(op.p.pending, op, new Clean()) . Unflag p . Runflag CAS
118 }

119 HelpMarked(PruneFlag op) { . Precondition: op is not Null
120 Node other := any non-empty child of op.p

(found by visiting each child of op.p), or op.p.c1 if none
121 CAS(op.gp.cop.gpindex, op.p, other) . Replace l by other . Pchild CAS
122 CAS(op.gp.pending, op, new Clean()) . Unflag gp . Punflag CAS
123 }

Fig. 5. Pseudocode for Delete, HelpPrune, HelpReplace and HelpMarked.



11

by another operation, P helps complete this operation and re-attempts
its own operation from scratch. Otherwise, it counts the number of non-
empty children of p to determine the deletion case to apply. We shall
explain why counting the children in sequence is not problematic when
we discuss correctness. We consider the two types of deletion separately.

If the operation is a simple deletion (line 94), it creates newChild, a
new copy of leaf l with key removed, and a new ReplaceFlag object op
to facilitate helping (line 96). Next, P attempts an Rflag CAS to store
op in p.pending (line 97) and, if it succeeds, it calls HelpReplace to
finish the deletion (line 99). Otherwise, if the Rflag CAS fails, P helps
any operation that may be pending on p. After helping, P retries its own
operation from scratch. Note that, apart from the creation of the new
leaf, this is identical to simple insertion.

If the operation is a pruning deletion (line 86), P creates a PruneFlag
object (line 87), then attempts a Pflag CAS to store it in the pending
field of gp (line 88). If the Pflag CAS succeeds, P calls HelpPrune(op)
to finish the deletion (line 90) and the operation returns True (more
on HelpPrune later). Otherwise, if the Pflag CAS fails, another pro-
cess must have changed gp’s pending field to a ReplaceFlag object, a
PruneFlag object, a Mark object, or a new Clean object (different from
the one read at line 78). To allow any other operation pending on gp to
make progress, P calls Help(gp.pending) (line 92) before retrying its own
operation from scratch.

The HelpPrune procedure, invoked by the Delete operation (and
by Help), attempts the second (marking) CAS step of a pruning deletion.
Recall that op, created in the Delete routine, contains pointers to l, the
leaf containing the key to be deleted, its parent p, and its grandparent
gp. The HelpPrune procedure begins by attempting to mark the parent
op.p (line 105). If the CAS successfully marks op.p, or another helping
process already stored a mark for this operation, then the mark is con-
sidered to be successful. In this case, HelpMarked is called to finish
the pruning deletion (line 108), and True is returned. Otherwise, if the
CAS failed and the mark was not already stored by a helping process,
then another operation involving op.p has interfered with the Delete. If
the other operation is still in progress, it is helped (line 111), and then
the operation backtracks, unflagging the grandparent op.gp (line 112),
and False is returned by HelpPrune. The process that invoked the
Delete procedure will ultimately retry the operation from scratch.

The HelpMarked procedure performs the final step of a pruning
deletion, pruning out some dead wood by changing the appropriate child



12

pointer of op.gp from op.p to point to the only non-empty sibling of op.l.
This sibling of op.l is found at line 120. (It is explained in Sec. 2.6 why
this can be found simply by visiting each child of op.p.) The CAS-Child
routine is invoked to change the child pointer of op.gp (line 121), and an
unflag CAS is executed to unflag op.gp (line 122).

2.6 Correctness

It can be demonstrated that our algorithm exhibits linearizability (de-
fined in [11]), and the argument is very similar to the one made in the
proof in [5]. We simply give the linearization points of operations here,
and defer the proof to Appendix A(see [4]). Consider some invocation of
Search(key). It can be proved that each node on the search path for
key was in the tree at some point during the Search, so we linearize
Search at a point when the leaf it returns was in the tree. An invoca-
tion of Find(key) is linearized at the point its corresponding Search
was linearized. It can be proved that each Insert or Delete invocation
that returns True has executed a successful child CAS. An invocation
of Insert(key) or Delete(key) that returns True is linearized at this
child CAS ; an invocation that returns False is linearized at the same
point as the corresponding Search that discovered key was already in
the tree, or was not in the tree, respectively.

The k-ST algorithm differs significantly from the BST algorithm at
lines 85 and 120, which both involve accessing several children in sequence.
Let P be a process executing line 85. We note that no flagging or marking
has yet been attempted by P , and the expected values to be used by the
CASs at lines 88 and 97 were verified to be Clean a few lines prior. Further,
if any process Q wants to add or remove a key from a child x of p that
P will read at line 85, it must replace x, changing a child pointer of p.
However, it must flag p to change its child pointers, overwriting the Clean
object that was read earlier by P to be used as the expected value for its
flag CAS. It is easy to prove that there is no ABA problem on pending
fields, which implies that the expected value used by P for the CAS can
never appear in p.pending again, so P ’s CAS must fail, and the operation
will be retried. It can then be shown that if an operation op successfully
flags or marks p, ccount contains the number of non-empty children of p
until a child CAS is executed for op, and that only the first child CAS
will be successful (occurring immediately after line 120). Thus, it can be
shown that when line 120 is executed, the children of op.p are precisely
op.l and one other leaf, or else the child CAS will fail, so the value of



13

other is irrelevant. This is rigorously demonstrated in the detailed proof
of correctness presented in Appendix A(see [4]).

3 Experiments

In this section we present results from experiments comparing the per-
formance of the BST of Ellen et al. [5], our k-ST algorithm, Concur-
rentSkipListMap (SL) of the Java class library and the lock-based AVL
tree (AVL) of Bronson et al. [3]. Experiments on each structure used
put-if-absent and delete-if-present (set functions), returning True if the
operation could be completed, and False otherwise. Preliminary exper-
iments were run to tune the parameters of the final experimental set to
maximize trial length while keeping standard deviations reasonable. The
final experiments each consisted of selecting a particular algorithm and
executing a sequence of 17 three-second trials, in which a fixed number
of threads randomly perform Inserts, Deletes and Finds according to
a desired probability distribution (e.g., 5% Insert, 5% Delete, 90%
Find), on uniformly distributed random keys, drawn from a particular
key range (e.g., the integers from 0 to 106). The average throughput (op-
erations per second) was recorded for each trial, and the first few trials
were discarded to account for the few seconds of “warm-up” time that
the Java Virtual Machine (VM) needs to perform just-in-time compila-
tion and optimization. We observed that throughput stabilized after the
first three to five seconds of execution, so the first two trials (six seconds)
of each experiment were discarded. Garbage collection was also triggered
in between trials to minimize its haphazard impact on measurements.

Our experiments were run on a Sun machine at the University of
Rochester, with two UltraSPARC-III CPUs, each having eight 1.2GHz
cores capable of running 8 hardware threads apiece (totalling 128 hard-
ware contexts), and 32GB of RAM, running Sun’s Solaris 10 and the Java
64-bit VM version 1.6.0 21 (with 15GB initial and maximum heap sizes).

We call the probability distribution of Inserts and Deletes a ratio,
and denote an experiment with x% Inserts, y% Deletes and (100 −
x − y)% Finds as, simply xi-yd. We denote the key range of integers
from 0 to 10x − 1 by [0, 10x). The experimental results we present herein
used algorithms BST, 4-ST, SL and AVL, key ranges [0, 102) and [0, 106)
and ratios 0i-0d, 5i-5d, 8i-2d and 50i-50d. The key ranges induce high
and low levels of contention, respectively, with small trees increasing the
probability that operations on random keys will coincide. The four ratios
represent situations in which operations consist (1) entirely of searching,



14

(2) mostly of searching, (3) mostly of searching, but with far more Inserts
than Deletes, and (4) entirely of updates. Initially, each data structure
was empty for each trial, except when the ratio was 0i-0d, since that
would mean performing all operations on an empty tree. In this case,
each structure was pre-filled at the beginning of each trial by performing
random operations in the ratio 50i-50d until the structure’s size stabilized
(to within 5% of the expected half-full). Additional results, including more
operation mixes and key ranges, and results from a 32-core system at
Intel’s Multicore Testing Lab can be found in [4]. For implementations of
the BST and k-ST, see [4].

We now discuss the graphs presented in Fig. 6. The [0, 102) key range
represents very high contention. There were at most 102 keys in the set,
and as many as 128 threads accessing the tree. Under this load, BST
was the top performer in all experiments. The low degree of BST’s nodes
permits many simultaneous updates to different parts of the tree, and its
simplicity offers strong performance. 4-ST matched BST’s performance
in the 0i-0d and 8i-2d cases, indicating that, in the absence of many
deletions, it can perform just as well under extremely high contention.
For the other two ratios, 4-ST’s performance was similar to the lock-free
SL, surpassing AVL by a fair margin. BST scaled very well in all cases;
4-ST scaled equally well when deletions were few.

The [0, 106) key range represents low contention: with as many as one
million keys and only 128 threads, the chance of collisions in random
keys is quite small. With this level of contention, 4-ST exhibits strong
performance, surpassing BST, and the other algorithms. This is in line
with expectations; as the size of the tree increases, the higher degree of
the 4-ST affords it a shallower depth, allowing all operations to complete
more quickly. Unlike the [0, 102) case, all algorithms scale reasonably well
in the [0, 106) case, approaching linear improvement in throughput with
an increase in the number of hardware threads.

4 Conclusion and Future Work

BST has the greatest advantage in high contention settings. Its simplicity
pushes its performance beyond the other algorithms. As trees get larger
and contention decreases, 4-ST surpasses BST to become the top per-
former. Similar to 4-ST, AVL also performs well as the size of the data
structure increases. SL tends to performs well when its set of keys is small.

AVL is a balanced tree, so it does some extra work in maintaining this
property. However, since our experiments insert random keys, 4-ST and



15

BST also are nearly balanced. In this experimental setting, the balancing
work of AVL does not pay off. In a situation where the keys inserted are
not random, AVL might have a significant advantage over 4ST and BST.
Since in many cases BST and 4ST outperform AVL and SL by a fair
margin, we believe that it may be possible to add balancing and remain
competitive, while offering a non-blocking progress guarantee.

Acknowledgments. We thank Michael L. Scott for providing access to
the multi-core machine at the University of Rochester. Financial support
for this research was provided by NSERC. We also thank Eric Ruppert
and Franck van Breugel for their supervision and assistance in the prepa-
ration of this manuscript. Finally, we thank the anonymous OPODIS
reviewers for their comments.

References

1. G. Barnes. A method for implementing lock-free data structures. In Proc. 5th
ACM Symposium on Parallel Algorithms and Architectures, pages 261–270, 1993.

2. M. A. Bender, J. T. Fineman, S. Gilbert, and B. C. Kuszmaul. Concurrent cache-
oblivious B-trees. In Proc. 17th ACM Symposium on Parallel Algorithms and
Architectures, pages 228–237, 2005.

3. N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical concurrent
binary search tree. In Proc. 15th ACM Symposium on Principles and Practice of
Parallel Programming, pages 257–268, 2010.

4. T. Brown and J. Helga. Non-blocking k-ary search trees. Technical Re-
port CSE-2011-04, York University, 2011. Appendix and code available at
http://www.cs.toronto.edu/~tabrown/ksts.

5. F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary search
trees. In Proc. 29th ACM Symposium on Principles of Distributed Computing,
pages 131–140, 2010. Full version in Tech. Report CSE-2010-04, York University.

6. M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In Proc. 23rd
ACM Symposium on Principles of Distributed Computing, pages 50–59, 2004.

7. K. Fraser and T. Harris. Concurrent programming without locks. ACM Transac-
tions on Computer Systems, 25(2):5, 2007.

8. K. A. Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, 2003.
9. L. J. Guibas and R. Sedgewick. A dichromatic framework for balanced trees. In

Proc. 19th IEEE Symp. on Foundations of Computer Science, pages 8–21, 1978.
10. M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software transactional

memory for dynamic-sized data structures. In Proc. 22nd ACM Symposium on
Principles of Distributed Computing, pages 92–101, 2003.

11. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems,
12(3):463–492, 1990.

12. H. Sundell and P. Tsigas. Scalable and lock-free concurrent dictionaries. In Proc.
19th ACM Symposium on Applied Computing, pages 1438–1445, 2004.

13. J. D. Valois. Lock-free linked lists using compare-and-swap. In Proc. 14th ACM
Symposium on Principles of Distributed Computing, pages 214–222, 1995.



16

Fig. 6. Experimental results. Error bars are drawn to represent one standard deviation
from the mean. Columns display ranges from which random keys are drawn. Rows
display ratios of Inserts to Deletes to Finds. The y-axis displays average throughput
(millions of operations/s), and the x-axis displays the number of h/w threads.



17

5 Appendix A

5.1 Proof of Correctness

Since the k-ST algorithm is a generalization of the BST algorithm of Ellen
et al. [5], it is not too difficult to adapt the proof presented in [5] to show
that the k-ST is correct, and we include this adaptation for the sake of
completeness. The proof presented in this section is identical to the proof
presented in [5], with only minor changes. It is reproduced in full, for ease
of reference, with permission from our supervisors, who were co-authors
of [5]. We preserve the numbering of the results used in [5], and verify
that each theorem of the BST proof carries over in the k-ST case. Before
we begin the proof, there are some minor stylistic differences between the
BST and the k-ST that should be mentioned.

The BST uses an Update object that is an ordered pair, consisting of
a state field that contains one of Clean, Mark, IFlag or DFlag, and
an info field that contains the information necessary to allow any process
to help the operation complete. The k-ST instead encodes the state field
in the type of the object, opting to have the corresponding Clean, Mark,
ReplaceFlag and PruneFlag as subtypes of the UpdateStep type. This
change, moving the state bits from the field into the object type, facil-
itates a somewhat simpler implementation in Java and does not affect
correctness. Any time it affects the proof, we describe the modifications.

The BST places three sentinel nodes at the top of the tree, with
root and root.right having key ∞2, and root.left having key ∞1, where
∞1 <∞2. This guarantees each leaf that has a key different from ∞1 or
∞2 will have a non-Null parent and grandparent in the tree, while pre-
serving the search-tree property. Further, the∞ keys cannot be provided
as the argument to the Insert or Delete routines, so the root cannot be
changed. The k-ST instead uses a single ∞ value, and uses empty leaves
instead of leaves with ∞ keys. The use of a single ∞ value does not pre-
serve the search-tree property at the root, but this is not important, since
the “real tree” begins at the leftmost grandchild of the root, and searches
for key 6= ∞ will always descend left from any node with key ∞, so a
search can only descend left from root, and left from the leftmost child of
the root (root.c1), to enter the real tree, where the search-tree property
is preserved. This required some changes to Lemma 22 and, indirectly,
to Lemma 29. The empty children of root and root.c1 guarantee that
root and root.c1 always have at most one non-empty child. This ensures
pruning deletion can never apply to these nodes. Further, since ∞ is not
a regular key, it cannot be an argument to Delete, so simple deletion



18

can never apply to these nodes either. Since root and root.c1 are internal
nodes, neither type of insertion operation can apply to them. This allows
us to prove in Lemma 2 that root and root.c1 are never removed from the
tree, and that root.c1 points to the same node at all times, maintaining
the sentinel nodes at the root of the tree.

Also note that pruning deletion is identical to deletion in the BST,
removing a leaf and its parent when that leaf has only a single non-
empty sibling, by changing the appropriate child pointer of the leaf’s
grandparent to point to the sibling. Where insertion in the BST replaces
a leaf by a new internal node and two new leaves, sprouting insertion
replaces a leaf by a new internal node and k new leaves. This is, of course,
a natural generalization of the BST case where k = 2. Simple insertion
and simple deletion are very similar, replacing a leaf with a single new
node. Lemma 22, 24, 25, 29 and 36, and Theorem 37(1) were updated to
incorporate the new “simple” operations.

These new operations do not interfere with the coordination scheme
between updates, since they can be viewed as insertions or deletions in
the BST. Indeed, the coordination scheme in the two implementations
is identical. The k-ST does not even require the addition of any new
types of flags. ReplaceFlag and PruneFlag are simply aliases of IFlag
and DFlag, respectively. The only difference between this set of opera-
tions, and the operations presented in the BST, is the new “replacement”
node that will be added into the tree by simple insertion, simple deletion
and sprouting insertion, but this replacement always satisfies the same
properties as its analogue in the BST, being the root of a sub-tree of
newly created nodes that have never before appeared in the tree. Unlike
IFlag objects, which could only be stored by Insert operations in the
BST, ReplaceFlag objects can be stored both Insert and Delete oper-
ations in the k-ST, requiring small changes to Lemma 22, 24 and 25, and
Theorem 37(1).

Having up to k − 1 keys in a node (in separate fields) could be cause
for concern but, since they are final and immutable after the creation of a
node, it is a simple task to inspect keys in sequence, or count the number
of non-∞ keys, without concurrency issues.

Similarly, the many child references of a node are protected in the same
way that the two child references of a node in the BST are protected.
Flagging or marking a node prevents all child pointers from changing,
just as it did in the BST. Thus, the child pointers of a node can safely
be inspected in sequence without experiencing concurrency issues, once a
node is flagged or marked, as described in Sec. 2.6.



19

Another notable difference lies in how the k-ST selects the reference to
be changed by a child CAS. The BST selected this reference by comparing
the key of the node to be written into the tree with the key of the node
whose child reference would be changed by the child CAS. The k-ST
instead determines the index of the child reference that should be changed
by an update while it is traversing the tree in Search, and stores this
index in an UpdateStep object for later use. This required modifying
Lemma 7, and simplified the statement of Lemma 2(8).

A final difference that required special accommodation was the ne-
cessity in the k-ST to show that when a child CAS occurs for a pruning
deletion, the leaf from which a key is being deleted has exactly one key,
and exactly one non-empty sibling. (In the BST, every leaf has exactly
one key and one non-empty sibling, so this could be taken for granted.)
This added some small complications to the statement and proof of Corol-
lary 16.

Any time that these differences manifest themselves in the proof that
follows, they will be highlighted and their correctness justified. We can
now begin proving the correctness of our k-ST implementation, mirroring
the structure of the BST proof.

Basic Invariants and Preconditions

Observation 1 is amended to incorporate many keys, and the keyCount
field.

Observation 1. No key field a1, ..., ak−1 of a Node ever changes. No field
of an UpdateStep object ever changes. The root pointer never changes. The
keyCount field of a Leaf never changes. The pending field of an Internal
node is never Null.

For the last point of Observation 1, note that pending fields initially
contain a Clean object, and can only be written at line 60, 88, 97, 105,
112, 117, or 122. The first three of these write an object that was just
created at the previous line. The remaining four write an object that is
created in the same line. Thus, Null can never be written into a pending
field.

Lemma 2 is amended to incorporate the absence of a CAS-Child
routine (Claim 5), multiple keys per node, the single infinite key and
the revised search-tree property (Claim 8), the fact that Claim 9 is no
longer needed, the modified top of the tree (Claim 10), and the fact that



20

f.newChild may now point to a leaf, so we can no longer claim it is
internal (Claim 11).

Lemma 2. The following are invariants of the algorithm.

1. Each call to HelpReplace satisfies its preconditions.
2. Each call to HelpPrune satisfies its preconditions.
3. Each call to HelpMarked satisfies its preconditions.
4. Each call to Help satisfies its preconditions.
5. Each child CAS has non-Null arguments.
6. Any Search that has executed line 29 has a non-Null value in its
local variable leaf .
7. Each call to Search that terminates satisfies its postconditions.
8. Let S = {root, root.c1}, u /∈ S be any node, and let K = u.keyCount
if u is a leaf; otherwise, let K be the number of keys in an internal
node.

(a) For i = 2, ...,K, u.ai−1 < u.ai < ∞ (keys are ordered and
finite).

(b) For i = K + 1, ..., k, u.ai =∞ (unoccupied keys are infinite).
(c) If u is internal, then none of u’s child pointers are Null.

9. (Deleted–The claim made in the BST proof is no longer necessary,
since the k-ST directly encodes the state field in the subtypes of Up-
dateStep.)

10. The top part of the tree is always as shown in Fig. 2(a). More
precisely:

(a) root and root.c1 point to internal nodes
(b) For i = 1, ..., k − 1, root.ai = root.c1.ai =∞
(c) For i = 2, ..., k, root.ci and root.c1.ci point to empty leaves

(having keyCount = 0)
(d) root.c1.c1 is non-Null

11. For any ReplaceFlag object f , f.p is a pointer to an internal node,
f.newChild is non-Null, and f.l is a pointer to a leaf node.

12. For any PruneFlag object f , f.gp and f.p are pointers to internal
nodes, f.l is a pointer to a leaf node and f.ppending is a value that
has previously appeared in f.p.pending.

Proof. As in the BST proof, Claim 8 and 10 are initially true by initial-
ization of the data structure, and the other claims are all true for an
execution of zero steps. Assume all claims hold for the first i steps of an
execution. We shall show that they hold after step i+ 1. Let this i+ 1th

step be called s, as in the BST proof. In the following, for brevity, we
denote the argument x of an invocation f of some function by f.x.



21

1. Let s be an invocation of HelpReplace. Then s is an execution of
line 62, 99 or 68.
– If it is line 62, then op was just created at line 59, and is non-Null.
– If it is line 99, then op was just created at line 96, and is non-Null.
– If it is line 68, then a previous step of the execution called Help,

passing op as the argument so, by Claim 4 of the inductive hy-
pothesis, op was not Null when it was passed to Help, so it is
not Null when it is passed to HelpReplace.

2. Let s be an invocation of HelpPrune. Then s is an execution of line
90 or 69.
– If it is line 90, then op was just created at line 87, and is non-Null.
– If it is line 69, then a previous step of the execution called Help,

passing op as the argument so, by Claim 4 of the inductive hy-
pothesis, op was not Null when it was passed to Help, so it is
not Null when it is passed to HelpPrune.

3. Let s be an invocation of HelpMarked. Then s is an execution of
line 108 or 70.
– If it is line 108, then a previous step of the execution called HelpPrune,

passing op as the argument so, by Claim 4 of the inductive hypoth-
esis, op was not Null when it was passed to HelpPrune, and it
is not Null when it is passed to HelpMarked.

– If it is line 70, then a previous step of the execution called Help,
passing op as the argument so, by Claim 4 of the inductive hy-
pothesis, op was not Null when it was passed to Help, and it is
not Null when it is passed to HelpMarked.

4. Let s be an invocation of Help. As in the BST proof, we show that its
argument op has appeared in the pending field of an internal node in
the tree, which cannot contain Null (since pending fields are initially
Clean, as is easily verified). We now consider each of the seven places
a call to Help can occur.
– If it is line 52, then ppending was read from p.pending by Post-

condition (3) of the Search at line 49, according to Claim 7 of
the inductive hypothesis and, by Postcondition (1), we know that
p points to an internal node.

– If it is line 65, then result was read from p.pending at the same
line. Further, we know p is an internal node by the same reasoning
as the previous case.

– If it is line 81, then gppending was read from gp.pending by Post-
condition (3) of the Search at line 78, according to Claim 7 of
the inductive hypothesis and, by Postcondition (1), we know that
gp points to an internal node.



22

– If it is line 83, then ppending was read from p.pending by Post-
condition (3) of the Search at line 78, according to Claim 7 of
the inductive hypothesis and, by Postcondition (1), we know that
p points to an internal node.

– If it is line 92, then result was read from gp.pending at the same
line. Further, we know gp is an internal node by Postcondition (1)
of the Search at line 49, according to Claim 7 of the inductive
hypothesis.

– If it is line 102, then result was read from p.pending at the same
line. Further, we know p is an internal node by Postcondition (1)
of the Search at line 78, according to Claim 7 of the inductive
hypothesis.

– If it is line 111, then result was read from op.p.pending at line
106. By Claim 12, op.p points to an internal node.

5. Let s be a child CAS. Then s can only be an execution of line 116 or
121.
– If it is line 116 then, by Claim 11 of the inductive hypothesis,
op.p is an internal node, and op.l and op.newChild are non-Null,
either Claim 8(c) or 10(d,e) applies, so all children of op.p are
non-Null.

– If it is line 121 then, by Claim 12, op.gp is an internal node, and
op.p is also an internal node (and so is non-Null). We must still
show that op.gp.cop.gpindex and other are non-Null. Since op.gp
and op.p are internal nodes, by Claim 8(c) and 10(d,e), all children
of op.gp and op.p are non-Null. Thus, op.gp.cop.gpindex is non-
Null, and any child of op.p assigned to other is non-Null.

6. The BST proof of this claim carries through with no modification,
other than changing line 32 to line 36 and adding induction hypothesis
10 to hypothesis 8 to guarantee line 36 will read a non-Null reference.

7. As in the BST proof, let 〈gpfinal, pfinal, lfinal, ppendingfinal, gppendingfinal〉
be the final values returned by a terminating Search.
– By inductive Claim 10, we know root.c1 points to an internal node

prior to the return step at line 38, so the initial assignments at line
29 point leaf and parent to internal nodes. Thus, the loop will
be entered at least once and, before the first iteration, leaf and
parent both point to internal nodes. As a result, the first iteration
of the loop will point gparent and parent to internal nodes. It
is plain to see that gparent and parent are pointed to internal
nodes every iteration, since gparent’s value comes from parent,
whose value comes from leaf , which points to an internal node at
the beginning of every iteration. Further, the exit condition of the



23

loop ensures that when the loop is exited, leaf will point to a leaf
node. Thus, Postcondition (1) is satisfied.

– Before the first iteration of the loop, the assignment at line 29
will satisfy that leaf has been parent.cpindex (since parent.c1 is
an internal node by inductive Claim 10). By the same reasoning as
in the proof of Postcondition (1), the loop will be entered at least
once and, after the first iteration of the loop, parent will have been
gparent.cgpindex, since the values in leaf and parent will simply
shift into parent and gparent. It is easy to see that every iteration
through the loop will preserve this, since an iteration simply shifts
values, then points leaf to parent.cpindex. Thus, Postcondition (2)
is satisfied.

– It is a simple (and uninteresting) exercise to show that Postcon-
dition (3) is also satisfied, using the same reasoning used to prove
Postcondition (2). The important facts are the following. Before
the loop is entered for the first time, parent points to an internal
node, and ppending was read from parent. The loop is entered at
least once, values shift from ppending to gppending alongside the
values from parent to gparent, and ppending is read from parent
each iteration.

8. Parts (a) and (b) of this claim are satisfied since the keys of a node
are final, immutable except at creation time, and the lines where a
node is created (lines 55, 57 and 95) are defined to preserve these
fundamental structural invariants.
Part (c) is satisfied since a child pointer can only be changed by
a child CAS at lines 116 and 121 and, by inductive Claim 5, any
child CAS has non-Null arguments.

9. Claim is deleted and requires no proof.
10. Note that this is initially satisfied upon creation of the top of the tree.

Also observe that shared field root never changes, and that the keys
and keyCount field of a node never change, by Observation 1. Thus,
it simply remains to show that no child pointer of root can change,
and that only the leftmost child pointer of root.c1 can change.
We first show no child pointer of root can change. Say s is a child CAS
that changes a child pointer of root. Then s is called from HelpMarked
or HelpReplace.

– Say s was called from an invocation HelpReplace. Then op was
created at line 59 or 96.
Assume op was created at line 59. Then op.p = root was read by
the Search at line 49, which satisfied its postconditions by induc-
tive Claim 7, so op.l, a child of root, is a leaf. However, we know



24

that Claim 8 was inductively satisfied throughout the execution
of this Search, so that the keys of op.p = root must all be ∞,
and that the argument key passed to Search could not have been
∞, so the last execution of line 36 had to follow the leftmost child
pointer to reach leaf op.l. However, this yields a contradiction,
since we also know by Claim 10 that the leftmost child of root is
an internal node, not a leaf. Thus, s cannot occur.

If we assume, however, that op was created at line 96, then op.p =
root was read by the Search at line 78, which satisfied its postcon-
ditions by inductive Claim 7, so op.l, a child of root, is a leaf. How-
ever, by the same argument as in the previous case, op.l = root.c1
must be an internal node. Thus, s cannot occur.

– Next, say s was called from an invocation of HelpMarked. Then
op was created at line 87. Further, op.l, op.p and op.gp = root
were read by the Search at line 78, and the postconditions of
Search were satisfied by inductive Claim 7 when it terminated.
Thus, op.l is a leaf, and a child of op.p, which is a child of op.gp =
root. Further, op.p is an internal node so, by inductive Claim 10,
op.p is root.c1, and always has exactly one non-empty child, so
ccount = 1, and the test at line 85 must evaluate to False, so
it is impossible for op to be created at line 87 with op.gp = root,
yielding a contradiction. Thus, s cannot occur.

We now show that only the leftmost child pointer of root.c1 can
change. Say s is an invocation of CAS-Child that changes a child
pointer of root.c1 other than the leftmost. Then s is inside an invoca-
tion of HelpMarked or HelpReplace, where op is created at line
59, 96 or 87.

– In the case of HelpReplace (line 59 and 96), a child of op.p
will be changed, so op.p = root.c1 by our assumption. Further,
the field op.l is read at line 36 of a Search invoked at line 49
or 78 so, by inductive Claim 7, op.l is a leaf, and a child of op.p.
In particular, by our assumption, op.l is not the leftmost child
of op.p. By inductive Claim 10, we also know that the keys of
op.p are all ∞ throughout the execution of Search. Also note
that it takes one iteration of the loop to assign op.p := root.c1,
so the following statement is well-formed. The last time line 36 of
Search was executed, the key key must have been greater than
or equal to ∞ or else the Search would have descended to the
leftmost child. However, ∞ cannot be an argument to Search,
yielding a contradiction.



25

– In the case of HelpMarked (line 87), a child of op.gp will be
changed from op.p to other, so op.gp = root.c1 by our assumption.
Further, the fields op.l and op.p are read by a Search invoked
at line 78 so, by inductive Claim 7, op.l is a leaf, and a child of
op.p, which is a child of op.gp. In particular, by our assumption,
op.p is not the leftmost child of op.gp. As in the previous case,
by inductive Claim 10, all keys of op.gp are ∞ throughout the
execution of Search. Note that it takes two iterations through
the loop in Search for root.c1 to reach variable gpparent = op.gp.
Thus, the Search will iterate through the loop at least twice and,
the second last time line 36 was executed (when the eventual value
of op.p was read from a child of root.c1), it must have decided the
appropriate child was not the leftmost, so key key must have been
greater than or equal to ∞, the leftmost key of root.c1. However,
∞ cannot be an argument to Search, so this is a contradiction.
Thus, s cannot occur.

11. Since all fields of an ReplaceFlag object are final, and immutable after
creation, we need only verify that this property holds at creation time.
ReplaceFlag objects are only created at line 59 or 96.
Say a ReplaceFlag object f is created at line 59. Then f.newChild
is created at line 55 or 57. Either way, it is a new, non-Null node.
Additionally, f.l and f.p are read by the Search at line 49 and, by
inductive Claim 7, the postconditions of Search are satisfied when
this Search terminates. Thus, f.l is a leaf, and f.p is an internal
node.
Say a ReplaceFlag object f is created at line 96. Then f.newChild
is created at line 95, and is non-Null. Additionally, by the same
reasoning as in the previous case, f.l and f.p are read by the Search
at line 78, and f.l is a leaf, while f.p is an internal node.

12. Since all fields of an PruneFlag object are final, and immutable after
creation, we need only verify that this property holds at creation time,
i.e., at line 87.
Say a PruneFlag f is created at line 87. Then f.l, f.p, f.gp and
f.ppending are all returned by the Search at line 78 and, by induc-
tive Claim 7, the postconditions of Search hold when the Search
terminated, so f.l points to a leaf, f.p and f.gp point to internal nodes,
and f.ppending was contained in f.p.pending at some point. ut

Behaviour of CAS steps on pending Fields



26

We first make some definitions to align with the nomenclature of the
BST proof; they remain in effect for the remainder of the proof.

Definition 1. Rflag CAS (standing for ReplaceFlag CAS) and Punflag CAS
(standing for PruneFlag CAS) steps are executions of lines 60 and 97,
respectively.

Runflag CAS (standing for ReplaceUnflag CAS) and Punflag CAS
(standing for PruneUnflag CAS) steps are executions of lines 117 and
122, respectively.

Rchild CAS (standing for ReplaceChild CAS) and Pchild CAS (stand-
ing for PruneChild CAS) steps, are executions of lines 116 and 121, re-
spectively.

The Backtrack CAS steps are executions of line 112.
(The mapping to the naming conventions of the BST proof is: Rflag CAS

= Iflag CAS, Pflag CAS = Dflag CAS, Runflag CAS = Iunflag CAS,
Punflag CAS = Dunflag CAS, Rchild CAS = Ichild CAS, and Pchild CAS
= Dchild CAS.)

Note that, unlike the BST, in the k-ST algorithm, Rflag CAS, Run-
flag CAS and Rchild CAS steps are invoked by both Insert and Delete
(where they were only invoked by Insert in the BST). This is due to the
similarity of simple deletion to insertion, which allows it simply to use
ReplaceFlag objects and the HelpReplace function.

Lemma 3. The following statements are true for each internal node v.

1. When v is created, v.pending points to a Clean object.
2. Flag CAS and mark CAS steps on v.pending succeed only if it points

to a Clean object.
3. Runflag CAS steps on v.pending succeed only if it points to a Replace-

Flag object.
4. Punflag CAS and Backtrack CAS steps on v.pending succeed only if

it points to a PruneFlag object.
5. Once v is marked, its pending field never changes.

Proof. As in the BST proof, we prove each statement in turn.

1. This true for the two internal nodes initially in the tree, by line 27.
Elsewhere, internal nodes are only created at line 55, where their
pending fields are initialized to point to Clean objects.

2. Flag CAS and mark CAS steps occur at lines 60, 88, 97, and 105.
If it is line 60, then the expected value ppending for the CAS is Clean
by the test at line 51.



27

If it is line 88, then the expected value gppending for the CAS is Clean
by the test at line 80.
If it is line 97, then the expected value ppending for the CAS is Clean
by the test at line 82.
If it is line 105, then the expected value for the CAS is op.ppending.
The argument op could only have been created at line 87, so op.ppending =
ppending is Clean by the test at line 82.

3. Runflag CAS steps occur only at line 117. Since the expected value
for the CAS is op, which is a ReplaceFlag object, this claim is trivially
satisfied.

4. Punflag CAS and Backtrack CAS steps occur only at lines 112 and
122. In either case, the expected value for the CAS is op, which is a
PruneFlag object, satisfying the claim.

5. By part (2) of this Lemma, we know that no flag CAS or mark CAS
can change v.pending once it points to a Mark object. By parts
(3) and (4), we know that no Runflag CAS, Punflag CAS or Back-
track CAS can succeed. This accounts for all CAS steps that can
change v.pending. ut

Note that, as in the BST proof, we have assumed no garbage collection
for simplicity. However, correctness is not affected if the algorithm is
implemented in a system with safe garbage collection, meaning that no
memory address is allocated or de-allocated as long as it is reachable from
any user thread.

Lemma 4. For each internal node v, no CAS ever changes v.pending to
a value that was previously stored there.

Proof. The pending field of v can be changed only by a CAS step at line
60, 88, 97, 105, 112, 117 or 122. In each of these cases, the new UpdateStep
object to be written by the CAS step is created locally by the process
executing the CAS, immediately before the CAS step, either in-line, or at
the previous line. Thus, in each case, the new value to be written cannot
have previously appeared in a pending field. ut

As in the BST proof, we define what it means for CAS steps to belong
to an UpdateStep object. The definition in the BST proof requires mini-
mal modification to accommodate the fact that the State and Info types
of the BST have been merged to produce UpdateStep objects.

Definition 2. If a flag CAS stores a pointer to a ReplaceFlag or Prune-
Flag object f , then we say the flag CAS belongs to f . Mark, child, unflag



28

and backtrack CAS steps all use information from an UpdateStep object
that is the argument to the HelpPrune, HelpReplace or HelpMarked
invocation that performs the CAS step. Each of these CAS steps is also
said to belong to the UpdateStep object. When an UpdateStep object is
created, some information comes from an invocation of Search, which
is also said to belong to the UpdateStep object.

Lemma 5. Only the first mark CAS belonging to a PruneFlag object can
succeed.

Proof. As in the BST proof, let f be a PruneFlag object, and mcas be
a successful mark CAS belonging to f . We show mcas must be the first
mark CAS that belongs to f . Let mcas′ be another successful mark CAS
belonging to f , and preceding mcas, to derive a contradiction. Both mcas
and mcas′ attempt to change f.p.pending from f.ppending to a new Mark
object. By the postconditions of the Search belonging to f , f.ppending
was read from f.p.pending during the Search (at line 78), before f
was created (at line 87) and, in turn, before mcas′. In order for mcas to
succeed, f.p.pending must be f.ppending when it occurs so, by Lemma 4,
f.p.pending must have been f.ppending when mcas′ was executed (before
mcas). Thus, mcas′ must have succeeded but, by Lemma 3, f.pending
can never again change after mcas′ has marked it, meaning mcas cannot
succeed, contradicting its definition. ut

Lemma 6. If a successful mark CAS belongs to a PruneFlag object f ,
then no Backtrack CAS belongs to f .

Proof. Let f be a PruneFlag object. Assume a successful mark CAS be-
longs to f . Let H be an invocation of HelpPrune whose argument is
f . By Lemma 5, either H’s mark CAS succeeds, or an earlier mark CAS
belonging to f succeeded, and permanently stored a Mark object m in
f.p.pending, satisfying m.pending = f (by Definition 2), which will be
read at line 106 by H. Either way, the test at line 107 will evaluate to
True, and H will not attempt a Backtrack CAS at line 112. ut

Behaviour of Child CAS Steps

Lemma 7. Let ccas be a child CAS belonging to some UpdateStep object
op and let R be the register it attempts to change. Let r be the last or
second-last execution of line 36 in the Search belonging to f , depending
on whether ccas is an Rchild CAS or Pchild CAS, respectively. Then, r
reads R and the value read by r is the expected value used for ccas.



29

Proof. We consider two cases.
Case 1: ccas is an Rchild CAS. We note that r is well defined,

since the Search belonging to ccas performs at least one iteration, since
leaf = parent.c1 points to an internal node at line 29, by Lemma 2(10).
The Search belonging to ccas executes r and saves the result in op.l,
which will be used as the expected value for ccas, proving the second half
of the claim.

Step ccas modifies the field op.p.cop.pindex which, according to the
postconditions of the Search belonging to op, contained leaf = op.l at
some point. Noting that pindex is set only at line 36, the same place that l
is read (and where r occurs), we see that op.l was read from op.p.cop.pindex
by r, so the claim is proven.

Case 2: ccas is a Pchild CAS.
We now show that r is well defined. We first note that, by the same

reasoning as in the previous case, the loop in the Search S belonging
to ccas must perform at least one iteration. To obtain a contradiction,
suppose that the loop performs only one iteration, returning p = root.c1.
Then, by Lemma 2(10), the test at line 86 must evaluate to False, since
p = root.c1 always has exactly one non-empty child, so ccas cannot be
a Pchild CAS, yielding a contradiction. Thus, S enters the loop at least
twice, so r is well defined.

When S executes r, the second-last time through the loop, it will
read a child of op.gp and, eventually, this child reference will be saved in
op.p, which will be used as the expected value for the CAS, satisfying the
second half of the claim. By the postconditions of S, the index of this
child of op.gp will be stored in op.gpindex, such that op.gp.cop.gpindex = R
is the reference that was read by r. Clearly this is also the reference that
will be modified by the ccas, satisfying the first half of the claim. ut

Definition 3. As in the BST proof, we define ccas1, ccas2, ... to be the
ordered sequence of successful child CAS steps in the execution, fi to be
the UpdateStep object to which ccasi belongs, fcasi to be the successful
flag CAS that belongs to fi, pendingi is the field changed by fcasi, and
ucasi be the CAS that next changes the pending field flagged by fcasi,
after fcasi, if such a change occurs. The definitions made in Lemma 7
are also extended. Ri is the register changed by ccasi, and ri is the last or
second-last execution of line 36 in the Search belonging to fi, depending
on whether ccasi is an Rchild CAS or a Pchild CAS, respectively.

Corollary 8. For all i, ri reads Ri and the value read by ri is the old
value used for ccasi.



30

Proof. This corollary follows directly from Lemma 7, as in the BST proof.
ut

Mimicking the BST proof, the remaining lemmata of this section are
devoted to showing that the CAS steps proceed in an orderly fashion,
with a child CAS step coming after the corresponding flag CAS (and
possibly mark CAS ), and before a Backtrack CAS or unflag CAS and,
also, that at most one child CAS belongs to an UpdateStep object, that
child CAS steps avoid the ABA problem, and child CAS steps maintain
the invariant that the structure is a full k-ary tree.

Lemma 9. Each mark CAS that belongs to an UpdateStep object f is
preceded by a successful Pflag CAS that belongs to f .

Proof. Let mcas be any mark CAS belonging to f . Then mcas is an
execution of line 105 in an invocation H of HelpPrune which is, in
turn, called from line 90 or 69.

– If H was called from line 90, then the Pflag CAS at line 88 was clearly
successful.

– If H was called from line 69, then H.op is non-Null, and has ap-
peared in the pending field of some internal node in the tree (by the
preconditions of Help). Further, it is of type PruneFlag, by the test
at line 69. Thus, the PruneFlag H.op must have been written into
the pending field of some internal node prior to the invocation H of
HelpPrune, by a Pflag CAS at line 88.

Thus, in both cases, a successful mark CAS follows a successful Pflag CAS.
ut

Lemma 10. Each Pchild CAS that belongs to an UpdateStep object f is
preceded by a successful mark CAS that belongs to f .

Proof. Let ccas be any Pchild CAS belonging to f (where f is necessarily
a PruneFlag object). Then ccas is executed at line 121 by an invocation
H of HelpMarked. This invocation H is called at line 108 by an in-
vocation D of HelpPrune. Then H.op = D.op = f by Definition 2.
According to the test at line 107, which must evaluate to True (since
line 108 is executed), either the mark CAS at line 105 succeeded (if result
was True), or op.p.pending already contained a Mark object m, satis-
fying m.pending = op, which can only have been stored by a successful
mark CAS mcas, executed at line 105. By Definition 2, m.pending = op
means that mcas belongs to f . Thus, in each case, ccas is preceded by a
successful mark CAS. ut



31

Lemma 11. If a Pchild CAS belongs to a PruneFlag object f , no Back-
track CAS belongs to f .

Proof. This carries through from the BST proof without modification.
ut

Lemma 12. Each child CAS that belongs to an UpdateStep object f is
preceded by a successful flag CAS that belongs to f . (In particular, for all
i, ccasi occurs after fcasi.)

Proof. Let ccas be a child CAS belonging to f .

– If ccas is an Rchild CAS, then it is executed at line 116 of HelpReplace,
which is called from line 62, 99 or 68. By Definition 2, the argument op
to HelpReplace is actually f . Lines 62 and 99 are executed immedi-
ately after their respective Rflag CAS steps at lines 60 and 97. Since
these Rflag CAS steps write op = f , they belong to f , by Definition 2.
Line 68 is called from within Help, which satisfies its preconditions,
so its argument op is a non-Null ReplaceFlag object that has ap-
peared in the pending field of an internal node, where it was stored
by a successful Rflag CAS. Since this Rflag CAS wrote op = f , it
belongs to f .

– It ccas is a Pchild CAS then, by Lemma 9 and Lemma 10, ccas comes
after a successful flag CAS belonging to f . ut

Lemma 13. For all i, if ccasi is a Pchild CAS then there is exactly
one successful mark CAS belonging to fi. This mark CAS occurs between
fcasi and ccasi.

Proof. This carries through from the BST proof without modification.
ut

Lemma 14. For all i ≥ 1 such that ccasi exists, the following statements
are true.

1. ccasi is the first successful child CAS on Ri after ri. It is also the first
successful child CAS belonging to fi.

2. If ucasi exists, it is an unflag CAS that belongs to fi, and ccasi does
not occur after ucasi.

3. If ccasi is an Rchild CAS, then ccasi writes a reference to the root of a
finite, full k-ary tree consisting of new nodes that have never appeared
in the data structure before (i.e., have never before been reachable from
the root by following child references).



32

4. If ccasi is a Pchild CAS, then just prior to ccasi, Ri contains fi.p. If
ccasi is an Rchild CAS, then just prior to ccasi, Ri contains fi.l.

5. If ccasi is a Pchild CAS, then fi.p’s children do not change between
the last execution of line 36 within the Search belonging to fi and
ccasi.

6. After ccasi, the data structure is a full k-ary tree. (That is, every
internal node that can be reached by following child references from
root has exactly K children, where K is the degree of internal nodes,
there are no cycles in the child references among these nodes, and
there is at most one path of child references to any node from the
root.)

7. ccasi writes a value into Ri that has never been stored there before.

Proof. As in the BST proof, we prove this lemma using strong induction
on i, and let k be a positive integer such that ccask exists. We assume the
claims are true for ccasi when 1 ≤ i < k, and prove they hold for ccask.

1. The proof of this claim carries through without modification from the
BST proof.

2. The first two paragraphs of the BST proof of this claim require mod-
ification, and are given below. The rest of the proof carries through
without modification.
Suppose that ucask (the first CAS step that succeeds in changing
pendingk after fcask) exists. It changes pendingk from a ReplaceFlag
or PruneFlag object f to something else (since fcask writes f into
pendingk). By Lemma 3, the only types of CAS steps to do this are
unflag CAS or Backtrack CAS steps. Since the old value of pendingk
used by ucask is fk (since it succeeds, immediately following fcask),
ucask must belong to fk.
We first show that ucask cannot be a Backtrack CAS belonging to
fk. If ccask is an Rchild CAS, then there cannot be a Backtrack CAS
belonging to the ReplaceFlag object fk. If ccask is a Pchild CAS, then
it was preceded by a mark CAS belonging to fk (by Lemma 10). Thus,
there are no Backtrack CAS steps belonging to fk (by Lemma 6), and
ucask is an unflag CAS that belongs to fk.

3. If ccask is an Rchild CAS, then it writes fk.newChild, which refers
to a node x created by the Insert or Delete (performing simple
deletion) that executed fcask. When x is created, it is either a new
leaf, or a new internal node with K newly created leaves x.c1, ..., x.cK
(where K is the degree of internal nodes in the k-ST). Thus, x is the
root of a finite, full k-ary tree. None of these nodes can be reachable



33

from root until some child CAS changes a child reference to point to
one of them. We consider all successful child CAS steps prior to ccask
and prove that none of them write pointers to any of these nodes.

To derive a contradiction, assume some Rchild CAS or Pchild CAS be-
fore ccask writes a reference to x, or to some y ∈ C = {x.c1, ..., x.cK}.
Consider the first child CAS, ccasj that writes a reference to x or y.
We consider two cases.

– If ccasj is a Pchild CAS, then the value written by ccasj is read
from a child reference of fj .p at line 120. Thus, ccasj could not
have written a reference to x, because no child reference refers to x
before ccasj (by definition of ccasj), so it must write a reference to
some y ∈ C. Then the process that performed ccasj had previously
read a reference to y in a child field of the node that fj .p points
to (at line 120). Thus, fj .p could only point to x since, prior to
ccasj , the only child reference that points to y belongs to the node
x. So, one of the child references of the node that fj .gp points to
contained a reference to x before the end of the Search belonging
to fj , according to Postcondition (2) of the Search, and so before
ccasj , but this is impossible, since no child reference refers to x
before ccasj .

– Suppose ccasj is a Rchild CAS. Only an Rchild CAS belonging to
fk can write a reference to x and, by Claim 1, there is no such
Rchild CAS before ccask. Thus, ccasj cannot write a reference
to x, so it must write a reference to some y ∈ C (which implies
x must be an internal node). Then fk is created at line 59, and
fk.newChild is created at line 55. Further, only ccasj belonging
to fj 6= fk such that fj .newChild = y can write a reference to
y. (We know fj 6= fk, since we have assumed both ccasj and
ccask succeed and, if fj = fk were true, then ccask would not
be the first successful child CAS belonging to fk, which would
contradict Claim 1.) Suppose that such an fj exists, to derive a
contradiction. Then fj .newChild is created at line 59 or 96. In
either case, fj .newChild = y is newly created, a few lines prior.
Thus, y is newly created (in freshly allocated memory) when fk is
created, and again when fj is created. Without loss of generality,
assume that fj .newChild is created before fk.newChild. Then,
since fk.newChild must be allocated a different memory address
from fj .newChild, it must be the case that y = fj .newChild 6=
fk.newChild = y, which is a contradiction. Thus, such a ccasj
cannot occur.



34

4. The proof of this claim carries through without modification from the
BST proof.

5. The proof of this claim carries through from the BST proof with the
following substitutions.
– “Line 32” → “Line 36”
– “Line 31” → “Line 34”
– “x’s state must be Clean” → “x.pending must refer to a Clean

object”
– “update” → “pending“

6. The proof of this claim carries through from the BST proof with
the slight modification that the phrase “three new nodes,” must be
corrected to read “new nodes.”

7. The proof of this claim carries through from the BST proof if “left
child” is simply interpreted to mean “leftmost child.” ut

The following two corollaries of Lemma 14 describe the effects of a
successful Rchild CAS or Pchild CAS.

Corollary 15. For all i, if ccasi is an Rchild CAS, it changes a child
reference of fi.p, replacing fi.l, which is a reference to a leaf, by a ref-
erence to the root of a full k-ary tree consisting of new nodes that have
never before appeared in the data structure.

Proof. The proof of this Lemma carries through without modification
from the BST proof. ut

The following corollary requires extra care in its restatement. In the
BST, all nodes had one key, and internal nodes had two children, so
pruning deletion was always the correct operation to apply. However, in
the k-ST we must demonstrate that, when a Pchild CAS occurs, the leaf
to be deleted from has one key, and precisely one non-empty sibling.

Corollary 16. Consider any successful Pchild CAS, ccasi. When line 36
was last executed by the Search belonging to fi, fi.p had exactly two non-
empty children: fi.l and ps, where fi.l is a leaf with one key. Then ps and
fi.l are still the only non-empty children of fi.p just before ccasi, and
ccasi changes a child reference of fi.gp from fi.p to ps.

Proof. The Pchild CAS ccasi is executed by HelpMarked, which is
called from HelpPrune, which has a PruneFlag object op as its argu-
ment. This PruneFlag object was created at line 87 in Delete, and the
test at line 86 evaluated to True. Thus, ccount = 2 was the count of non-
empty children of op.p, and op.l was one of them, having exactly one key.



35

By Lemma 14(5), and the fact that the keys of a node never change, this
has been true since the last execution of line 36 by the Search belonging
to fi, and will remain true until ccasi is executed. (In particular, that the
children of op.p have not changed during this time guarantees that ccount
was the correct count of non-empty children when the test at line 86 was
evaluated, and is correct just before ccasi is executed.) Thus, just before
ccasi, line 120 sets other to ps (still the only non-empty sibling of op.l),
and the claim follows from the code of line 121. ut

Tree Properties

As in the BST proof, having proved that the child pointers form a full
k-ary tree (Lemma 14), we now prove some properties.

Definition 4. An internal node is called inactive when it is first created.
It becomes active when a successful Rchild CAS writes a pointer to it for
the first time, and remains active from that point on. The sole exception
is the root node, which is active from the beginning of the execution.

Lemma 17. In every configuration, each active unmarked internal node
is reachable from the root.

Proof. The proof of this lemma carries through from the BST proof,
except for the last paragraph, which requires some modification to account
for the fact that internal nodes now have K ≥ 2 children and K− 1 keys.
The modified paragraph follows.

Suppose ccasi is a Pchild CAS. By Corollary 16, ccasi changes a child
of fi.gp from fi.p to the only non-empty sibling of fi.l. Thus, the only
nodes that become unreachable as a result of this CAS are fi.p, the sub-
tree rooted at fi.l, and any empty siblings of fi.l. Since fi.l is a leaf, and
the empty siblings of fi.l can only be leaves (since internal nodes cannot
be empty), and fi.p is marked when ccasi occurs (by Lemma 10), the
claim follows. ut

The following definition must be altered slightly from the one made
in the BST proof to incorporate the many children of an internal node.

Definition 5. A node x is an i-descendant of internal node y if, in con-
figuration C, x is in the tree and x is a descendant of y.ci.

The following lemma implies nodes cannot acquire new ancestors.



36

Lemma 18. If x is an i-descendant of y at some configuration C, then
x is an i-descendant of y in all configurations between the first time x is
in the tree and C.

Proof. The proof of this lemma carries through from the BST proof with
the following substitutions.

– “left-descendant” → “1-descendant”
– “right-descendants” → “other i-descendants”
– “removes two nodes” → “removes K nodes (where K is the degree of

internal nodes)” ut

Definition 6. For any configuration C, let TC be the K-ary tree formed
by the child references in configuration C. We define the search path
for key k in configuration C to be the unique path in TC that would be
followed by the ordinary sequential K-ST search procedure. (Although we
have no yet proved that TC is always a K-ST, we can still define this
search path just by looking at what a K-ST search would do if it were run
on TC . The path of a sequential K-ST search is well defined and unique
because the keys of a node are sorted, by Lemma 2(8).)

Lemma 19. If x is a node on the search path for key k in some config-
uration C and x is still in the tree in some later configuration C ′, then x
is still on the search path for k in C ′.

Proof. Let K be the degree of internal nodes, and let y be any ancestor
of x in TC′ . If x is an i-descendant of y in configuration C ′, then x is an
i-descendant of y in configuration C, by Lemma 18. Since x is both on the
search path for k, and an i-descendent of y in configuration C, we know
that k ≥ y.ai−1 (if i > 1) and k < y.ai (if i < K). Thus, if a traversal
of TC′ seeking key k decides which direction to go at each ancestor y of
x based on a comparison of k with the keys of y, it will always choose to
go towards the node x. Thus, x is on the search path for k in C ′. ut

Proof of Linearizability

In this section we prove that the implementation is linearizable. The
goal is to show that at any time T , the set of keys resulting from the
sequence of update operations linearized before T is exactly the same as
the set of keys that are currently stored in the leaves of the tree. The
linearization points are as defined in Sec. 2.6. Intuitively, we define the
linearization point for Search(k) at a point when the leaf it returns was



37

on the search path for k. Find(k) is linearized at the same time as the
Search that it performs. Each update operation that returns True is
linearized at the child CAS that it performs. Each update operation that
returns False is linearized at the Search that it performs.

First, we define linearization points for Search(k). As in the BST
proof, we would like to define the linearization point so that the leaf
returned by Search is on the search path for k at the time that it is
linearized. We can prove, using the following lemma, that the leaf was in
the tree at some time during the execution of the Search.

Definition 7. We say a Search enters a node when a pointer to this
node is assigned to leaf on line 29 or line 36.

Lemma 20. Let v1, v2, ..., be the nodes entered by a Search(k) (in the
order they are entered). For all j, there is a configuration Cj such that:

1. vj is on the search path for k in configuration Cj
2. Cj is before the Search enters vj, and
3. Cj is after the Search is invoked.

Proof. This proof carries over from the BST proof with the following
substitutions.

– “line 32” → “line 36”
– “left child of the root” → “root.c1 or root.c1.c1”
– “∞1” → “∞”
– “the left child if k < vj−1.key and the right child otherwise”→ “child
vj−1.ci such that k ≥ vj−1.ai−1 (if i > 1) and k < vj−1.ai (if i < K,
where K is the degree of internal nodes)” ut

For each Search that terminates, we define its linearization point
to be the configuration Cj corresponding to the last node the Search
enters, as defined in Lemma 20. Thus, as in the BST proof, we have the
following corollary.

Corollary 21. Consider any execution of Search(k) that terminates.
The linearization point chosen for the Search is during the Search.
The Search returns a reference l to a leaf, and that leaf is on the search
path for K at the linearization point of the Search.

Definition 8. The k-ST property states the following (where k is the
degree of internal nodes).

– for each leaf node x, x.a1 < x.a2 < ... < x.ax.keyCount



38

– for each internal node x, x.a1 < x.a2 < ... < x.ak−1, and the keys of
every i-descendant are greater than or equal to key x.ai−1 (if i > 1),
and smaller than key x.ai (if i < k).

Now that we know that each Search ends at the “correct” leaf of the
k-ST, we can prove that the k-ST property is an invariant of the data
structure.

Definition 9. Let the tree of child references rooted at root.c1.c1 be called
the real tree.

The real tree is so named because it excludes the sentinel nodes at the
top of the tree and, as is proved in the next Lemma, contains any non-∞
keys that are in the tree.

Lemma 22. In every configuration, the real tree is a k-ST, and if any
non-∞ keys appear in the tree, they must appear in the real tree (and
nowhere else).

Proof. First, note that any non-∞ keys will always fall in the sub-tree
rooted at root.c1.c1 since, according to Lemma 2(10), the keys of root are
always ∞, the children of root are always root.c1 and empty leaves, the
keys of root.c1 are always ∞, and all children root.c1.ci 6= root.c1.c1 are
empty leaves. Thus, a non-∞ key must appear in the sub-tree rooted at
root.c1.c1, so the second half of the claim is proved. It remains only to
show that the real tree is always a k-ST.

The real tree is a k-ST in the initial configuration, since root.c1.c1 is
initially an empty leaf, with no keys. Since keys stored in nodes never
change, and the keys of nodes are properly ordered by Lemma 2(8), we
need only check that every child CAS preserves the invariant.

Assume the real tree is a k-ST prior to a Pchild CAS. By Corollary 16,
the Pchild CAS replaces a sub-tree of the tree by a sub-tree of that sub-
tree, so the k-ST property holds after the Pchild CAS.

Now consider an Rchild CAS, and let C be the configuration just prior
to it. Assume the real tree is a k-ST in C. We show that it it is still a k-ST
just after the Rchild CAS. Let f be the ReplaceFlag object to which the
Rchild CAS belongs, and let Insert(k) or Delete(k) be the operation
O that created f . The Rchild CAS changes a child reference of f.p from
f.l to f.newChild, which falls into one of three cases.

Case I: O is a simple insertion, and f.newChild refers to a leaf with
keys (keys of f.l) ∪ {k}, properly ordered (by f.newChild’s construction
at line 57). Thus, we must simply check that f.l is on the search path



39

for both k and the keys of f.l in C. Since f.l is in the tree in C, and
the tree satisfies the k-ST property in C, f.l is definitely on the search
path for any of its keys in C. It remains to show that f.l is on the search
path for k in C. By Corollary 21, f.l was on the search path for k at
the linearization point of the Search belonging to f . By Lemma 20, this
linearization point occurs before C. Since f.l is still in the tree at C, it
follows from Lemma 19 that f.l is still on the search path for k in C.

Case II: O is a simple deletion, and f.newChild refers to a leaf with
keys (keys of f.l) \ {k}, properly ordered (by f.newChild’s construction
at line 95). Since k is removed from the tree by the Rchild CAS, we must
simply check that f.l is on the search path for any of its other keys in C.
As in the previous case, since f.l is in the tree in C, and the tree satisfies
the k-ST property in C, f.l is definitely on the search path for any of its
keys in C.

Case III: O is a sprouting insertion. Let K be the degree of internal
nodes. Then f.newChild refers to an internal node with the K−1 largest
keys in S = (keys of f.l) ∪ {k}, and K children, ordered according to the
k-ST property, each having one key in S (by f.newChild’s construction
at line 55). Thus, we must simply check that f.l is on the search path for
both k and the keys of f.l in C, but this follows from the reasoning used
in Case I. ut

Next, we construct linearization points for the update operations. The
next few lemmas focus on showing that each update that returns True
has a unique, successful child CAS, and each update that returns False
has no successful child CAS.

Lemma 23. Let f be any UpdateStep object. The first child CAS that
belongs to f (if there is one) must succeed.

Proof. The proof of this lemma carries through from the BST proof with
only simple substitutions, but their number justifies the proof’s repro-
duction in full.

Let ccas be the first child CAS that belongs to f , and fcas be the
successful flag CAS for f , which exists and preceded ccas, according to
Lemma 12.

Let x be the node whose child pointer ccas tries to change. Let r be the
step in which the Search belonging to f read the child pointer of x, as
described in Lemma 7. Let r′ be the previous step of the Search, which
read the pending field of x at line 34. To show that ccas is successful, it
suffices to prove that no successful child CAS on x occurs between r and
ccas, because the value read by r is used as the old value for ccas.



40

Because fcas succeeds, the value in x.pending just prior to fcas must
be the same as it was when it was read by r′. The step r′ must have read
a Clean object in x.pending; otherwise, the test at line 51 (for Insert)
or 80 or 82 (for Delete) would evaluate to True, and f would not have
been created. Thus, by Lemma 4, x.pending refers to a Clean object at
all times between r′ and fcas.

We now consider how x.pending can change after fcas. If f is a Prune-
Flag, then the next change to x.pending cannot be a Backtrack CAS, be-
cause a successful mark CAS belonging to f was performed (by Lemma 10)
and, hence, there cannot be a Backtrack CAS belonging to f (by Lemma 6).
Thus, if x.pending is changed after fcas, the first change must be an un-
flag CAS belonging to f (by Lemma 3), which must occur after ccas,
since an unflag CAS is always immediately preceded in the code by a
child CAS.

Thus, at all times between r and ccas, x.pending either refers to
a Clean object, or to f . By Lemma 12 and Lemma 14(2), when any
successful child CAS ccasi occurs on x, x.pending refers to fi. Since
there are no child CAS steps belonging to f before ccas (by definition
of ccas), there cannot be any successful child CAS steps on x between r
and ccas. Therefore, ccas will succeed. ut

Lemma 24. If an Insert or Delete operation returns result True
then, during the operation, there is a successful child CAS that belongs to
an UpdateStep object created by the operation.

Proof. The proof of this lemma carries through from the BST proof with
only the addition of an extra case for Delete, and simple substitutions,
but their number justifies the proof’s reproduction in full.

Consider any Insert or Delete operation that returns True, and
let f be the UpdateStep object that it creates during the last iteration
of the while loop, just before it returns True. Let fcas be the flag CAS
belonging to f that the operation performs. We first prove that there is
a child CAS that belongs to f by considering two cases.

If the operation is an Insert, then it can return True (at line 63)
only after invoking HelpReplace using a reference to f on the preceding
line. This HelpReplace performs an Rchild CAS belonging to f .

If the operation is a Delete, then it can return True at line 90 or
100. If it returns from line 90, then the call to HelpPrune at the same
line returned True, which means HelpPrune called HelpMarked,
which performed a child CAS belonging to f . Otherwise, if it returns



41

from line 100, then it invoked HelpReplace at the previous line, which
performed an Rchild CAS belonging to f .

In all cases, there is some child CAS belonging to f before the end of
the Insert or Delete operation. The first child CAS that belongs to f ,
which must also be before the end of the operation, succeeds according to
Lemma 23. That child CAS occurs after fcas, by Lemma 12. Thus, the
successful child CAS occurs during the Insert or Delete operation. ut

Lemma 25. If a successful child CAS belongs to an UpdateStep object f
created by an Insert or Delete operation, then f is created during the
last iteration of the operation’s while loop.

Proof. The proof of this lemma carries through from the BST proof with
only the addition of an extra case for Delete, and simple substitutions,
but their number justifies the proof’s reproduction in full.

First, consider an Insert operation. Suppose there is a successful
Rchild CAS belonging to a ReplaceFlag object f created by the Insert.
By Lemma 12, there is a successful Rflag CAS belonging to f . After this
successful Rflag CAS the Insert routine returns True at line 63 (unless
it crashes), so the Insert does not perform any further iterations of its
while loop.

Now, we consider two cases for the Delete operation.

Case I: Suppose there is a successful Rchild CAS belonging to a
ReplaceFlag object f created by the Delete. By Lemma 12, there is
a successful Rflag CAS belonging to f . After this successful Rflag CAS
the Delete routine returns True at line 100 (unless it crashes), so the
Delete does not perform any further iterations of its while loop.

Case II: Suppose there is a successful Pchild CAS belonging to
a PruneFlag object f created by the Delete. Let mcas be the first
mark CAS belonging to f (guaranteed to exist by Lemma 13). We ar-
gue that mcas must succeed. By Lemma 9, a successful Pflag CAS that
belongs to f is performed before mcas. Prior to that Pflag CAS, the
Search belonging to f reads the value f.ppending in f.p.pending. If
mcas fails, the value of f.p.pending was changed to some value other than
f.ppending before mcas, so it will never be changed back to f.ppending
(by Lemma 4). Thus, all the later mark CAS steps belonging to f will also
fail, contradicting Lemma 10. Hence, mcas must succeed. So, f.p.pending
must contain a Mark object belonging to f at all times after mcas, by
Lemma 3.

Now, after creating f , the Delete routine calls HelpPrune with
a reference to f . When HelpPrune performs its mark CAS, it either



42

succeeds (if it is the first mark CAS that belongs to f) or it sees that
p.pending already refers to a Mark object belonging to f . Thus, the test at
line 107 will evaluate to True, and HelpPrune will return True (unless
it crashes). Thus, the Delete does not perform any further iterations of
its while loop. ut

Corollary 26. For each Insert or Delete operation, there is at most
once successful child CAS belonging to the UpdateStep objects created by
the the operation.

Proof. The proof of this corollary carries through from the BST proof
with the simple substitution “Info record” → “UpdateStep object.” ut

Corollary 27. If an Insert or Delete returns False, then there is no
successful child CAS that belongs to any UpdateStep object created by that
operation.

Proof. The proof of this corollary carries through from the BST proof
with the simple substitutions “Info record” → “UpdateStep object” and
“line 76” → “line 79.” ut

As in the BST proof, we can now define linearization points for update
operations. If there is a successful child CAS belonging to an UpdateStep
object created by an update operation, then the operation that created
the UpdateStep object is linearized when that child CAS occurs. This
choice of linearization point is unique, by Corollary 26. This defines lin-
earization points for all updates that return True, by Lemma 24, and
does not define a linearization point for any update that returns False,
by Corollary 27. If an update operation returns False, we linearize it at
the same point as the Search that it performs in the last iteration of its
while loop.

Lemma 28. If an operation has a linearization point, then that lineariza-
tion point is during the operation.

Proof. The proof of this lemma carries through from the BST proof with-
out modification. ut

As in the BST proof, the linearization points for operations are either
child CAS steps or configurations. The linearization ordering of all the
operations is the order in which their linearization points occur in the
execution (which is an alternating sequence of steps and configurations).
The only operation that can be linearized at a child CAS is the update



43

that created the UpdateStep object to which the child CAS belongs.
However, several Find operations and updates that return False may
be linearized at a single configuration. To make the linearization order
a total ordering on the operations, we break ties arbitrarily. It remains
to show that all terminating operations return the same results as they
would if the operations were performed sequentially, in the linearization
ordering.

Definition 10. We first consider the subsequence of update operations
that are linearized at child CAS steps. For i ≥ 1, let Oi be the update
operation linearized at ccasi. Let Li be the set of keys in the leaves of the
tree in the configuration just after ccasi. Let Di be the set of keys that
would be in a dictionary if operations O1, ..., Oi were performed sequen-
tially, in that order, starting with an empty dictionary. (I.e., D0 = ∅ and
L0 = ∅ is the set of keys in the [empty] leaves of the tree in the initial
configuration.)

Note that the definition L0 = ∅ differs slightly from the definition
L0 = {∞1,∞2} given in the BST proof. This difference comes from the
fact that leaves of the initial tree in the k-ST are empty (having no keys),
and has the fortunate effect of simplifying the statement of Lemma 29(3).

Lemma 29. For all i ≥ 0, the following statements are true.

1. If i ≥ 1 and Oi is an Insert(k) operation, then it returns True and
k /∈ Di−1.

2. If i ≥ 1 and Oi is a Delete(k) operation, then it returns True and
k ∈ Di−1.

3. For all i ≥ 0, Li = Di.

Proof. The proof of this lemma carries through from the BST proof with
an extra case for Delete, and simple substitutions, but their number
justifies the proof’s reproduction in full.

We prove the lemma by induction on i.
Base case (i = 0): L0 = ∅ = D0.
Inductive step: Let i ≥ 1. Assume the claims hold for i − 1. We

consider two cases.
Case I: Oi is an Insert(k) operation. Then Oi returns True, since

Insert operations that return False are not linearized at child CAS
steps. Recall that fi is the ReplaceFlag object that ccasi belongs to. The
Search that belongs to fi returned a reference fi.l with k not a key
of fi.l; otherwise, the Insert would have returned False at line 50. By



44

Corollary 21, fi.l is on the search path for k at the time the Search is
linearized.

Because ccasi succeeds, fi.p is flagged when it occurs (by Lemma 12
and Lemma 14(2)) and therefore fi.p is not marked. Thus, fi.p and fi.l are
in the tree immediately before ccasi (by Lemma 17). By Lemma 19, fi.l
is still on the search path for k immediately before ccasi. Note that fi.l
is in the real tree (rooted at root.c1.c1), since it is on the search path for
k 6=∞, and root and root.c1 have all∞ keys, according to Lemma 2(10).
Since the real tree is a k-ST (by Lemma 22), and there is a leaf fi.l on the
search path for k in the real tree that does not contain the key k, k must
not appear in the real tree. Further, by Lemma 22 and k 6=∞, if k were
in the tree, it would appear in the real tree. Hence, k must not appear in
the tree. Thus, k /∈ Li−1 and, by induction hypothesis (3), k /∈ Di−1.

The effect of ccasi on the tree is to replace the leaf fi.l by either
a leaf with keys S = (keys of fi.l) ∪ {k}, or an internal node whose
children contain precisely the keys of S (by Corollary 15 and the fact
that f.newChild, the new node written by ccasi, is created at line 55 or
57). Thus, Li = Li−1∪{k}, so we have Li = Li−1∪{k} = Di−1∪{k} = Di.

Case II: Oi is a Delete(k) operation. Then Oi returns True, since
Delete operations that return False are not linearized at child CAS
steps. Recall that fi is the PruneFlag or ReplaceFlag object that ccasi
belongs to. The Search that belongs to fi returned a reference fi.l with
k a key of fi.l; otherwise, the Delete would have returned False at
line 79.

We first consider the case when fi is a PruneFlag object. Because ccasi
succeeds, fi.gp is flagged when it occurs (by Lemma 12 and Lemma 14(2))
and therefore fi.gp is not marked. Thus, fi.gp is in the k-ST immediately
before ccasi (by Lemma 17). By Corollary 16, fi.p is a child reference of
fi.gp and fi.l is a child reference of fi.p immediately before ccasi, so fi.l
is also in the tree. Hence, k ∈ (keys of fi.l) is in Li−1 and, by induction
hypothesis (3), k ∈ Di−1.

The effect of ccasi is to replace fi.gp’s reference to fi.p by a reference
to fi.l’s only non-empty sibling, thus removing exactly one non-empty
leaf fi.l from the tree (by Corollary 16). Further, Corollary 16 states that
fi.l had exactly one key when it was read by the Search belonging to f .
Since the keys of a node do not change, and we previously established that
fi.l contains k, we know that the one key in fi.l is k. Thus, Li = Li−1\{k},
so we have Li = Li−1 \ {k} = Di−1 \ {k} = Di.

We now consider the case when fi is a ReplaceFlag object. Because
ccasi succeeds, fi.p is flagged when it occurs (by Lemma 12 and Lemma 14(2))



45

and therefore fi.p is not marked. Thus, fi.p is in the k-ST immediately
before ccasi (by Lemma 17). By Corollary 15, fi.l is a child reference of
fi.p immediately before ccasi, so fi.l is also in the tree. Hence, k ∈ (keys
of fi.l) is in Li−1 and, by induction hypothesis (3), k ∈ Di−1.

The effect of ccasi is to replace fi.p’s reference to fi.l by a reference to
a new leaf containing keys (keys of fi.l) \{k} (by Corollary 15 and the fact
that f.newChild, the new node written by ccasi, is created at line 95).
Thus, Li = Li−1 \{k}, so we have Li = Li−1 \{k} = Di−1 \{k} = Di. ut

Now we consider all the other operations and show that they also
return the results they should, according to the linearization ordering.

Lemma 30. Consider an operation O that is linearized after ccasi but
before ccasi+1 (if ccasi+1 exists).

1. If O is a Find(k) operation that returns False, then k /∈ Di.
2. If O is a Find(k) operation that returns True, then k ∈ Di.
3. If O is an Insert(k) operation, then it returns False, and k ∈ Di.
4. If O is a Delete(k) operation, then it returns False, and k /∈ Di.

Proof. The proof of this lemma carries through from the BST proof with
the following simple substitutions.

– “BST” → “k-ST”
– “returns ⊥” → “returns False”
– “does not return ⊥” → “returns True”
– “contains a key different from k” → “does not contain k” ut

Lemma 31. All Find operations linearized before ccas1 return False.
All Delete operations linearized before ccas1 return False. There are
no Insert operations linearized before ccas1.

Proof. The proof of this lemma carries through from the BST proof with
the simple substitutions: “contains the key∞1 6= k”→ “is an empty leaf,
containing no keys” and “⊥” → “False.” ut

Theorem 32. The implementation given in Figure 3, 4 and 5 is a lin-
earizable implementation of a dictionary.

Proof. Just as in the BST proof, by Lemma 29, 30 and 31, all terminat-
ing operations in the execution return the same response as they would
if the operations were done in the linearization ordering. It follows that
Lemma 28 that the linearization respects the real-time ordering of oper-
ations.



46

Progress

We first prove the following three lemmas, which help to ensure progress
for Delete operations.

Lemma 33. Suppose some process completes an execution of Help(f),
where f is a ReplaceFlag or PruneFlag object. Then there is a successful
unflag CAS or Backtrack CAS belonging to f .

Proof. We consider two cases. If f is a ReplaceFlag object, then Help
calls HelpReplace(f), which performs an Runflag CAS belonging to f .
The first such step succeeds.

If f is a PruneFlag object, then Help calls HelpPrune(f). If the
test at line 107 evaluated to True, then HelpMarked performs a Pun-
flag CAS belonging to f . Otherwise, if the test evaluates to False, a
Backtrack CAS belonging to f is performed. The first Punflag CAS or
Backtrack CAS that belongs to f succeeds. ut

Lemma 34. Let f be a PruneFlag object. If, in some configuration C,
a node x has x.pending = f and no Pchild CAS belonging to f has yet
occurred, then f.gp points to x and f.p points to a child of x.

Proof. The proof of this lemma carries over from the BST proof with
simple substitutions, but their number justifies the proof’s reproduction
in full.

The only node that can be flagged with a pointer to f is the one that
f.gp points to (since Pflag CAS steps can only occur at line 88, where
a PruneFlag object f is written into f.gp), so f.gp must point to x. Let
r be the step in which the Search belonging to f read f.p in a child
reference of x, as described in Lemma 7. Let r′ be the previous step of
the Search, which read the pending field of x at line 34.

Let fcas be the (unique) flag CAS belonging to f . Because fcas
succeeded, the value in x.pending just prior to fcas must be the same as
it was when it was read by r′. The step r′ must have read a Clean object
from x.pending. (Otherwise, the test at line 51 for Insert, or 80 or 82 for
Delete, would evaluate to True, and f would not have been created.)
Thus, by Lemma 4, x refers to a Clean object at all times between r′

and fcas. Further, since there is no ABA problem on pending fields,
the fact that x.pending = f in C implies that, at all times between r
and C, x.pending refers either to a Clean object or to f . By Lemma 12
and Lemma 14(2), when any successful child CAS ccasi occurs on x,
x is flagged with a reference to fi. Since there are no child CAS steps



47

belonging to f before C, there cannot be any successful child CAS steps
on x between r and ccas. Thus, the node that f.p refers to is still a child
of x in configuration C. ut

Lemma 35. Let f be a PruneFlag object. At all times after some process
performs a Pchild CAS that belongs to f , the node that f.p points to is
not in the tree (i.e., it is not reachable from the root).

Proof. The proof of this lemma carries through from the BST proof with
the simple substitution “dchild CAS” → “Pchild CAS.” ut

Definition 11. For any execution α define the graph Gα to be the di-
rected graph whose vertices are all internal nodes created during α. There
is an edge from node x to node y in Gα if and only if y is a child of x at
some time during α. (This graph may have infinitely many vertices for
an infinite execution.)

Lemma 36. For any execution α, Gα contains no cycles.

Proof. It suffices to show, for all i, that there is no cycle in the sub-graph
Gi of Gα corresponding to the first i steps of the execution. We prove this
by induction on i.

Base case (i = 0): G0 contains two nodes, with a single edge between
them.

Inductive step: Let i ≥ 1. Assume Gi−1 contains no cycles. Unless
the ith step is a child CAS, the set of edges in Gi is the same as in Gi−1,
so it suffices to prove that Gi is acyclic when step i of the execution is a
child CAS. We consider two cases.

By Corollary 15 and the fact that f.newChild is created at line 55, 57
or 95, an Rchild CAS belonging to a ReplaceFlag object f either leaves
Gi unchanged from Gi−1 (if f.newChild was a leaf, created at line 57 or
95), or adds an edge to Gi from some node to a node (f.newChild) with
no outgoing edges in Gi (if f.newChild was an internal node, created at
line 55), so a cycle cannot be created in Gi, in either case.

By Corollary 16 a Pchild CAS belonging to a PruneFlag object f
adds an edge to Gi from f.gp to a child other of f.p (unless other is a
leaf, in which case no edges are added to Gi). Moreover, edges from f.gp
to f.p and from f.p to other already exist in Gi−1, so this change cannot
introduce a cycle in Gi. ut

Theorem 37. The implementation given in Figure 3, 4 and 5 is non-
blocking.



48

Proof. The proof of this final lemma carries through from the BST proof
with only simple substitutions, but their number, and the size of the
proof, would make this rather tedious to verify by hand. For this reason,
the substitutions have been performed, and the proof reproduced in full
below.

To derive a contradiction, assume there is some execution α that does
not satisfy the non-blocking property. Thus, there is a suffix of α in which
no operations terminate and some operations take infinitely many steps.
Let S be the set of operations that take infinitely many steps in α.

Claim 1: There are a finite number of successful child CAS, mark CAS,
Rflag CAS, Runflag CAS and Punflag CAS steps in α.

Proof of Claim 1: There are a finite number of operations invoked
in α (since it is assumed to stop making progress at some point). By
Corollary 26, there is at most one successful child CAS per operation, so
there are a finite number of successful child CAS steps. Thus, by Corol-
lary 15 and Corollary 16 (which say that Rchild CAS steps add a finite
number of nodes to the tree and Pchild CAS steps do not add nodes
to the tree), there are a finite number of nodes ever added to the tree.
By Lemma 3, there is at most one successful mark CAS per node in the
tree. Any Insert or Delete that successfully performs an Rflag CAS
calls HelpReplace, which terminates in two CAS steps, and then the
Insert or Delete itself terminates. Thus, each of the finitely many suc-
cessful Insert and Delete operations in the execution has at most one
successful Rflag CAS. By Lemma 3, two successful Runflag CAS steps
on a node’s pending field must have a successful Rflag CAS between
them, so there are a finite number of successful Rflag CAS and Run-
flag CAS steps. There is at most one successful Punflag CAS belonging
to each PruneFlag object f (by Lemma 3(4) and Lemma 4). It is per-
formed by HelpMarked, which is called only after there has been a
successful mark CAS belonging to f . Thus, since there are a finite num-
ber of successful mark CAS steps, there are a finite number of successful
Punflag CAS steps. This completes the proof of Claim 1.

Since there are a finite number of successful child CAS steps in α,
the tree eventually stabilizes. Let T be this stable tree. Also, the graph
Gα has a finite number of edges and has no cycles, by Lemma 36. Each
iteration of line 36 corresponds to moving the reference l from a node x to
y, where (x, y) is an edge of Gα. Thus, any Search in α must terminate.
Hence, there are no Find operations in S. Calls to HelpReplace and



49

HelpMarked clearly terminate in a constant number of steps.

Claim 2: Each call to Help and HelpPrune in α must terminate.
Proof of Claim 2: Help and HelpPrune do not contain loops, and call
only each other or routines that are guaranteed to terminate. We must
only show that they do not call each other in infinite, mutual recursion.
To derive a contradiction, suppose this occurs. For all i ≥ 1, let opi be
the PruneFlag argument to the ith call to HelpPrune in this infinite
recursion, and let xi be the node that opi.p refers to. Similarly, let ui be
the argument passed to Help by the ith invocation of HelpPrune.

Let i > 1. We show that (xi−1, xi) is an edge inGα. When HelpPrune
is called for the (i− 1)th time, it performs an unsuccessful mark CAS on
xi−1.pending and then calls Help using the value read from xi−1.pending
as the argument ui−1. Then, since the mutual recursion continues, ui−1

must refer to a PruneFlag object, and ui−1 will be passed as the argu-
ment opi to HelpPrune. Since opi = ui−1 appeared in xi−1.pending,
opi.gp must refer to xi−1, since it was placed there by a Pflag CAS. By
definition, opi.p refers to xi. The references opi.gp and opi.p were written
into opi after they were returned by a Search, and the postconditions
of that Search ensure that opi.p was a child reference read in the node
that opi.gp refers to. Thus, xi was a child of xi−1 at some time during
that Search, so (xi−1, xi) is an edge in Gα.

Thus, (xi−1, xi) is in Gα for all i > 1, yielding an infinite path in Gα,
which is impossible (since Gα is acyclic and contains a finite number of
edges). This completes the proof of Claim 2.

The only remaining routines whose termination has not been guar-
anteed are Insert and Delete. If a call to either routine does not ter-
minate, then it must enter the routine’s while loop infinitely many times
and, hence, call Search infinitely many times. Thus, each operation in
S = {O1, ..., Om} performs infinitely many calls to Search with the same
key as its argument. Since the tree eventually stabilizes to become T , ev-
ery call to Search by Oi initiated after the tree has stabilized will return
references to the same three nodes, gpi, pi and li, by Lemma 20 and the
postconditions of Search.

By Claim 1, the only successful CAS steps that occur infinitely often
in α are Pflag CAS and Backtrack CAS steps. As in the BST proof, we
let α′ be a suffix of α where:

1. the only successful CAS steps in α′ are Pflag CAS and Backtrack CAS
steps.



50

2. for all i, every invocation of Search by Oi in α′ returns the pointers
gpi, pi, li, and

3. for all i, the last invocation of Search by Oi in α prior to the begin-
ning of α′ also returned the pointers gpi, pi and li.

We also choose gplowest to be one of the lowest of the nodes gp1, ..., gpm
in T (so that no other gpi is a proper descenant of gplowest in T ), and let
Slowest = {Oi : gpi = gplowest}.

For all i, the only node that Oi can attempt a Pflag CAS on in α is
gpi. Thus, no operation attempts a Pflag CAS on a proper descendant of
gplowest. Therefore, there can be at most one successful Backtrack CAS
applied to each proper descendant of gplowest in T , since there must be a
successful Pflag CAS on a node between two successful Backtrack CAS
steps on that node (by Lemma 3). Thus, in some suffix of α′, no CAS
steps succeed on the pending fields of proper descendants of gplowest, and
the values in those fields stabilize. Let α′′ be the suffix of α′ where:

1. the pending fields of all proper descendants of gplowest in T never
change, and

2. for all i, the last invocation of Search by Oi in α prior to the begin-
ning of α′′ began after the pending fields of all proper descendants of
gplowest in T had already stabilized. (I.e., α′′ starts once each Oi has
invoked a Search after the pending fields of proper descendants of
gplowest in T have stabilized.)

Claim 3: If Oi ∈ Slowest, then pi.pending does not refer to a Mark object
during α′′.

Proof of Claim 3: To derive a contradiction suppose that, during α′′,
pi.pending = m for some Mark object m. For consistency of nomencla-
ture with the BST proof, let f be shorthand for the PruneFlag object
m.pending to which m belongs. Then, the only step that can write m
into pi.pending is a mark CAS belonging to f , so f.p refers to pi. We
consider two cases.

First, supposeOi is an Insert. Then,Oi eventually calls Help(pi.pending)
at line 52. The Help routine then calls HelpMarked(f), which performs
a Pchild CAS belonging to f . By Lemma 35, pi is no longer reachable
from the root after this Pchild CAS. This contradicts the fact that Oi
reaches pi infinitely many times in α′′.

Now, suppose Oi is a Delete. By Lemma 9, a successful Pflag CAS
belonging to f was performed before f.p was marked. By Lemma 35, no
successful Pchild CAS belonging to f occurs, since pi remains in the tree



51

forever. Moreover, according to the code, the first Punflag CAS belong-
ing to f must be preceded by the first Pchild CAS belonging to f , which
will succeed, by Lemma 23, so no successful Punflag CAS belonging to
f ever occurs. Further, no Backtrack CAS belonging to f can occur, by
Lemma 6. Thus, the node that f.gp points to remains flagged with a ref-
erence to f forever and, hence, remains in the tree forever, by Lemma 17.
Additionally, by Lemma 34, pi remains a child of f.gp forever. Thus, f.gp
must refer to gpi, since there is a unique path to each node in the tree
(by Lemma 14(6)).

Therefore, Oi must eventually call Help(f) at line 81, which calls
HelpPrune(f). The mark CAS fails because f.p.pending is already m
withm.pending = f , so the process performingOi then calls HelpMarked(f),
which performs a Pchild CAS belonging to f . By Lemma 35, pi must not
be reachable from the root after this occurs, contradicting the assump-
tion that Oi’s calls to Search reach pi infinitely often. This completes
the proof of Claim 3.

Claim 4: Slowest contains only Delete operations.

Proof of Claim 4: To derive a contradiction, assume some Oi ∈ Slowest
is an Insert operation. (Recall that none of the operations in S can be
Finds.) Note that gpi = gplowest and pi is a child of gpi, so pi is a child of
gplowest and, therefore, pi.pending has stabilized in α′′ (either to a flagged
or clean value, since it cannot be marked by Claim 3). Consider an itera-
tion of Oi’s while loop in α′′. If pi.pending refers to a Clean object in α′′,
then the test at line 52 evaluates to False, and Oi will perform a success-
ful Rflag CAS on pi.pending, which is impossible because there are no
successful Rflag CAS steps in α′′. Thus, pi.pending must refer either to
a PruneFlag or ReplaceFlag object in α′′, and Oi invokes the Help rou-
tine. By Lemma 33, the flag is eventually removed from pi, contradicting
the assumption that pi.pending has stabilized in α′′. Thus, Slowest cannot
contain and Insert operations. This completes the proof of Claim 4.

Claim 5: In some configuration of α′′, gplowest is clean.

Proof of Claim 5: If gplowest.pending refers to a Clean object at the
beginning of α′′, then the claim is clearly satisfied.

Next, suppose that gplowest is marked at the beginning of α′′. Let f be
the PruneFlag object and m be the Mark object such that m.pending = f
and gplowest.pending = m. Then each process in Slowest would eventually
call Help(m) from line 81, which would call HelpMarked(f). Thus,
a Pchild CAS belonging to f would be performed, and f.gp = gplowest



52

would be removed from the tree, by Lemma 35. This contradicts our
assumption that each process in Slowest reaches the node gplowest infinitely
many times.

If gplowest.pending refers to a ReplaceFlag or PruneFlag object at the
beginning of α′′, then each process in Slowest will eventually call Help
from line 81 and, by Lemma 33, gplowest will eventually become clean.
This completes the proof of Claim 5.

Thus, eventually gplowest.pending is Clean. The next change to gplowest
can only be a Pflag CAS, since no Rflag CAS steps succeed in α′′. We
show that eventually some Pflag CAS on gplowest does succeed. Suppose
this is not the case. Then gplowest.pending eventually stabilizes to some
Clean object. Thus, each Delete operation Oi in Slowest stops perform-
ing Pflag CAS steps. So, Oi must eventually evaluate the test at line 83
to be True (since Oi must continue taking steps, but gplowest is Clean,
and Oi cannot enter the else-block where it will perform a Pflag CAS ).
Recall that pi.pending does not change during α′′. Since pi is not marked,
by Claim 3, pi must be flagged throughout α′′. Thus, Oi calls Help on
pi’s pending field. By Lemma 33, the flag on pi is eventually removed,
contradicting the fact that pi’s pending field does not change during α′′.
Thus, some Delete Oi in Slowest eventually performs a Pflag CAS on
gplowest.pending.

Finally, we derive the required contradiction. After its successful Pflag CAS,
Oi calls HelpPrune, which attempts a mark CAS. Since pi’s pending
field has not changed since Oi read it in its previous Search (since some
Search is guaranteed to have been started by Oi after the value of
pi.pending stabilized, by construction of α′′), the mark CAS succeeds,
contradicting the fact that no successful mark CAS steps occur during
α′′.

This completes the proof that the implementation is non-blocking. ut


