Pragmatic Primitives for Non-blocking Data Structures

Trevor Brown¹, Faith Ellen¹, and Eric Ruppert²

¹ University of Toronto, Department of Computer Science
27 King’s College Cir, Toronto, ON M5S, Canada
{tabrown,faith}@cs.toronto.edu

² York University, Dept. of Elec. Eng. and Comp. Sci.
4700 Keele St, Toronto, ON M3J 1P3, Canada
ruppert@cs.yorku.ca

Abstract. We define a new set of primitive operations that greatly simplify the implementation of non-blocking data structures in asynchronous shared-memory systems. The new operations operate on a set of Data-records, each of which contains multiple fields. The operations are generalizations of the well-known load-link (LL) and store-conditional (SC) operations called LLX and SCX. The LLX operation takes a snapshot of one Data-record. An SCX operation by a process \(p \) succeeds only if no Data-record in a specified set has been changed since \(p \) last performed an LLX on it. If successful, the SCX atomically updates one specific field of a Data-record in the set and prevents any future changes to some specified subset of those Data-records. We provide a provably correct implementation of these new primitives from single-word compare-and-swap. As a simple example, we show how to implement a non-blocking multiset data structure in a straightforward way using LLX and SCX.

1 Introduction

Building a library of concurrent data structures is an essential way to simplify the difficult task of developing concurrent software. There are many lock-based data structures, but locks are not fault-tolerant and are susceptible to problems such as deadlock [10]. It is often preferable to use hardware synchronization primitives like compare-and-swap (CAS) instead of locks. However, the difficulty of this task has inhibited the development of non-blocking data structures. These are data structures which guarantee that some operation will eventually complete even if some processes crash.

Our goal is to facilitate the implementation of high-performance, provably correct, non-blocking data structures on any system that supports a hardware CAS instruction. We introduce three new operations, load-link-extended (LLX), validate-extended (VLX) and store-conditional-extended (SCX), which are natural generalizations of the well known load-link (LL), validate (VL) and store-conditional (SC) operations. We provide a practical implementation of our new operations from CAS. Complete proofs of correctness appear in Appendix A. We also show how these operations make the implementation of non-blocking data structures and their proofs of correctness substantially less difficult, as compared to using LL, VL, SC, and CAS directly.

LLX, SCX and VLX operate on Data-records. Any number of types of Data-records can be defined, each type containing a fixed number of mutable fields (which can be updated), and a fixed number of immutable fields (which cannot). Each Data-record can represent a natural unit of a data structure, such as a node of a tree or a table entry. A successful LLX operation returns a snapshot of the mutable fields of one Data-record. (The immutable fields can be read directly, since they never change.) An SCX operation by a process \(p \) is used to atomically store a value in one mutable field of one Data-record and finalize a set of Data-records, meaning that those Data-records cannot undergo any further changes. The SCX succeeds only if each Data-record in a specified set has not changed since \(p \) last performed an LLX on it. A successful VLX on a set of Data-records simply assures the caller that each of these Data-records has not changed since the caller last performed an LLX on it. A more formal specification of the behaviour of these operations is given in Section 3.

Early on, researchers recognized that operations accessing multiple locations atomically make the design of non-blocking data structures much easier [5, 12, 16]. Our new primitives do this in three ways. First, they
operate on Data-records, rather than individual words, to allow the data structure designer to think at a higher level of abstraction. Second, and more importantly, a VLX or SCX can depend upon multiple LLXs. Finally, the effect of an SCX can apply to multiple Data-records, modifying one and finalizing others.

The precise specification of our operations was chosen to balance ease of use and efficient implementability. They are more restricted than multi-word CAS [12], multi-word RMW [1], or transactional memory [16]. On the other hand, the ability to finalize Data-records makes SCX more general than *k*-compare-single-swap [14], which can only change one word. We found that atomically changing one pointer and finalizing a collection of Data-records provides just enough power to implement numerous pointer-based data structures in which operations replace a small portion of the data structure. To demonstrate the usefulness of our new operations, in Section 5, we give an implementation of a simple, linearizable, non-blocking multiset based on an ordered, singly-linked list.

Our implementation of LLX, VLX, and SCX is designed for an asynchronous system where processes may crash. We assume shared memory locations can be accessed by single-word CAS, read and write instructions. We assume a safe garbage collector (as in the Java environment) that will not reallocate a memory location if any process can reach it by following pointers. This allows records to be reused.

Our implementation has some desirable performance properties. A VLX on *k* Data-records only requires reading *k* words of memory. If SCXs being performed concurrently depend on LLXs of disjoint sets of Data-records, they all succeed. If an SCX encounters no contention with any other SCX and finalizes *f* Data-records, then a total of *k* + 1 CAS steps and *f* + 2 writes are used for the SCX and the *k* LLXs on which it depends. We also prove progress properties that suffice for building non-blocking data structures using LLX and SCX.

2 Related work

Transactional memory [11, 16] is a general approach to simplifying the design of concurrent algorithms by providing atomic access to multiple objects. It allows a block of code designated as a transaction to be executed atomically, with respect to other transactions. Our LLX/VLX/SCX primitives may be viewed as implementing a restricted kind of transaction, in which each transaction can perform any number of reads followed by a single write and then finalize any number of words. It is possible to implement general transactional memory in a non-blocking manner (e.g., [10, 16]). However, at present, implementations of transactional memory in software incur significant overhead, so there is still a need for more specialized techniques for designing shared data structures that combine ease of use and efficiency.

Most shared-memory systems provide CAS operations in hardware. However, LL and SC operations have often been seen as more convenient primitives for building algorithms. Anderson and Moir gave the first wait-free implementation of small LL/SC objects from CAS using \(O(1) \) steps per operation [3]. See [13] for a survey of other implementations that use less space or handle larger LL/SC objects.

Many non-blocking implementations of primitives that access multiple objects use the cooperative technique, first described by Turek, Shasha and Prakash [18] and Barnes [5]. Instead of using locks that give a process exclusive access to a part of the data structure, this approach gives exclusive access to operations. If the process performing an operation that holds a lock is slow, other processes can help complete the operation and release the lock.

The cooperative technique was also used recently for a wait-free universal construction [7] and to obtain non-blocking binary search trees [9] and Patricia tries [15]. The approach used here is similar.

Israeli and Rappoport [12] used a version of the cooperative technique to implement multi-word CAS from single-word CAS (and sketched how this could be used to implement multi-word SC operations). However, their approach applies single-word CAS to very large words. The most efficient implementation of \(k \)-word CAS [17] first uses single-word CAS to replace each of the *k* words with a pointer to a record containing information about the operation, and then uses single-word CAS to replace each of these pointers with the desired new value and update the status field of the record. In the absence of contention, this takes \(2k + 1 \) CAS steps. In contrast, in our implementation, an SCX that depends on LLXs of *k* Data-records performs \(k + 1 \) single-word CAS steps when there is no contention, no matter how many words each record contains.
So, our weaker primitives can be significantly more efficient than multi-word CAS or multi-word RMW [1, 4], which is even more general.

If \(k \) Data-records are removed from a data structure by a multi-word CAS, then the multi-word CAS must depend on every mutable field of these records to prevent another process from concurrently updating any of them. It is possible to use \(k \)-word CAS to apply to \(k \) Data-records instead of \(k \) words with indirection: Every Data-record is represented by a single word containing a pointer to the contents of the record. To change any fields of the Data-record, a process swings the pointer to a new copy of its contents containing the updated values. However, the extra level of indirection affects all reads, slowing them down considerably.

Luchangco, Moir and Shavit [14] defined the \(k \)-compare-single-swap (KCSS) primitive, which atomically tests whether \(k \) specified memory locations contain specified values and, if all tests succeed, writes a value to one of the locations. They provided an obstruction-free implementation of KCSS, meaning that a process performing a KCSS is guaranteed to terminate if it runs alone. They implemented KCSS using an obstruction-free implementation of LL/SC from CAS. Specifically, to try to update location \(v \) using KCSS, a process performs \(\text{LL}(v) \), followed by two collects of the other \(k - 1 \) memory locations. If \(v \) has its specified value, both collects return their specified values, and the contents of these memory locations do not change between the two collects, the process performs SC to change the value of \(v \). Unbounded version numbers are used both in their implementation of LL/SC and to avoid the ABA problem between the two collects.

Our LLX and SCX primitives can be viewed as multi-Data-record-LL and single-Data-record-SC primitives, with the additional power to finalize Data-records. We shall see that this extra ability is extremely useful for implementing pointer-based data structures. In addition, our implementation of LLX and SCX allows us to develop shared data structures that satisfy the non-blocking progress condition, which is stronger than obstruction-freedom.

3 The primitives

Our primitives operate on a collection of Data-records of various user-defined types. Each type of Data-record has a fixed number of mutable fields (each fitting into a single word), and a fixed number of immutable fields (each of which can be large). Each field is given a value when the Data-record is created. Fields can contain pointers that refer to other Data-records. Data-records are accessed using LLX, SCX and VLX, and reads of individual mutable or immutable fields of a Data-record. Reads of mutable fields are permitted because a snapshot of a Data-record’s fields is sometimes excessive, and it is sometimes sufficient (and more efficient) to use reads instead of LLXs.

An implementation of LL and SC from CAS has to ensure that, between when a process performs LL and when it next performs SC on the same word, the value of the word has not changed. Because the value of the word could change and then change back to a previous value, it is not sufficient to check that the word has the same value when the LL and the SC are performed. This is known as the ABA problem. It also arises for implementations of LLX and SCX from CAS. A general technique to overcome this problem is described in Section 4.1. However, if the data structure designer can guarantee that the ABA problem will not arise (because each SCX never attempts to store a value into a field that previously contained that value), our implementation can be used in a more efficient manner.

Before giving the precise specifications of the behaviour of LLX and SCX, we describe how to use them, with the implementation of a multiset as a running example. The multiset abstract data type supports three operations: \(\text{Get}(key) \), which returns the number of occurrences of \(key \) in the multiset, \(\text{Insert}(key, count) \), which inserts \(count \) occurrences of \(key \) into the multiset, and \(\text{Delete}(key, count) \), which deletes \(count \) occurrences of \(key \) from the multiset and returns \(True \), provided there are at least \(count \) occurrences of \(key \) in the multiset. Otherwise, it simply returns \(False \).

Suppose we would like to implement a multiset using a sorted, singly-linked list. We represent each node in the list by a Data-record with an immutable field \(key \), which contains a key in the multiset, and mutable fields: \(count \), which records the number of times \(key \) appears in the multiset, and \(next \), which points to the next node in the list. The first and last elements of the list are sentinel nodes with \(count 0 \) and with special keys \(-\infty\) and \(\infty \), respectively, which never occur in the multiset.
Figure 5 shows how updates to the list are handled. Insertion behaves differently depending on whether the key is already present. Likewise, deletion behaves differently depending on whether it removes all copies of the key. For example, consider the operation DELETE(d, 2) depicted in Figure 5(c). This operation removes node \(r \) by changing \(p.n\)ext to point to a new copy of \(r.n\)ext. A new copy is used to avoid the ABA problem, since \(p.n\)ext may have pointed to \(r.n\)ext in the past. To perform the DELETE(d, 2), a process first invokes LLXs on \(p, r, \) and \(r.n\)ext. Second, it creates a copy \(r.n\)ext' of \(r.n\)ext. Finally, it performs an SCX that depends on these three LLXs. This SCX attempts to change \(p.n\)ext to point to \(r.n\)ext'. This SCX will succeed only if none of \(p, r \) or \(r.n\)ext have changed since the aforementioned LLXs. Once \(r \) and \(r.n\)ext are removed from the list, we want subsequent invocations of LLX and SCX to be able to detect this, so that we can avoid, for example, erroneously inserting a key into a deleted part of the list. Thus, we specify in our invocation of SCX that \(r \) and \(r.n\)ext should be \textit{finalized} if the SCX succeeds. Once a Data-record is finalized, it can never be changed again.

LLX takes (a pointer to) a Data-record \(r \) as its argument. Ordinarily, it returns either a snapshot of \(r \)'s mutable fields or \textit{Finalized}. If an LLX(\(r \)) is concurrent with an SCX involving \(r \), it is also allowed to fail and return \textit{Fail}. SCX takes four arguments: a sequence \(V \) of (pointers to) Data-records upon which the SCX depends, a subsequence \(R \) of \(V \) containing (pointers to) the Data-records to be finalized, a mutable field \(fld \) of a Data-record in \(V \) to be modified, and a value \(new \) to store in this field. VLX takes a sequence \(V \) of (pointers to) Data-records as its only argument. Each SCX and VLX and returns a Boolean value.

For example, in Figure 5(c), the DELETE(d, 2) operation invokes SCX(\(V, R, fld, new \)), where \(V = \langle p, r, r.n\)ext \rangle, \(R = \langle r, r.n\)ext \rangle, \(fld \) is the next pointer of \(p \), and \(new \) points to the node \(r.n\)ext'.

A terminating LLX is called \textit{successful} if it returns a snapshot or \textit{Finalized}, and \textit{unsuccessful} if it returns \textit{Fail}. A terminating SCX or VLX is called \textit{successful} if it returns \textit{True}, and \textit{unsuccessful} if it returns \textit{False}. Our operations are wait-free, but an operation may not terminate if the process performing it fails, in which case the operation is neither successful nor unsuccessful. We say an invocation \(I \) of LLX(\(r \)) by a process \(p \) is \textit{linked to} an invocation \(I' \) of SCX(\(V, R, fld, new \)) or VLX(\(V \)) by process \(p \) if \(r \) is in \(V \), \(I \) returns a snapshot, and between \(I \) and \(I' \), process \(p \) performs no invocation of LLX(\(r \)) or SCX(\(V', R', fld', new' \)) and no unsuccessful invocation of VLX(\(V' \)), for any \(V' \) that contains \(r \). Before invoking VLX(\(V \)) or SCX(\(V, R, fld, new \)), a process must set up the operation by performing an LLX(\(r \)) linked to the invocation for each \(r \) in \(V \).

3.1 Correctness Properties

An implementation of LLX, SCX and VLX is \textit{correct} if, for every execution, there is a linearization of all successful LLXs, all successful SCXs, a subset of the non-terminating SCXs, all successful VLXs, and all reads, such that the following conditions are satisfied.

C1: Each read of a field \(f \) of a Data-record \(r \) returns the last value stored in \(f \) by an SCX linearized before the read (or \(f \)'s initial value, if no such SCX has modified \(f \)).

C2: Each linearized LLX(\(r \)) that does not return \textit{Finalized} returns the last value stored in each mutable field \(f \) of \(r \) by an SCX linearized before the LLX (or \(f \)'s initial value, if no such SCX has modified \(f \)).

C3: Each linearized LLX(\(r \)) returns \textit{Finalized} if and only if it is linearized after an SCX(\(V, R, fld, new \)) with \(r \) in \(R \).

C4: For each linearized invocation \(I \) of SCX(\(V, R, fld, new \)) or VLX(\(V \)), and for each \(r \) in \(V \), no SCX(\(V', R', fld', new' \)) with \(r \) in \(V' \) is linearized between the LLX(\(r \)) linked to \(I \) and \(I \).

The first three properties assert that successful reads and LLXs return correct answers. The last property says that an invocation of SCX or VLX does not succeed when it should not. However, an SCX can fail if it is concurrent with another SCX that accesses some Data-record in common. LL/SC also exhibits analogous failures in real systems. Our progress properties limit the situations in which this can occur.

3.2 Progress Properties

In our implementation, LLX, SCX and VLX are technically wait-free, but this is only because they may fail. The first progress property guarantees that LLXs on finalized Data-records succeed.
P1: Each terminating LLX\((r)\) returns \texttt{FINALIZED} if it begins after the end of a successful SCX\((V, R, fld, new)\) with \(r\) in \(R\) or after another LLX\((r)\) has returned \texttt{FINALIZED}.

The next progress property guarantees non-blocking progress of invocations of our primitives.

P2: If operations are performed infinitely often, then operations succeed infinitely often.

However, this progress property leaves open the possibility that only LLXs succeed. So, we want an additional progress property:

P3: If SCX and VLX operations are performed infinitely often, then SCX or VLX operations succeed infinitely often.

Finally, the following progress property ensures that update operations that are built using SCX can be made non-blocking.

P4: If SCX operations are performed infinitely often, then SCX operations succeed infinitely often.

When the progress properties defined here are used to prove that an application built from the primitives is non-blocking, there is an important, but subtle point: an SCX can be invoked only after it has been properly set up by a sequence of LLXs. However, if processes repeatedly perform LLX on Data-records that have been finalized, they may never be able to invoke an SCX. One way to prevent this from happening is to have each process keep track of the Data-records it knows are finalized. However, in many natural applications, for example, the multiset implementation in Section 5, explicit bookkeeping can be avoided. In addition, to ensure that changes to a data structure can continue to occur, there must always be at least one non-finalized Data-record. For example, in our multiset, \texttt{head} is never finalized and, if a node is reachable from \texttt{head} by following next pointers, then it is not finalized.

Our implementation of LLX, SCX and VLX in Section 4 actually satisfies stronger progress properties than the ones described above. For example, a VLX\((V)\) or SCX\((V, R, fld, new)\) is guaranteed to succeed if there is no concurrent SCX\((V', R', fld', new')\) such that \(V\) and \(V'\) have one or more elements in common.

However, for the purposes of the specification of the primitives, we decided to give progress guarantees that are sufficient to prove that algorithms that use the primitives are non-blocking, but weak enough that it may be possible to design other, even more efficient implementations of the primitives. For example, our specification would allow some spurious failures of the type that occur in common implementations of ordinary LL/SC operations (as long as there is some guarantee that not all operations can fail spuriously).

4 Implementation of Primitives

The shared data structure used to implement LLX, SCX and VLX consists of a set of Data-records and a set of SCX-records. (See Figure 1.) Each Data-record contains user-defined mutable and immutable fields. It also contains a marked bit, which is used to finalize the Data-record, and an info field. The marked bit is initially \texttt{FALSE} and only ever changes from \texttt{FALSE} to \texttt{TRUE}. The info field points to an SCX-record that describes the last SCX that accessed the Data-record. Initially, it points to a dummy SCX-record. When an SCX accesses a Data-record, it changes the info field of the Data-record to point to its SCX-record. While this SCX is active, the info field acts as a kind of lock on the Data-record, granting exclusive access to this SCX, rather than to a process. (To avoid confusion, we call this freezing, rather than locking, a Data-record.) We ensure that an SCX \(S\) does not change a Data-record for its own purposes while it is frozen for another SCX \(S'\). Instead, \(S\) uses the information in the SCX-record of \(S'\) to help \(S'\) complete (successfully or unsuccessfully), so that the Data-record can be unfrozen. This cooperative approach is used to ensure progress.

An SCX-record contains enough information to allow any process to complete an SCX operation that is in progress. \(V, R, fld\) and new store the arguments of the SCX operation that created the SCX-record. Recall that \(R\) is a subsequence of \(V\) and \(fld\) points to a mutable field \(f\) of some Data-record \(r'\) in \(V\). The value that was read from \(f\) by the LLX\((r')\) linked to the SCX is stored in old. The SCX-record has one of three states, InProgress, Committed or Aborted, which is stored in its state field. This field is initially InProgress. The SCX-record of each SCX that terminates is eventually set to Committed or Aborted, depending on whether or not it successfully makes its desired update. The dummy SCX-record always has state = Aborted. The allFrozen bit, which is initially \texttt{FALSE}, gets set to \texttt{TRUE} after all Data-records in \(V\) have been frozen for
type Data-record
▷ User-defined fields
\(m_1, \ldots, m_y \) ▷ mutable fields
\(i_1, \ldots, i_z \) ▷ immutable fields
▷ Fields used by LLX/SCX algorithm
\(\text{info} \) ▷ pointer to an SCX-record
\(\text{marked} \) ▷ Boolean

type SCX-record
\(V \) ▷ sequence of Data-records
\(R \) ▷ subsequence of \(V \) to be finalized
\(\text{fld} \) ▷ pointer to a field of a Data-record in \(V \)
\(\text{new} \) ▷ value to be written into the field \(\text{fld} \)
\(\text{old} \) ▷ value previously read from the field \(\text{fld} \)
\(\text{state} \) ▷ one of \{InProgress, Committed, Aborted\}
\(\text{allFrozen} \) ▷ Boolean
\(\text{infoFields} \) ▷ sequence of pointers, one read from the
▷ info field of each element of \(V \)

Fig. 1. Type definitions for shared objects used to implement LLX, SCX, and VLX.

4.1 Constraints

For the sake of efficiency, we have designed our implementation of LLX, VLX and SCX to work only if the primitives are used in a way that satisfies certain constraints, described in this section. We also describe general (but somewhat inefficient) ways to ensure these constraints are satisfied. However, there are often quite natural ways to ensure the constraints are satisfied without resorting to the extra work required by the general solutions.
Since our implementation of LLX, SCX and VLX uses helping to guarantee progress, each CAS of an SCX might be repeatedly performed by several helpers, possibly after the SCX itself has terminated. To avoid difficulties, we must show there is no ABA problem in the fields affected by these CAS steps.

The info field of a Data-record r is modified by CAS steps that attempt to freeze r for an SCX. All such steps performed by processes helping one invocation of SCX try to CAS the info field of r from the same old value to the same new value, and that new value is a pointer to a newly created SCX-record. Because the SCX-record is allocated a location that has never been used before, the ABA problem will not arise in the info field. (This approach is compatible with safe garbage collection schemes that only reuse an old address once no process can reach it by following pointers.)

A similar approach could be used to avoid the ABA problem in a mutable field of a Data-record: the new value could be placed inside a wrapper object that is allocated a new location in memory. (This is referred to as Solution 3 of the ABA problem in [8].) However, the extra level of indirection slows down accesses to fields.

To avoid the ABA problem, it suffices to prove the following constraint is satisfied.

- **Constraint**: For every invocation S of SCX(V, R, fld, new), new is not the initial value of fld and no invocation of SCX(V', R', fld, new) was linearized before the LLX(r) linked to S was linearized, where r is the Data-record that contains fld.

The multiset in Section 5 provides an example of a simple, more efficient way to ensure that this constraint is always satisfied.

To ensure property P4, we put a constraint on the way SCX is used. Our implementation of SCX(V, R, fld, new) does something akin to acquiring locks on each Data-record in V. Livelock could occur if different invocations of SCX do not process Data-records in the same order. To prevent this, we could define a way of ordering all Data-records (for example, by their locations in memory) and each sequence passed to an invocation of SCX could be sorted using this ordering. However, this could be expensive. Moreover, to prove our progress properties, we do not require that all SCXs order their sequences V consistently. It suffices that, if all the Data-records stop changing, then the sequences passed to later invocations of SCX are all consistent with some total order. This property is often easy to satisfy in a natural way. More precisely, use of our implementation of SCX requires adherence to the following constraint.

- **Constraint**: Consider each execution that contains a configuration C after which the value of no field of any Data-record changes. There must be a total order on all Data-records created during this execution such that, if Data-record r_1 appears before Data-record r_2 in the sequence V passed to an invocation of SCX whose linked LLXs begin after C, then $r_1 < r_2$.

For example, if one was using LLX and SCX to implement an unsorted singly-linked list, this constraint would be satisfied if the nodes in each sequence V occur in the order they are encountered by following next pointers from the beginning of the list, even if some operations could reorder the nodes in the list. While the list is changing, such a sequence may have repeated elements and might not be consistent with any total order.
4.2 Detailed Algorithm Description
and Sketch of Proofs

Pseudocode for our implementation of LLX, VLX and SCX appears in Figure 4. If \(x \) contains a pointer to a record, then \(x.y := v \) assigns the value \(v \) to field \(y \) of this record, \&\(x.y \) denotes the address of this field and all other occurrences of \(x.y \) denote the value stored in this field.

Theorem 1 The algorithms in Figure 4 satisfy properties C1 to C4 and P1 to P4 in every execution where the constraints of Section 4.1 are satisfied.

The detailed proof of correctness in Appendix A is quite involved, so we only sketch the main ideas here.

An LLX\((r)\) returns a snapshot, \text{FAIL}, or \text{FINALIZED}. At a high level, it works as follows. If the LLX determines that \(r \) is not frozen and \(r \)'s info field does not change while the LLX reads the mutable fields of \(r \), the LLX returns the values read as a snapshot. Otherwise, the LLX helps the SCX that last froze \(r \), if it is frozen, and returns \text{FAIL} or \text{FINALIZED}. If the LLX returns \text{FAIL}, it is not linearized. We now discuss in more detail how LLX operates and is linearized in the other two cases.

First, suppose the LLX\((r)\) returns a snapshot at line 11. Then, the test at line 7 evaluates to \text{True}. So, either \text{state} = Aborted, which means \(r \) is not frozen at line 5, or \text{state} = Committed and \text{marked}_2 = \text{False}. This also means \(r \) is not frozen at line 5, since \text{r.marked} cannot change from \text{True} to \text{False}. The LLX reads \(r \)'s mutable fields (line 8) and rereads \(r.info \) at line 9, finding it the same as on line 4. In Section 4.1, we explained why this implies that \(r.info \) did not change between lines 4 and 9. Since \(r \) is not frozen at line 5, we know from Figure 3 that \(r \) is unfrozen at all times between line 5 and 9. We prove that mutable fields can change only while \(r \) is frozen, so the values read by line 8 constitute a snapshot of \(r \)'s mutable fields. Thus, we can linearize the LLX at line 9.

Now, suppose the LLX\((r)\) returns \text{FINALIZED}. Then, the test on line 12 evaluated to \text{True}. In particular, \(r \) was already marked when line 3 was performed. If \(rINFO.state = \text{InProgress} \) when line 12 was performed, HELP\((rINFO)\) was called and returned \text{True}. Below, we argue that \(rINFO.state \) was changed to \text{Committed} before the return occurred. By Figure 3(a), the state of an SCX-record never changes after it is set to \text{Committed}. So, after line 12, \(rINFO.state = \text{Committed} \) and, thus, \(r \) has been finalized. Hence, the LLX can be linearized at line 13.

When a process performs an SCX, it first creates a new SCX-record and then invokes HELP (line 21). The HELP routine performs the real work of the SCX. It is also used by a process to help other processes complete their SCXs (successfully or unsuccessfully). The values in an SCX-record’s old and infoFields come from a table in the local memory of the process that invokes the SCX, which stores the results of the last LLX it performed on each Data-record. (In practice, the memory required for this table could be greatly reduced when a process knows which of these values are needed for future SCXs.)

Consider an invocation of HELP\((U)\) by process \(p \) to carry out the work of the invocation \(S \) of SCX\((V, R, fld, new)\) that is described by the SCX-record \(U \). First, \(p \) attempts to freeze each \(r \) in \(V \) by performing a freezing CAS to store a pointer to \(U \) in \(r.info \) (line 26). Process \(p \) uses the value read from \(r.info \) by the LLX\((r)\) linked to \(S \) as the old value for this CAS and, hence, it will succeed only if \(r \) has not been frozen for any other SCX since then. If \(p \)'s freezing CAS fails, it checks whether some other helper has successfully frozen the Data-record with a pointer to \(U \) (line 27).

If every \(r \) in \(V \) is successfully frozen, \(p \) performs a frozen step to set \text{U.allFrozen} to \text{True} (line 37). After this frozen step, the SCX is guaranteed not to fail, meaning that no process will perform an abort step while helping this SCX. Then, for each \(r \) in \(R \), \(p \) performs a mark step to set \text{r.marked} to \text{True} (line 38) and, from Figure 3, \(r \) remains frozen from then on. Next, \(p \) performs an update CAS, storing \text{new} in the field pointed to by \text{fld} (line 39), if successful. We prove that, among all the update CAS steps on \text{fld} performed by the helpers of \(U \), only the first can succeed. Finally, \(p \) unfreezes all \(r \) in \(V \) that are not in \(R \) by performing a commit step that changes \text{U.state} to \text{Committed} (line 41).

Now suppose that, when \(p \) performs line 27, it finds that some Data-record \(r \) in \(V \) is already frozen for another invocation \(S' \) of SCX. If \text{U.allFrozen} is \text{False} at line 29, then we can prove that no helper of \(S \) will ever reach line 37, so \(p \) can abort \(S \). To do so, it unfreezes each \(r \) in \(V \) that it has frozen by performing an abort step, which changes \text{U.state} to Aborted (line 34), and then returns \text{FALSE} (line 35) to indicate that
<table>
<thead>
<tr>
<th>LLX(r) by process p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precondition: $r \neq \text{NIL}$</td>
</tr>
<tr>
<td>marked := r.marked</td>
</tr>
<tr>
<td>info := r.info</td>
</tr>
<tr>
<td>state := info.state</td>
</tr>
<tr>
<td>marked := r.marked</td>
</tr>
<tr>
<td>if state = Aborted or (state = Committed and not marked) then</td>
</tr>
<tr>
<td>read $r.m_1, ..., r.m_y$ and record the values in local variables $m_1, ..., m_y$</td>
</tr>
<tr>
<td>if info = info then</td>
</tr>
<tr>
<td>store $(r, info, (m_1, ..., m_y))$ in p's local table</td>
</tr>
<tr>
<td>return $(m_1, ..., m_y)$</td>
</tr>
<tr>
<td>if (info.state = Committed or (info.state = InProgress and HELP(info))) and marked then</td>
</tr>
<tr>
<td>return FINALIZED</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>if info.state = InProgress then HELP(info)</td>
</tr>
<tr>
<td>return FAIL</td>
</tr>
</tbody>
</table>

| SCX(V, R, fld, new) by process p |
| Preconditions: (1) for each r in V, p has performed an invocation I_r of LLX(r) linked to this SCX |
| (2) new is not the initial value of fld |
| (3) for each r in V, no SCX(V', R', fld, new) was linearized before I_r was linearized |
| Let infoFields be a pointer to a newly created table in shared memory containing, |
| for each r in V, a copy of r's info value in p's local table of LLX results |
| Let old be the value for fld stored in p's local table of LLX results |
| return HELP(pointer to new SCX-record($V, R, fld, new, old, \text{InProgress, FALSE, infoFields}$)) |

| HELP($scxPtr$) |
| Freeze all Data-records in scxPtr.V to protect their mutable fields from being changed by other SCXs |
| for each r in scxPtr.V enumerated in order do |
| if not CAS(r.info, info, scxPtr) then |
| if r.info \neq scxPtr.info then |
| return TRUE |
| return FALSE |
| return FALSE |
| return TRUE |

| VLX(V) by process p |
| Precondition: for each Data-record r in V, p has performed an LLX(r) linked to this VLX |
| for each r in V do |
| Let info be the info field for r stored in p's local table of LLX results |
| if info \neq r.info then return FALSE |
| return TRUE |

Fig. 4. Pseudocode for LLX, SCX and VLX.
S has been aborted. If \textit{U.allFrozen} is \texttt{True} at line 29, it means that each element of \textit{V}, including \textit{r}, was successfully frozen by some helper of \textit{S} and then, later, a process froze \textit{r} for \textit{S}'. Since \textit{S} cannot be aborted after \textit{U.allFrozen} was set to \texttt{True}, its state must have changed from InProgress to Committed before \textit{r} was frozen for another \textit{SCX}-record. Therefore, \textit{S} was successfully completed and \textit{p} can return \texttt{True} at line 31.

We linearize an invocation of \textit{SCX} at the first update CAS performed by one of its helpers. We prove that this update CAS always succeeds. Thus, all \textit{SCX}s that return \texttt{True} are linearized, as well as possibly some non-terminating \textit{SCX}s. The first update CAS of \textit{SCX}(\textit{V}, \textit{R}, \textit{fld}, \textit{new}) modifies the value of \textit{fld}, so a \texttt{read}(\textit{fld}) that occurs immediately after the update CAS will return the value of \textit{new}. Hence, the linearization point of an \textit{SCX} must occur at its first update CAS. There is one subtle issue about this linearization point: If an \textit{LLX}(\textit{r}) is linearized between the update CAS and commit step of an \textit{SCX} that finalizes \textit{r}, it might not return \texttt{FINALIZED}, violating condition C3. However, this cannot happen, because, before the \textit{LLX} is linearized on line 13, the \textit{LLX} either sees that the commit step has been performed or helps the \textit{SCX} perform its commit step.

An invocation \textit{I} of \textit{VLX}(\textit{V}) is executed by a process \textit{p} after \textit{p} has performed an invocation of \textit{LLX}(\textit{r}) linked to \textit{I}, for each \textit{r} in \textit{V}. \textit{VLX}(\textit{V}) simply checks, for each \textit{r} in \textit{V}, that the \textit{info} field of \textit{r} is the same as when it was read by \textit{p}'s last \textit{LLX}(\textit{r}) and, if so, \textit{VLX}(\textit{V}) returns \texttt{True}. In this case, we prove that each \textit{Data-record} in \textit{V} does not change between the linked \textit{LLX} and the time its \textit{info} field is reread. Thus, the \textit{VLX} can be linearized at the first time it executes line 47. Otherwise, the \textit{VLX} returns \texttt{False} to indicate that the \textit{LLX} results may not constitute a snapshot.

We remark that our use of the cooperative method avoids costly recursive helping. If, while \textit{p} is helping \textit{S}, it cannot freeze all of \textit{S}'s \textit{Data-records} because one of them is already frozen for a third \textit{SCX}, then \textit{p} will simply perform an abort step, which unfreezes all \textit{Data-records} that \textit{S} has frozen.

We briefly sketch why the progress properties described in Section 3.2 are satisfied. It follows easily from the code that an invocation of \textit{LLX}(\textit{r}) returns \texttt{FINALIZED} if it begins after the end of an \textit{SCX} that finalized \textit{r} or another \textit{LLX} sees that \textit{r} is finalized. To prove the progress properties P2, P3 and P4, we consider two cases.

First, consider an execution where only a finite number of \textit{SCX}s are invoked. Then, only finitely many \textit{SCX}-records are created. Each process calls \texttt{HELP}(\textit{U}) if it sees that \textit{U.state} = \texttt{InProgress}, which it can do at most once for each \textit{SCX}-record \textit{U}. Since every CAS is performed inside the \texttt{HELP} routine, there is some point after which no process performs a CAS, calls \texttt{HELP}, or sees a \textit{SCX}-record whose \textit{state} is \texttt{InProgress}. A \textit{VLX} can fail only when an \textit{info} field is modified by a concurrent operation and an \textit{LLX} can only fail for the same reason or when it sees a \textit{SCX}-record whose \textit{state} is \texttt{InProgress}. Therefore, all \textit{LLX}s and \textit{VLX}s that begin after this point will succeed, establishing P2 and P3. Moreover, P4 is vacuously satisfied in this case.

![Fig. 5. Using SCX to update a multiset. LLXs of all shaded nodes are linked to the SCX. Darkly shaded nodes are finalized by the SCX. Where a field has changed, the old value is crossed out.](image)
Now, consider an execution where infinitely many SCXs are invoked. To derive a contradiction, suppose only finitely many SCXs succeed. Then, there is a time after which no more SCXs succeed. The constraint on the sequences passed to invocations of SCXs ensures that all SCXs whose linked LLXs begin after this time will attempt to freeze their sequences of Data-records in a consistent order. Thus, one of these SCXs will succeed in freezing all of the Data-records that were passed to it and will successfully complete. This is a contradiction. Thus, infinitely many of the SCXs do succeed, establishing properties P2, P3 and P4.

4.3 Additional Properties

Our implementation of SCX satisfies some additional properties, which are helpful for designing certain kinds of non-blocking data structures so that query operations can run efficiently. Consider a pointer-based data structure with a fixed set of Data-records called entry points. An operation on the data structure starts at an entry point and follows pointers to visit other Data-records. (For example, in our multiset example, the head of the linked list is the sole entry point for the data structure.) We say that a Data-record is in the data structure if it can be reached by following pointers from an entry point, and a Data-record r is removed from the data structure by an SCX if r is in the data structure immediately prior to the linearization point of the SCX and is not in the data structure immediately afterwards.

If the data structure is designed so that a Data-record is finalized when (and only when) it is removed from the data structure, then we have the following additional properties.

Proposition 2 Suppose each linearized SCX(V, R, fld, new) removes precisely the Data-records in R from the data structure.

- If LLX(r) returns a value different from Fail or Finalized, r is in the data structure just before the LLX is linearized.
- If an SCX(V, R, fld, new) is linearized and new is (a pointer to) a Data-record, then this Data-record is in the data structure just after the SCX is linearized.
- If an operation reaches a Data-record r by following pointers read from other Data-records, starting from an entry point, then r was in the data structure at some earlier time during the operation.

The first two properties are straightforward to prove. The last property is proved by induction on the Data-records reached. For the base case, entry points are always reachable. For the induction step, consider the time when an operation reads a pointer to r from another Data-record r’ that the operation reached earlier. By the induction hypothesis, there was an earlier time t during the operation when r’ was in the data structure. If r’ already contained a pointer to r at t, then r was also in the data structure at that time. Otherwise, an SCX wrote a pointer to r in r’ after t, and just after that update occurred, r’ and r were in the data structure (by the second part of the proposition).

The last property is a particularly useful one for linearizing query operations. It means that operations that search through a data structure can use simple reads of pointers instead of the more expensive LLX operations. Even though the Data-record that such a search operation reaches may have been removed from the data structure by the time it is reached, the lemma guarantees that there was a time during the search when the Data-record was in the data structure. For example, we use this property to linearize searches in our multiset algorithm in Section 5.

5 An example: multiset

We now give a detailed description of the implementation of a multiset using LLX and SCX. We assume that keys stored in the multiset are drawn from a totally ordered set and $-\infty < k < \infty$ for every key k in the multiset. As described in Section 3, we use a singly-linked list of nodes, sorted by key. To avoid special cases, it always has a sentinel node, head, with key $-\infty$ at its beginning and a sentinel node, tail, with key ∞ at its end. The definition of Node, the Data-record used to represent a node, and the pseudocode are presented in Figure 6.
Fig. 6. Pseudocode for a multiset, implemented with a singly linked list.

Search(key) traverses the list, starting from head, by reading next pointers until reaching the first node r whose key is at least key. This node and the preceding node p are returned. **Get(key)** performs **Search(key)**, outputs r’s count if r’s key matches key, and outputs 0, otherwise.

An invocation I of **Insert(key, count)** starts by calling **Search(key)**. Using the nodes p and r that are returned, it updates the data structure. It decides whether key is already in the multiset (by checking whether r.key = key) and, if so, it invokes LLX(r) followed by an SCX linked to r to increase r.count by count, as depicted in Figure 5(b). Otherwise, I performs the update depicted in Figure 5(a): It invokes LLX(p), checks that p still points to r, creates a node, new, and invokes an SCX linked to p to insert new between p and r. If p no longer points to r, the LLX returns FAIL or FINALIZED, or the SCX returns FALSE, then I restarts.

An invocation I of **Delete(key, count)** also begins by calling **Search(key)**. It invokes LLX on the nodes p and r and then checks that p still points to r. If r does not contain at least count copies of key, then I returns FALSE. If r contains exactly count copies, then I performs the update depicted in Figure 5(c) to remove node r from the list. To do so, it invokes LLX on the node, rnext, that r.next points to, makes a copy rnext’ of rnext, and invokes an SCX linked to p and rnext to change p.next to point to rnext'. This SCX also finalizes the nodes r and rnext, which are thereby removed from the data structure. The node rnext is replaced by a copy to avoid the ABA problem in p.next. If r contains more than count copies, then I replaces r by a new copy r’ with an appropriately reduced count using an SCX linked to p and r, as shown in Figure 5(d). This SCX finalizes r. If an LLX returns FAIL or FINALIZED, or the SCX returns FALSE, then I restarts.

A detailed proof of correctness appears in Appendix C. It begins by showing that this multiset implementation satisfies some basic properties.

Invariant 3 The following are true at all times.
- head always points to a node.
- If a node has key ∞, then its next pointer is Nil.
- If a node’s key is not ∞, then its next pointer points to some node with a strictly larger key.

It follows that the data structure is always a sorted list.

We prove the following lemma by considering the SCXs performed by update operations shown in Figure 5.
Lemma 4 The Data-records removed from the data structure by a linearized invocation of SCX(V, R, fld, new) are exactly the Data-records in R.

This lemma allows us to apply Proposition 2 to prove that there is a time during each SEARCH when the nodes r and p that it returns are both in the list and $p.next = r$.

Each GET and each DELETE that returns FALSE is linearized at the linearization point of the SEARCH it performs. Every other INSERT or DELETE is linearized at its successful SCX. Linearizability of all operations then follows from the next invariant.

Lemma 5 At every time t, the multiset of keys in the data structure is equal to the multiset of keys that would result from the atomic execution of the sequence of operations linearized up to time t.

To prove the algorithm is non-blocking, suppose there is some infinite execution in which only finitely many operations terminate. Then, eventually, no more INSERT or DELETE operations perform a successful SCX, so there is a time after which the pointers that form the linked list stop changing. This implies that all calls to the SEARCH subroutine must terminate. Since a GET operation merely calls SEARCH, all GET operations must also terminate. Thus, there is some collection of INSERT and DELETE operations that take steps forever without terminating. We show that each such operation sets up and performs an SCX infinitely often. For any INSERT or DELETE operation, consider any iteration of the loop that begins after the last successful SCX changes the list. By Lemma 4 and Proposition 2, the nodes p and r reached by the SEARCH in that iteration were in the data structure at some time during the SEARCH and, hence, throughout the SEARCH. So when the INSERT or DELETE performs LLXs on p or r, they cannot return FINALIZED. Moreover, they must succeed infinitely often by property P2, and this allows the INSERT or DELETE to perform an SCX infinitely often. By property P4, SCXs will succeed infinitely often, a contradiction.

Thus, we have the following theorem.

Theorem 6 The algorithms in Figure 6 implement a non-blocking, linearizable multiset.

6 Conclusion

The LLX, SCX and VLX primitives we introduce in this paper can also be used to produce practical, non-blocking implementations of a wide variety of tree-based data structures. In [6], we describe a general method for obtaining such implementations and use it to design a provably correct, non-blocking implementation of a chromatic tree, which is a relaxed variant of a red-black tree. Furthermore, we provide an experimental performance analysis, comparing our Java implementation of the chromatic search tree to leading concurrent implementations of dictionaries. This demonstrates that our primitives enable efficient non-blocking implementations of more complicated data structures to be built (and added to standard libraries), together with manageable proofs of their correctness.

Our implementation of LLX, SCX and VLX relies on the existence of efficient garbage collection, which is provided in managed languages such as Java and C#. However, in other languages, such as C++, memory management is an issue. This can be addressed, for example, by the new, efficient memory reclamation method of Aghazadeh, Golab and Woelfel [2].

Acknowledgements Funding was provided by the Natural Sciences and Engineering Research Council of Canada.

References

A Complete Proof

A.1 Basic properties

We begin with some elementary properties that are needed to prove basic lemmas about freezing. In particular, we show that the info field of a Data-record cannot experience an ABA problem.

Definition 7 Let I′ be an invocation of SCX(V,R,fld,new) or VLX(V) by a process p, and r be a Data-record in V. We say an invocation I of LLX(r) is linked to I′ if and only if:

1. I returns a value different from Fail or Finalized, and
2. no invocation of LLX(r), SCX(V′,R′,fld′,new′), or VLX(V′), where V′ contains r, is performed by p between I and I′.

Observation 8 An SCX-record U created by an invocation S of SCX satisfies the following invariants.

1. U.fld points to a mutable field f of a Data-record r′ in U.V.
2. The value stored in U.old was read at line 8 from f by the LLX(r′) linked to S.
3. For each r in U.V, the pointer indexed by r in U.infoFields was read from r.info at line 4 by the LLX(r) linked to S.
4. For each r in U.V, the LLX(r) linked to S must enter the if-block at line 7, and see r.info = r.info at line 9.

Proof. None of the fields of an SCX-record except state change after they are initialized at line 21. The contents of the table pointed to by U.infoFields do not change, either. Therefore, it suffices to show that these invariants hold when u is created. The proof of these invariants follows immediately from the precondition of SCX, the pseudocode of LLX, and the definition of an LLX linked to an SCX.

The following two definitions ease discussion of the important steps that access shared memory.

Definition 9 A process is said to be helping an invocation of SCX that created an SCX-record U whenever it is executing HELP(ptr), where ptr points to U. (For brevity, we sometimes say a process is “helping U” instead of “helping the SCX that created U.”)

Note that, since HELP does not call itself directly or indirectly, a process cannot be helping two different invocations of SCX at the same time.

Definition 10 We say that a freezing CAS, update CAS, frozen step, mark step, abort step, commit step or frozen check step S belongs to an SCX-record U when S is performed by a process helping U. We say that a frozen step, mark step, abort step, commit step or frozen check step is successful if it changes the the field it modifies to a different value. A freezing CAS or update CAS is successful if the CAS succeeds. Any step is unsuccessful if it is not successful.

Lemma 11 No freezing CAS, update CAS, frozen step, mark step, abort step, commit step or frozen check step belongs to the dummy SCX-record.

Proof. According to Definition 10, we must simply show that no process ever helps the dummy SCX-record D. To derive a contradiction, assume there is some invocation of HELP(ptr) where ptr points to D, and let H be the first such invocation. HELP is only invoked at lines 12, 15 and 21.

If H occurs at line 12 then D.state = InProgress at some point before H (by line 12). Since D.state is initially Aborted, and InProgress is never written into any state field, this is impossible.

Now, suppose H occurs at line 15. If r.info points to D both times it is read at line 15, then we obtain the same contradiction as the previous case. Otherwise, a successful freezing CAS changes r.info to point to D in between the two reads of r.info. By line 26, this freezing CAS must occur in an invocation of HELP(ptr).

However, since this freezing CAS must precede the first invocation, H, of HELP(ptr), this case is impossible.

H cannot occur at line 21, since that line calls HELP on a newly created SCX-record, not D.

15
Lemma 12 Every update to the info field of a Data-record r changes r.info to a value that has never previously appeared there. Hence, there is no ABA problem on info fields.

Proof. We first note that r.info can only be changed by a freezing CAS at line 26. When a freezing CAS attempts to change an info field f from x to y, y.infoFields contains x (by line 25). Then, since y.infoFields does not change after the SCX-record pointed to by y is created, the SCX-record pointed to by x was created before the SCX-record pointed to by y. So, letting a₁, a₂,... be the sequence of SCX-records ever pointed to by r.info, we know that a₁, a₂,... were created (at line 21) in that order. Since we have assumed memory allocations always receive new addresses, a₁, a₂,... are distinct.

Definition 13 A freezing CAS on a Data-record r is one that operates on r.info. A mark step on a Data-record r is one that writes to r.marked.

Lemma 14 For each Data-record r in the V sequence of an SCX-record U, only the first freezing CAS belonging to U on r can succeed.

Proof. Let ptr be a pointer to U, and fcas be the first freezing CAS belonging to U on r. Let r.info be the old value used by fcas. By Definition 10, the new value used by fcas is ptr. Since fcas belongs to U, Lemma 11 implies that U is not the dummy SCX-record initially pointed to by each info field. Hence, U was created by an invocation of SCX, so Observation 8.3 implies that r.info contains r.info during the LLX(r) linked to S. Since the LLX(r) linked to S terminates before the start of S, and S creates U, the LLX(r) linked to S must terminate before any invocation of HELP(ptr) begins. From the code of HELP, fcas occurs in an invocation of HELP(ptr). Thus, r.info contains r.info at some point before fcas. If fcas is successful, then r.info contains r.info just before fcas, and ptr just after. Otherwise, r.info contains r.info at some point before fcas, but contains some other value just before fcas. In either case, Lemma 12 implies that r.info can never again contain r.info after fcas. Finally, since each freezing CAS belonging to U on r uses r.info as its old value (by line 25 and the fact that table U.infoFields does not change after it is first created), there can be no successful freezing CAS belonging to U on r after fcas.

A.2 Changes to the info field of a Data-record and the state field of an SCX-record

We prove that freezing of nodes proceeds an orderly way. The first lemma shows that a process cannot freeze a node that is frozen by a different operation that is still in progress.

Lemma 15 The info field of a Data-record r cannot be changed while r.info points to an SCX-record with state InProgress.

Proof. Suppose an info field of a Data-record r is changed while it points to an SCX-record U with U.state = InProgress. This change can only be performed by a successful freezing CAS fcas whose old value is a pointer to U and whose new value is a pointer to W. Let S be the invocation of SCX that created W. From line 25, we can see that the old value for fcas (a pointer to U) is stored in the table W.infoFields and, by Observation 8.3, this value was read from r.info (at line 4) by the LLX(r) linked to S. Hence, the LLX(r) linked to S reads U.state at line 5. By Observation 8.4, the LLX(r) linked to S passes the test at line 7 and enters the if-block. This implies that, when U.state was read at line 5, either it was Committed and r was unmarked, or it was Aborted. Thus, U.state must be Aborted or Committed prior to fcas, and the claim follows from the fact that InProgress is never written to U.state.

It follows easily from Lemma 15 that if a node is frozen for an operation, it remains so until the operation is committed or aborted.

Lemma 16 If there is a successful freezing CAS fcas belonging to an SCX-record U on a Data-record r, and some time t after the first freezing CAS belonging to U on r and before the first abort step or commit step belonging to U, then r.info points to U at t.
InProgress

Abort

commit step

Committed

Fig. 7. Possible transitions for the state field of an SCX-record (initially InProgress).

Proof. Since fcas belongs to \(U \), by Lemma 11, \(U \) cannot be the dummy SCX-record, so \(U \) is created at line 21, where \(U \text{.state} \) is initially set to InProgress. Let \(t' \) be when the first abort step or commit step belonging to \(U \) on \(r \) occurs. By Lemma 14, \(fcas \) must be the first freezing CAS belonging to \(U \) on \(r \). Thus, \(t \) is after \(fcas \) occurs, and before \(t' \). Immediately following \(fcas \), \(r \text{.info} \) points to \(U \). From the code, \(U \text{.state} \) can only be changed by an abort step or commit step belonging to \(U \). Therefore, \(U \text{.state} = \text{InProgress} \) at all times after \(fcas \) and before \(t' \). By Lemma 15, \(r \text{.info} \) cannot change after \(fcas \), and before \(t' \). Hence, \(r \text{.info} \) points to \(U \) at \(t \).

A frozen step occurs only after all Data-records are successfully frozen.

Lemma 17 If a frozen step belongs to an SCX-record \(U \) then, for each \(r \) in \(U \text{.V} \), there is a successful freezing CAS belonging to \(U \) on \(r \) that occurs before the first frozen step belonging to \(U \).

Proof. Suppose a frozen step belongs to \(U \). Let \(fstep \) be the first such frozen step and let \(H \) be the invocation of HELP that performs \(fstep \). Since \(fstep \) occurs at line 37, for each Data-record \(r \) in \(U \text{.V} \), \(H \) must perform a successful freezing CAS belonging to \(U \) on \(r \) or see \(\text{otherPtr} = \text{scxPtr} \) in the preceding loop. If \(H \) performs a successful freezing CAS belonging to \(U \) on \(r \), then we are done. Otherwise, \(r \text{.info} = \text{scxPtr} \) at some point before \(fstep \). Since \(fstep \) belongs to \(U \), \(\text{scxPtr} \) points to \(U \). From Lemma 11, \(U \) is not the dummy SCX-record to which \(r \text{.info} \) initially points. Hence, some process must have changed \(r \text{.info} \) to point to \(U \), which can only be done by a successful freezing CAS.

Finally, we show that Data-records are frozen in the correct order. (This will be useful later on to show that no livelock can occur.)

Lemma 18 Let \(U \) be an SCX-record, and \((r_1, r_2, \ldots, r_l) \) be the sequence of Data-records in \(U \text{.V} \). For \(i \geq 2 \), a freezing CAS belonging to \(U \) on Data-record \(r_i \) can occur only after a successful freezing CAS belonging to \(U \) on \(r_{i-1} \).

Proof. Let \(fcas \) be a freezing CAS belonging to \(U \) on \(r_i \), for some \(i \geq 2 \). Let \(H \) be the invocation of HELP which performs \(fcas \). The loop in \(H \) iterates over the sequence \(r_1, r_2, \ldots, r_l \), so \(H \) performs \(fcas \) in iteration \(i \) of the loop. Since \(H \) reaches iteration \(i \), \(H \) must perform iteration \(i - 1 \). Thus, by the code of HELP, \(H \) must perform a freezing CAS \(fcas' \) belonging to \(U \) on \(r_{i-1} \) at line 26 before \(fcas \). If \(fcas' \) succeeds, then the claim is proved. Otherwise, \(H \) will check whether \(r_{i-1} \text{.info} \) is equal to \(\text{scxPtr} \) at line 27. Since HELP does not return in iteration \(i - 1 \), \(r_{i-1} \text{.info} = \text{scxPtr} \). This can only be true if \(U \) is the dummy SCX-record, or there has already been a successful freezing CAS belonging to \(U \) on \(r_{i-1} \). Since \(fcas \) belongs to \(U \), Lemma 11 implies that \(U \) cannot not be the dummy SCX-record.

A.3 Proving state and info fields change as described in Fig. 7 and Fig. 2

In this section, we first prove that an SCX-record’s state transitions respect Figure 7, then we expand upon the information in Figure 7 by showing that frozen steps, abort steps, commit steps and successful freezing CASs proceed as illustrated in Figure 2.

We now prove an SCX-record \(U \)’s state transitions respect Figure 7 by noting that a \(U \text{.state} \) is never changed to InProgress, and proving that it does not change from Aborted to Committed or vice versa. Since
$U.state$ can only be changed by a commit step or abort step belonging to U, and each commit step is preceded by a frozen step (by the code of HELP), it suffices to show that there cannot be both a frozen step and an abort step belonging to an SCX-record.

Lemma 19 Let U be an SCX-record. Suppose that there is a successful freezing CAS belonging to U on each Data-record in $U.V$. Then, a frozen check step belonging to U cannot occur until after a frozen step belonging to U has occurred.

Proof. To derive a contradiction, suppose that the first frozen check step $fcestep$ belonging to U occurs before any frozen step belonging to U. Let H be the invocation of HELP in which $fcestep$ occurs. Before $fcestep$, H performs an unsuccessful freezing CAS at line 26 on one Data-record in $U.V$. The hypothesis of the lemma says that there is a successful freezing CAS, $fcas$, belonging to U on this same Data-record. By Lemma 14, $fcas$ must occur before H’s unsuccessful freezing CAS. Thus, $fcas$ occurs before $fcestep$, which occurs before any frozen step belonging to U. From the code of HELP, a frozen step belonging to U precedes the first commit step belonging to U, which implies that $fcas$ and $fcestep$ occur before the first commit step belonging to U. Further, the code of HELP implies that no abort step can occur before $fcestep$. Thus, $fcas$ and $fcestep$ occur strictly before the first commit step or abort step belonging to U. After $fcas$, and before $fcestep$, H sees $r.info \neq scxPtr$ at line 27. Since $scxPtr$ points to U, this implies that $r.info$ points to some SCX-record different from U. However, Lemma 16 implies that $r.info$ must point to U when H performs line 27, which is a contradiction.

Corollary 20 If a frozen step belongs to an SCX-record U, then the first such frozen step must occur before any frozen check step belonging to U.

Proof. Suppose a frozen step belongs to U. By Lemma 17, we know there is a successful freezing CAS belonging to U on r for each r in $U.V$. Thus, by Lemma 19, a frozen check step belonging to U cannot occur until a frozen step belonging to U has occurred.

Lemma 21 There cannot be both a frozen step and an abort step belonging to the same SCX-record.

Proof. Suppose a frozen step belongs to U. By Corollary 20, the first such frozen step precedes the first frozen check step, which, by the pseudocode of HELP, precedes the first abort step. This frozen step sets $U.allFrozen$ to True and $U.allFrozen$ is never changed from True to False. Therefore, any process that performs a frozen check step belonging to U will immediately return True, without performing an abort step. Thus, there can be no abort step belonging to U.

Corollary 22 An SCX-record U’s state cannot change from Committed to Aborted or from Aborted to Committed.

Proof. Suppose $U.state = Committed$. Then a commit step belonging to U must have occurred. Since each commit step is preceded by a frozen step, Lemma 21 implies that no abort step belongs to U. Thus, $U.state$ can never be set to Aborted.

Now suppose that $U.state = Aborted$. Then either U is the dummy SCX-record or an abort step belongs to U. If U is the dummy SCX-record then, by Lemma 11, no commit step belongs to U, so $U.state$ never changes to Committed. Otherwise, $U.state$ is initially InProgress, so there must have been an abort step belonging to U. Hence, by Lemma 21, no frozen step can belong to U. If there is no frozen step belonging to U, then there can be no commit step belonging to U (by the pseudocode of HELP). Therefore $U.state$ can never be set to Committed.

Corollary 23 The changes to the state field of an SCX-record respect Figure 7.

Proof. Immediate from Corollary 22 and the fact that an SCX-record’s state field cannot change to InProgress from any other state.
The next five lemmas prove that any successful freezing CASs belonging to an SCX-record \(U \) must occur prior to the first frozen step or abort step belonging to \(U \). This result allows us to fill in the gaps between Figure 7 and Figure 2.

Lemma 24 Let \(U \) be an SCX-record, and let \(\langle r_1, r_2, ..., r_l \rangle \) be the sequence of Data-records in \(U.V \). Suppose an abort step belongs to \(U \) and let \(astep \) be the first such abort step. Then, there is a \(k \in \{1, ..., l\} \) such that

1. a freezing CAS belonging to \(U \) on \(r_k \) occurs prior to \(astep \),
2. there is no successful freezing CAS belonging to \(U \) on \(r_k \),
3. for each \(i \in \{1, ..., k-1\} \), a successful freezing CAS belonging to \(U \) on \(r_i \) occurs prior to \(astep \), and no successful freezing CAS belonging to \(U \) on \(r_i \) occurs after \(astep \), and
4. \(r_k.info \) changes after the LLX(\(r_k \)) linked to \(S \) reads \(r_k.info \) at line 9 and before the first freezing CAS belonging to \(U \) on \(r_k \).

Proof. Let \(H \) be the invocation of HELP that performs \(astep \) and \(k \) be the iteration of the loop in HELP during which \(H \) performs \(astep \). The loop in \(H \) iterates over the sequence \(r_1, r_2, ..., r_l \) of Data-records.

Claim 1 follows from the definition of \(k \): before \(H \) performs \(astep \), it performs a freezing CAS belonging to \(H \) on \(r_k \) at line 26.

To derive a contradiction, suppose Claim 2 is false, i.e., there is a successful freezing CAS belonging to \(U \) on \(r_k \). By Claim 1, \(fcas \) is before \(astep \). From Corollary 22 and the fact that \(astep \) occurs, we know that no commit step belongs to \(U \). By Lemma 16, \(r_k.info \) points to \(U \) at all times between the first freezing CAS belonging to \(U \) on \(r_k \) and \(astep \). However, this contradicts the fact that \(r_k.info \) does not point to \(U \) when \(H \) performs line 27 just before performing \(astep \).

We now prove Claim 3. By Claim 1, prior to \(astep \), \(H \) performs a freezing CAS belonging to \(U \) on \(r_k \). By Lemma 18, this can only occur after a successful freezing CAS belonging to \(U \) on \(r_i \), for all \(i < k \). By Lemma 14, there is no successful freezing CAS belonging to \(U \) on \(r_i \) after \(astep \).

We now prove Claim 4. By Claim 1 and Claim 2, an unsuccessful freezing CAS \(fcas \) belonging to \(U \) on \(r_k \) occurs prior to \(astep \). By line 25 and Observation 8.3, the old value for \(fcas \) is read from \(r_k.info \) and stored in \(info \) at line 4 by the LLX(\(r_k \)) linked to \(S \). By Observation 8.4, the LLX(\(r_k \)) linked to \(S \) again sees \(r_k.info = info \) at line 9. Thus, since \(fcas \) fails, \(r_k.info \) must change after the LLX(\(r_k \)) linked to \(S \) performs line 9 and before \(fcas \) occurs.

Lemma 25 No freezing CAS belonging to an SCX-record \(U \) is successful after the first frozen step or abort step belonging to \(U \).

Proof. First, suppose a frozen step belongs to \(U \), and let \(fstep \) be the first such frozen step. Then, by Lemma 17, there is a successful freezing CAS belonging to \(U \) on \(r \) for each \(r \) in \(U.V \) that occurs before \(fstep \). By Lemma 14, only the first freezing CAS belonging to \(U \) on \(r \) can be successful. Hence, no freezing CAS belonging to \(U \) is successful after \(fstep \).

Now, suppose an abort step belongs to \(U \), and let \(astep \) be the first such abort step. Let \(\langle r_1, r_2, ..., r_l \rangle \) be the sequence of Data-records in \(U.V \). By Lemma 24, there is a \(k \in \{1, ..., l\} \) such that no successful freezing CAS belonging to \(U \) is performed on any \(r_i \in \{r_1, ..., r_{k-1}\} \) after \(astep \), and no successful freezing CAS belonging to \(U \) on \(r_k \) ever occurs. By Lemma 18, there is no freezing CAS belonging to \(U \) on any \(r_i \in \{r_{k+1}, ..., r_l\} \).

Corollary 26 If there is a successful freezing CAS \(fcas \) belonging to an SCX-record \(U \) on a Data-record \(r \), then \(fcas \) occurs before time \(t \), when the first abort step or commit step belonging to \(U \) occurs. Moreover, \(r.info \) points to \(U \) at all times after \(fcas \) occurs, and before \(t \).

Proof. By Lemma 25, \(fcas \) occurs before \(t \). The claim then follows from Lemma 16.

Lemma 27 Changes to the state and allFrozen fields of an SCX-record, as well as frozen steps, abort steps, commit steps and successful freezing CASs can only occur as depicted in Figure 2.
<table>
<thead>
<tr>
<th>Frozen</th>
<th>r.info.state</th>
<th>r.marked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Committed</td>
<td>True</td>
<td>{True, False}</td>
</tr>
<tr>
<td>InProgress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfrozen</td>
<td>Committed</td>
<td>False</td>
</tr>
<tr>
<td>Aborted</td>
<td>{True, False}</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 8. When a Data-record r is frozen, in terms of $r.info.state$ and $r.marked$.

Proof. Initially, the dummy SCX-record has $state = Aborted$ and $allFrozen = False$ and, by Lemma 11, they never change.

Every other SCX-record U initially has $state = InProgress$ and $allFrozen = False$. Only abort steps, frozen steps, and commit steps can change $state$ or $allFrozen$. From the code of HELP, each transition shown in Figure 2, results in the indicated values for $state$ and $allFrozen$. A commit step on line 41 must be preceded by a frozen step on line 37. Therefore, from $[InProgress, False]$, the only outgoing transitions are to $[Aborted, False]$ and $[InProgress, True]$. By Lemma 21, there cannot be both a frozen step and an abort step belonging to U. Hence, from $[Aborted, False]$, there cannot be a frozen step or commit step and there cannot be an abort step from $[InProgress, True]$ or $[Committed, True]$.

By Lemma 25, successful freezing CASs can only occur when $state = InProgress$ and $allFrozen = False$. From the code of HELP, for each r in $U.R$, the first mark step belonging to U on r must occur after the first frozen step belonging to U and before the first commit step belonging to U. Since each r in $U.R$ initially has $r.marked = False$, and $r.marked$ is only changed at line 38, where it is set to True, only the first mark step belonging to U on r can be successful.

A.4 The period of time over which a Data-record is frozen

We now prove several lemmas which characterize the period of time over which a Data-record is frozen for an SCX-record. We first use the fact that the $state$ of an SCX-record cannot change from Aborted to Committed to extend Lemma 15 to prove that the $info$ field of a Data-record cannot be changed while the Data-record is frozen for an SCX-record. In the following, the phrase “after X and before the first time Y happens” should be interpreted to mean “after X” in the event that Y never happens.

Lemma 28 If a frozen step belongs to an SCX-record U then, for each r in $U.V$, a freezing CAS belonging to U on r precedes the first frozen step belonging to U, and r is frozen for U at all times after the first freezing CAS belonging to U on r and before the first commit step belonging to U.

Proof. Fix any r in $U.V$. If a frozen step belongs to U then, by Lemma 17, it is preceded by a successful freezing CAS belonging to U on r. Further, by Lemma 21, no abort step belongs to U. Thus, by Corollary 26, $r.info$ points to U at all points between time t_0, when the first freezing CAS belonging to U on r occurs, and time t_1, when the first commit step belonging to U occurs (after the first frozen step). Since no abort step belongs to U, $U.state = InProgress$ at all times before t_1. Hence, by the definition of freezing (see Figure 8), r is frozen for U at all times between t_0 and t_1.

Corollary 29 If a frozen step belongs to an SCX-record U, then each r in $U.V$ is frozen for U at all times between the first frozen step belonging to U and the first commit step belonging to U.

Proof. Suppose there is a frozen step belonging to U. By Lemma 28, each r in $U.V$ is frozen for U at all times between the first freezing CAS belonging to U on r and the first commit step belonging to U. It then follows directly from the pseudocode of HELP that the first frozen step belonging to U must follow the first freezing CAS belonging to U on r, for each r in $U.V$, and precede the first commit step belonging to U.

Corollary 30 A successful mark step belonging to U can occur only while r is frozen for U.

Proof. Immediate from Lemma 27 and Corollary 29.
Lemma 31 A Data-record can only be changed from unfrozen to frozen by a change in its info field (which can only be the result of a freezing CAS).

Proof. Let r be a Data-record whose info field points to an SCX-record U. According to the definition of a frozen Data-record (see Figure 8), if r.info does not change, then r can only become frozen if U.state changes from Committed or Aborted to InProgress, or from Aborted to Committed (provided r is marked). However, both cases are impossible by Corollary 23.

Definition 32 A Data-record r is called permafrozen for SCX-record U if r is marked, r.info points to U and the U.state is Committed. Notice that a Data-record that is permafrozen for U is also frozen for U.

Lemma 33 Once a Data-record r is permafrozen for SCX-record U, it remains permafrozen for U thereafter.

Proof. By definition, when r is permafrozen for U, it is frozen for U, U.state is Committed and r.marked = True. Once r.marked is set to True, it can never be changed back to False. By Corollary 23, U.state was never Aborted, U.state will remain Committed forever, and r will be frozen for U as long as r.info points to U. It remains only to prove that r.info cannot change while r is permafrozen for U. Note that r.info can be changed only by a successful freezing CAS.

To obtain a contradiction, suppose a freezing CAS fcas changes r.info from U to W while r is permafrozen for U. By Lemma 11, W is not the dummy SCX-record. Let S be the invocation of SCX that created W. From the code of HELP, r is in W.V. So, by the precondition of SCX, there is an invocation of LLX(r) linked to S. By Observation 8.3 and line 25, the old value for fcas (a pointer to U) was read at line 4 of the LLX(r) linked to S. Let I be the invocation of LLX(r) linked to S. Since we have argued that U.state is never Aborted, U.state ∈ {InProgress, Committed} when I reads state from U.state at line 5.

If state = InProgress then I does not enter the if-block at line 7, and returns FAIL or FINALIZED, which contradicts Definition 7.1.

Now, consider the case where state = Committed. If we can argue that r is marked when I performs line 6, then we shall obtain the same contradiction as in the previous case. Since state = Committed, a commit step belonging to U occurs before I performs line 5. By Lemma 27, any successful mark step belonging to U occurs prior to this commit step. Therefore, if r is in U.R, then r will be marked when I performs line 6, and we obtain the same contradiction. The only remaining possibility is that r is not in U.R, and r is marked by a successful mark step mstep belonging to some other SCX-record U' after I performs line 6, and before fcas occurs (which is while r is permafrozen for U). Since r.info points to U when I performs line 4, and again when fcas occurs, Lemma 12 implies that r.info points to U throughout this time. However, this contradicts Corollary 30, which states that mstep can only occur while r.info points to U'.

Lemma 34 Suppose a successful mark step mstep belonging to an SCX-record U on r occurs. Then, r is frozen for U when mstep occurs, and forever thereafter.

Proof. By Corollary 30, mstep must occur while r is frozen for U. From the code of HELP, a frozen step belonging to U must precede mstep, and r must be in V (since it is marked at line 38). Thus, Corollary 29 implies that r is frozen for U at all times between mstep and the first commit step belonging to U. Since r.marked is never changed from True to False, mstep must be the first mark step that ever modifies r.marked. From the code of HELP, mstep must precede the first commit step belonging to U. If any commit step belonging to U occurs after mstep, immediately after the first such commit step, r will be marked, and r.info.state will be Committed, so r will become permafrozen for U. By Lemma 33, r will remain frozen for U, thereafter.

Lemma 35 Suppose I is an invocation of LLX(r) that returns a value different from FAIL or FINALIZED. Then, r is not frozen at any time in [t₀, t₁], where t₀ is when I reads r.info.state at line 5, and t₁ is when I reads r.info at line 9.
Proof. We prove that \(r \) is not frozen at any time between \(t_0 \) and \(t_1 \). Since \(I \) returns a value different from \(\text{FAIL} \) or \(\text{FINALIZED} \), it enters the if-block at line 7, and sees \(r.info = \text{rinfo} \) at line 9. Therefore, it sees either \(state = \text{Committed} \) and \(r.marked = \text{FALSE} \), or \(state = \text{Aborted} \) at line 7. In each case, Corollary 23 guarantees that \(\text{rinfo} \text{.state} \) will never change again after time \(t_0 \). Thus, if \(\text{state} = \text{Aborted} \), then \(r \) is not frozen at any time between \(t_0 \) and \(t_1 \). Now, suppose \(\text{state} = \text{Committed} \). We prove that \(r.marked \) does not change between \(t_0 \) and \(t_1 \). A pointer to an SCX-record \(W \) is read from \(r.info \) and stored in the local variable \(\text{rinfo} \) at line 4, before \(t_0 \). At line 9, \(r.info \) still contains a pointer to \(W \). By Lemma 12, \(r.info \) must not change between line 4 and line 9. Therefore, \(r.info \) points to \(W \) at all times between \(t_0 \) and \(t_1 \). By Corollary 30, a successful mark step can occur between \(t_0 \) and \(t_1 \) only if it belongs to \(W \). Since \(\text{state} = \text{Committed} \), a commit step belonging to \(W \) must have occurred before \(t_0 \). By Lemma 27, any successful mark step belonging to \(W \) must have occurred before \(t_0 \). Therefore, \(W.state = \text{Committed and r.marked = \text{FALSE}} \) throughout \([t_0, t_1]\).

Corollary 36 Let \(S \) be an invocation of \(\text{SCX} \), and \(r \) be any Data-record in the \(V \) sequence of \(S \). Then, \(r \) is not frozen at any time in \([t_0, t_1]\), where \(t_0 \) is when the \(\text{LLX}(r) \) linked to \(S \) reads \(\text{rinfo} \text{.state} \) at line 5, and \(t_1 \) is when the \(\text{LLX}(r) \) linked to \(S \) reads \(r.info \) at line 9.

Proof. Immediate from Definition 7.1 and Lemma 35.

A.5 Properties of update CAS steps

Observation 37 An immutable field of a Data-record cannot change from its initial value.

Proof. This observation follows from the facts that Data-records can only be changed by SCX and an invocation of SCX can only accept a pointer to a mutable field as its \(fld \) argument (to modify).

Observation 38 Each mutable field of a Data-record can be modified only by a successful update CAS.

Observation 39 Each update CAS belonging to an SCX-record \(U \) is of the form \(\text{CAS}(U.fld, U.old, U.new) \). Invariant: \(U.fld \) and \(U.new \) contain the arguments \(fld \) and \(new \), respectively, that were passed to the invocation of \(\text{SCX}(V, R, fld, new) \) that created \(U \).

Proof. An update CAS occurs at line 39 in an invocation of \(\text{HELP}(scxPtr) \), where it operates on \(scxPtr.fld \), using \(scxPtr.old \) as its old value, and \(scxPtr.new \) as its new value. The fields of \(scxPtr \) do not change after \(scxPtr \) is created at line 21. At this line, the arguments \(fld \) and \(new \) that were passed to the invocation of \(\text{SCX}(V, R, fld, new) \) are stored in \(scxPtr.fld \) and \(scxPtr.new \), respectively.

Lemma 40 The first update CAS belonging to an SCX-record \(U \) on a Data-record \(r \) occurs while \(r \) is frozen for \(U \).

Proof. Let \(upcas \) be the first update CAS belonging to \(U \). By line 39, such an update CAS will modify \(U.fld \) which, by Observation 8.1, is a mutable field of a Data-record \(U.V \). Since \(upcas \) is preceded by a frozen step in the pseudocode of \(\text{HELP} \), a frozen step belonging to \(U \) must precede \(upcas \). Hence, Corollary 29 applies, and each \(r \) in \(U.V \) is frozen for \(U \) at all times between the first frozen step belonging to \(U \) and the first commit step \(cstep \) belonging to \(U \). From the code of \(\text{HELP} \), if \(cstep \) exists, then it must occur after \(upcas \). Thus, when \(upcas \) occurs, \(r \) is frozen for \(U \).

In Section 4 we described a constraint on the use of SCX that allows us to implement an optimized version of SCX (which avoids the creation of a new Data-record to hold each value written to a mutable field), and noted that the correctness of the unoptimized version follows trivially from the correctness of the optimized version. In order to prove the next few lemmas, we must invoke this constraint. In fact, we assume a weaker constraint, and are still able to prove what we would like to. We now give this weaker constraint, and remark that it is automatically satisfied if the constraint in Section 4 is satisfied.

Constraint 41 Let \(fld \) be a mutable field of a Data-record \(r \). If an invocation \(S \) of \(\text{SCX}(V, R, fld, new) \) is linearized, then:
– new is not the initial value of fld, and
– no invocation of SCX(V′, R′, fld, new) is linearized before the LLX(r) linked to S is linearized.

We prove the following six lemmas solely to prove that only the first update CAS belonging to an SCX-record can succeed. This result is eventually used to prove that exactly one successful update CAS belongs to any SCX-record which is helped to successful completion.

We need to know about the linearization of SCXs and linked LLXs to prove the next lemma, which uses Constraint 41. Let S be an invocation of SCX, and U be the SCX-record that it creates. As we shall see in Section A.8, we linearize S if and only if there is an update CAS belonging to U, and S is linearized at its first update CAS. Each invocation of LLX linked to an invocation of SCX is linearized at line 9.

Lemma 42 No two update CASs belonging to different SCX-records can attempt to change the same field to the same value.

Proof. Suppose, to derive a contradiction, that update CASs belonging to two different SCX-records U and U′ attempt to change the same (mutable) field of some Data-record r to the same value. Let upcas and upcas′ be the first update CAS belonging to U and U′, respectively. Let S and S′ be the invocation of SCX that created U and U′, respectively. From Observation 39 and the fact that upcas and upcas′ attempt to change the same field to the same value, we know that S and S′ must have been passed the same fld and new arguments. Note that S and S′ are linearized at upcas and upcas′, respectively. Without loss of generality, suppose S is linearized after S′. By Constraint 41, S′ is linearized after the invocation I of LLX(r) linked to S is linearized.

By Lemma 36, r is not frozen when I is linearized. By Lemma 40, r is frozen for U′ when upcas′ occurs (which is after I is linearized). By Lemma 31, r can become frozen for U′ only by a successful freezing CAS belonging to U′ on r. Therefore, a successful freezing CAS fcas′ belonging to U′ on r occurs after I is linearized, and before upcas′. By Lemma 40, r is frozen for U when upcas occurs (which is after upcas′), which implies that a successful freezing CAS fcas belonging to U on r occurs after upcas′, and before upcas. To recap, I is linearized before fcas′, which is before upcas′, which is before fcas, which is before upcas. By line 25 and Observation 8.3, the old value old for fcas is read from r.info and stored in r.info at line 4 by I. Since I performs line 4 before it is linearized, old is read from r.info before fcas′. Since fcas′ changes r.info to point to U′, Lemma 12 implies that r.info does not point to U′ at any time before fcas′. Therefore, old is not U′. Since fcas is successful, r.info must be changed to old at some point after fcas′, and before upcas. However, this contradicts Lemma 12, since r.info had already contained old before fcas′.

Lemma 43 An update CAS never changes a field back to its initial value.

Proof. By Observation 39, each update CAS belonging to an SCX-record U attempts to change a field to the value new that was passed as an argument to the invocation of SCX that created U. Since Constraint 41 implies that new cannot be the initial value of the field, we know that no update CAS can change the field to its initial value.

Lemma 44 No update CAS has equal old and new values.

Proof. Let upcas be an update CAS and let U be the SCX-record to which it belongs. By Observation 39, the old value used by upcas is U.old, and the new value used by upcas is U.new. Let f be the field of a Data-record pointed to by U.fld; this is the field to which upcas is applied. By Lemma 43, U.new cannot be the initial value of f. If U.old is the initial value of f, then we are done. So, suppose U.old is not the initial value of f. Since a mutable field can only be changed by a successful update CAS, there exists a successful update CAS upcas′ which changed f to U.old prior to upcas. By Observation 8.2, U.old was read from f prior to the start of the invocation S of SCX that created U and, therefore, prior to upcas. Hence, when upcas′ occurs, U has not yet been created. Note that upcas′ must occur in an invocation of HELP(ptr′) where ptr′ points to some SCX-record U′ different from U. However, by Lemma 42, upcas and upcas′ use different new values, so U.old (the new value for upcas′) must be different from U.new (the new value for upcas).
Lemma 45 At most one successful update CAS can belong to an SCX-record.

Proof. We prove this lemma by contradiction. Consider the earliest point in the execution when the lemma is violated. Let u_{SCX}', be the earliest occurring second successful update CAS belonging to any SCX-record, and U be the SCX-record to which it belongs, and let u_{CAS}_U be the preceding successful update CAS belonging to U. Further, let f be the field upon which u_{CAS}_U operates, and let old and new be the old and new values used by u_{CAS}_U, respectively. (By Observation 39, u_{CAS}_U and $u_{CAS}'_U$ attempt to change the same field from the same old value to the same new value.) By Lemma 44, we know that $old \neq new$. Then, since $u_{CAS}'_U$ is successful, there must be a successful update CAS u_{CAS}_W belonging to some SCX-record W which changes f to old between u_{CAS}_U and $u_{CAS}'_U$. By Lemma 43, old is not the initial value of f. Hence, there must be another successful update CAS u_{CAS}_W which changes f to old before u_{CAS}_U. By Lemma 42, u_{CAS}_W must belong to W, so u_{CAS}_W and $u_{CAS}'_W$ both precede $u_{CAS}'_U$. This contradicts the definition of $u_{CAS}'_U$.

Lemma 46 An update CAS never changes a field to a value that has already appeared there. (Hence, there is no ABA problem on mutable fields.)

Proof. Suppose a successful update CAS u_{CAS} belonging to an SCX-record U changes a field f to have value new. By Lemma 43, new is not the initial value of f. By Lemma 45, all successful update CASs that change f must belong to different SCX-records. Hence, Lemma 42 implies that no update CAS other than u_{CAS} can change f to new.

Lemma 47 Only the first update CAS belonging to an SCX-record U can succeed.

Proof. Let u_{CAS} be the first update CAS belonging to U, and f be the field that u_{CAS} attempts to modify. If u_{CAS} succeeds then, by Lemma 45, there can be no other successful update CAS belonging to U. So, suppose u_{CAS} fails. By Observation 39, each update CAS belonging to U uses the same old value $U.old$. By Observation 8.2, $U.old$ was read from f prior to the start of the invocation S of SCX that created U and, therefore, prior to u_{CAS}. Then, since u_{CAS} fails, f must change between when $U.old$ is read from f and when u_{CAS} occurs. By Observation 38, f can only be changed by an update CAS. By Lemma 46, each update CAS applied to f changes it to a value that it has not previously contained. Therefore, f will never again be changed to $U.old$. Hence, every subsequent update CAS belonging to U will fail.

A.6 Freezing works

In addition to being used to prove the remaining lemmas of this section, the following two results are used to prove linearizability in Section A.8. Intuitively, they allow us to determine whether a Data-record has changed simply by looking at its info field, and whether it is frozen.

Corollary 48 An update CAS belonging to an SCX-record U on a Data-record r can succeed only while r is frozen for U.

Proof. Suppose a successful update CAS u_{CAS} belongs to an SCX-record U. By Lemma 47, it is the first update CAS belonging to U. The claim follows from Lemma 40.

By Observation 38, a mutable field of r can only change while r is frozen.

Lemma 49 If a Data-record r is not frozen at time t_0, $r.info$ points to an SCX-record U at or before time t_0, and $r.info$ points to U at time $t_1 > t_0$, then no field of r is changed during $[t_0,t_1]$.

24
Proof. Since \(r.info \) points to \(U \) at or before time \(t_0 \), and again at time \(t_1 \), Lemma 12 implies that \(r.info \) must point to \(U \) at all times in \([t_0, t_1]\). Further, from Lemma 31, \(r \) can only be changed from unfrozen to frozen by a change to \(r.info \). Therefore, at all times in \([t_0, t_1]\), \(r \) is not frozen. By Corollary 48, and Observation 38, each mutable field of \(r \) can change only while \(r \) is frozen. By Corollary 30, \(r.marked \) can change only while \(r \) is frozen. Finally, by Observation 37, immutable fields do not ever change. Hence, no field of \(r \) changes during \([t_0, t_1]\).

The remaining results of this section describe intervals over which certain fields of a Data-record do not change. Suppose \(U \) is an SCX-record created by an invocation \(S \) of SCX, \(r \) is a Data-record in \(U.V \), and \(I \) is the invocation of \(LLX(r) \) linked to \(S \). Intuitively, we use the preceding lemma to prove, over the next two lemmas, that no field of \(r \) changes between when \(I \) last reads \(r.info \), and when \(r \) is frozen for \(U \). We then use this result in Section A.7 to prove that \(S \) succeeds if and only if this holds for each \(r \) in \(V \). The remaining results of this section are used primarily to prove that exactly one successful update CAS belongs to \(U \) if a frozen step belongs to \(U \) (and \(S \) does not crash, or some process helps it complete).

Corollary 50 Let \(U \) be an SCX-record, and \(S \) be the invocation of SCX that created \(U \). If there is a successful freezing CAS belonging to \(U \) on \(r \), then no field of \(r \) changes after the \(LLX(r) \) linked to \(S \) reads \(r.info, state \) at line 5, and before this freezing CAS occurs.

Proof. Let \(fcas \) be a successful freezing CAS belonging to \(U \) on \(r \). Note that the \(LLX(r) \) linked to \(S \) terminates before \(S \) begins. Since \(S \) creates \(U \) and \(fcas \) changes \(r.info \) to point to \(U \), \(S \) begins before \(fcas \). We now check that Lemma 49 applies. By Corollary 36, \(r \) is not frozen when the \(LLX(r) \) linked to \(S \) executes line 5. From line 25 of HELP and Observation 8.3, we know the old value \(r.info \) for \(fcas \) is read from \(r.info \) at line 4 by the \(LLX(r) \) linked to \(S \). Further, since \(fcas \) succeeds, \(r.info \) contains \(r.info \) just prior to \(fcas \). Thus, Lemma 49 applies, and proves the claim.

Lemma 51 If an update CAS belongs to an SCX-record \(U \) then, for each \(r \) in \(U.V \), there is a successful freezing CAS belonging to \(U \) on \(r \), and no mutable field of \(r \) changes during \([t_0, t_1]\), where \(t_0(r) \) is when the first such freezing CAS occurs, and \(t_1 \) is when the first update CAS belonging to \(U \) occurs.

Proof. Suppose an update CAS belongs to an SCX-record \(U \). Let \(upcas \) be the first such update CAS. Since each update CAS is preceded in the code by a frozen step, a frozen step also belongs to \(U \). Fix any \(r \) in \(U.V \). By Lemma 21, there is a successful freezing CAS belonging to \(U \) on \(r \). By Lemma 28, \(r \) is frozen for \(U \) at all times in \([t_0(r), t_2]\), where \(t_2 \) is when the first commit step belonging to \(U \) occurs. Since an update CAS belongs to an SCX-record \(W \) can modify \(r \) only while \(r \) is frozen for \(W \) (by Corollary 48), any update CAS that modifies \(r \) during \([t_0(r), t_2]\) must belong to \(U \). From the code of HELP, \(t_0(r) < t_1 < t_2 \). However, since the first update CAS belonging to \(U \) occurs at \(t_1 \), no update CAS belonging to \(U \) can occur during \([t_0(r), t_1]\).

Lemma 52 Let \(U \) be an SCX-record created by an invocation \(S \) of SCX, and \(r \) be a Data-record in \(U.V \). Let \(t_0 \) be when the \(LLX(r) \) linked to \(S \) reads \(U.state \) at line 5, and \(t_2 \) be when the first commit step belonging to \(U \) occurs. If an update CAS belongs to \(U \) then, for each \(r \) in \(U.V \), between \(t_0 \) and \(t_2 \), \(r.marked \) can be changed (from FALSE to TRUE, by the first mark step belonging to \(U \) on \(r \)) only if \(r \) is in \(U.R \).

Proof. Fix any \(r \) in \(U.V \). The fact that \(r.marked \) can be changed only from FALSE to TRUE follows immediately from the fact that \(r.marked \) is initially FALSE, and is only changed at line 38. It also follows that a successful mark step on \(r \) must be the first mark step on \(r \). The rest of the claim is more subtle. Suppose a successful mark step \(mstep \) belonging to an SCX-record \(W \) on \(r \) occurs during \([t_0, t_2]\). By Lemma 34, \(r \) is frozen for \(W \) when \(mstep \) occurs. From the code of HELP, a frozen step \(fstep \) belonging to \(U \) precedes the first update CAS belonging to \(U \), and a freezing CAS belonging to \(U \) on \(r \) precedes \(fstep \). By Lemma 17, there is a successful freezing CAS belonging to \(U \) on \(r \). By Lemma 14, it must be the first freezing CAS \(fcas \) belonging to \(U \) on \(r \). Let \(t_1 \) be when \(fcas \) occurs. Note that \(t_0 < t_1 < t_2 \). By Corollary 50, \(r \) does not change during \([t_0, t_1] \). Thus, \(mstep \) cannot occur in \([t_0, t_1]\). By Lemma 28, \(r \) is frozen for \(U \) at all times during \([t_1, t_2]\). This implies \(U = W \), so \(mstep \) is the first mark step belonging to \(U \) on \(r \). Finally, since there is a mark step belonging to \(U \) on \(r \), we obtain from line 38 that \(r \) is in \(U.R \).
A.7 Correctness of Help

The following lemma shows that a helper of an SCX-record cannot return True until after the SCX-record is Committed. We shall use this to ensure that the SCX does not return True until after the SCX has taken effect.

Lemma 53 An invocation of Help(scxPtr) where scxPtr points to an SCX-record U cannot return from line 31 before the first commit step belonging to U.

Proof. Suppose an invocation H of Help(scxPtr) returns at line 31. Before returning, H sees r.info ≠ scxPtr at line 27, which implies that r.info does not point to U. Prior to this, H performs a freezing CAS belonging to U at line 26. By line 29, a frozen step belongs to U. Then, since Lemma 28 states that r.info points to U at all times between the first freezing CAS belonging to U and the first commit step belonging to U, a commit step belonging to U must occur before H returns.

Next, we obtain an exact characterization of the update CAS steps that succeed.

Lemma 54 If there is an update CAS belonging to an SCX-record U, then the first update CAS belonging to U is successful and changes the mutable field pointed to by U.fld from U.old to U.new. No other update CAS belonging to U is successful.

Proof. Let $t_0(r)$ be when the LLX(r) linked to S reads r.info.state at line 5, and t_1 be when the first update CAS belonging to U occurs. Since an update CAS belongs to U, Lemma 51 implies that, for each r in U.V, no mutable field of r changes between $t_0(r)$ and t_1. From Observation 8.2 and the code of LLX, we see that the value stored in U.old is read from the field pointed to by U.fld after time $t_0(r)$. Further, since the LLX(r) linked to S terminates before S begins (by the definition of an LLX linked to an SCX) and, in turn, before U is created, we know the value stored in U.old was read before any update CAS belonging to U occurred. Then, since U.fld is a mutable field of a Data-record in U.V, this field does not change between $t_0(r)$ and t_1. By Observation 39, any update CAS belonging to U will attempt to change U.fld from U.old to U.new, so the first update CAS belonging to U will succeed. Lemma 47 completes the proof.

Our next lemma shows that the SCXs that are linearized have the desired effect.

Lemma 55 Let U be an SCX-record created by an invocation S of SCX, and ptr point to U. If either

- a frozen step belongs to U and some invocation of Help(ptr) terminates, or
- S or any invocation of Help(ptr) returns True,

then the following claims hold.

1. Every invocation of Help(ptr) that terminates returns True.
2. Exactly one successful update CAS belongs to U, and it is the first update CAS belonging to U. It changes the mutable field pointed to by U.fld from U.old to U.new.
3. A frozen step of U and a commit step of U occur before any invocation of Help(ptr) returns.
4. At all times after the first commit step for U, each r in U.R is permafrozen for U.

Proof. We first simplify the lemma’s hypothesis. If S returns True, then S’s invocation of Help(ptr) has returned True. If some invocation of Help(ptr) returns True, a commit step belongs to U by Lemma 53, and that commit step is preceded by a frozen step of U. So, for the remainder of the proof, we can assume that a frozen step belongs to U and some invocation of Help(ptr) terminates.

Proof of Claim 1: Since a frozen step belongs to U, Lemma 21 implies that no abort step belongs to U. Thus, H cannot return at line 35, which implies that H must return True.

Proof of Claim 2 and Claim 3: By Claim 1, H must return True. If H returns at line 42, then it does so after performing an update CAS and a commit step, each belonging to U. Otherwise, H returns at line 31. However, by Lemma 53, no invocation of Help(ptr) can return at line 31 until the first commit step belonging to U, which is necessarily preceded by an update CAS for U (by inspection of Help). Thus, Claim 3 is proved. Lemma 54 proves Claim 2.
Proof of Claim 4: By Corollary 29, every \(r \) in \(U.V \) is frozen for \(U \) from the first frozen step belonging to \(U \) until the first commit step belonging to \(U \). From the code of \textsc{Help}, each \(r \) in \(U.R \) is marked before the first commit step belonging to \(U \), and Lemma 52 implies that they are still marked when the first commit step belonging to \(U \) occurs. Further, immediately after the first commit step belonging to \(U \) (which must exist by Claim 3), \textit{U.state} will be Committed, so each \(r \) that is in both \(U.V \) and \(U.R \) will be permafrozen for \(U \). Since \(R \) is a subsequence of \(V \), and \(U.R \) and \(U.V \) do not change after they are obtained at line 21 from \(R \) and \(V \), respectively, it follows from Lemma 33 that each \(r \) in \(U.R \) remains permafrozen for \(U \) forever.

Now we show that SCXs that are not linearized do not modify any mutable fields, and do not return \texttt{True}.

Lemma 56 Let \(U \) be an SCX-record created by an invocation \(S \) of SCX, and \(ptr \) be a pointer to \(U \). If \(S \) or any invocation \(H \) of \textsc{Help}(\(ptr \)) returns \texttt{False}, then the following claims hold.

1. Every invocation of \textsc{Help}(\(ptr \)) that terminates returns \texttt{False}.
2. An abort step belonging to \(U \) occurs before any invocation of \textsc{Help}(\(ptr \)) returns.
3. No update CAS belongs to \(U \).

Proof. Note that, if \(S \) returns \texttt{False}, then its invocation of \textsc{Help}(\(ptr \)) returns \texttt{False}, so an invocation \(H \) exists and returns \texttt{False}. By Lemma 55.1, if any invocation of \textsc{Help}(\(ptr \)) returned \texttt{True}, then \(H \) would have to return \texttt{True}. Since \(H \) returns \texttt{False}, every terminating invocation of \textsc{Help}(\(ptr \)) must return \texttt{False}, which proves Claim 1. We now prove Claim 2 and Claim 3. Consider the invocation \(H' \) of \textsc{Help}(\(ptr \)) that returns earliest. By Claim 1, \(H' \) returns \texttt{False}. Before \(H' \) returns \texttt{False}, an abort step belonging to \(U \) is performed at line 34. Thus, Lemma 21 implies that no frozen step belongs to \(U \). By the code of \textsc{Help}, each update CAS belonging to \(U \) follows a frozen step belonging to \(U \).

Now that we have proved each invocation of \textsc{Help} that returns \texttt{True} or \texttt{False} has its expected effect, we must prove that the return value is always correct. (Otherwise, for example, two invocations of SCX with overlapping \(V \) sequences could interfere with one another, but still return \texttt{True}.)

Lemma 57 Let \(U \) be an SCX-record created by an invocation \(S \) of SCX, and \(ptr \) be a pointer to \(U \). Any invocation \(H \) of \textsc{Help}(\(ptr \)) that terminates returns \texttt{True} if no \(r \) in \(U.V \) changes from when the \textit{LLX}() linked to \(S \) reads \(r.info \) at line 9 at time \(t_0(r) \) to when the first freezing CAS belonging to \(U \) on \(r \) at time \(t_1(r) \). Otherwise, \(H \) returns \texttt{False}.

Proof. Since \(H \) terminates, it must return \texttt{True} or \texttt{False}. Hence, it suffices to prove \(H \) returns \texttt{True} if and only if no \(r \) in \(U.V \) changes between \(t_0(r) \) and \(t_1(r) \).

Case I: Suppose \(H \) returns \texttt{True}. By Lemma 55.3, a frozen step belongs to \(U \). Hence, by Lemma 17, there is a successful freezing CAS belonging to \(U \) for each \(r \) in \(U.V \). Then, by Corollary 50, no field of \(r \) changes between \(t_0(r) \) and \(t_1(r) \).

Case II: Suppose \(H \) returns \texttt{False}. We show that some \(r \) in \(U.V \) changes between \(t_0(r) \) and \(t_1(r) \). Since \(H \) can only return \texttt{False} at line 35, immediately before \(H \) returns, it performs an abort step belonging to \(U \). Thus, Lemma 24.4 applies and the claim is proved.

A.8 Linearizability of LLX/SCX/VLX

As described in Section 3, we linearize all reads, all invocations of LLX that do not return \texttt{Fail}, all invocations of VLX that return \texttt{True}, and all invocations of SCX that modify the sequential data structure (all that return \texttt{True}, and some that do not terminate). In our implementation, subtle interactions with a concurrent invocation of SCX can cause an invocation of LLX to return \texttt{Fail}. Since this cannot occur in a linearized execution, we do not linearize any such invocation of LLX. Similarly, we allow some invocations of SCX and VLX to return \texttt{False} because of interactions with concurrent invocations of SCX. Rather than distinguishing between the invocations of SCX or VLX that return \texttt{False} because of an earlier linearized invocation of
SCX (which is allowed by the sequential specification), and those that return False because of contention, we simply opt not to linearize any invocation of SCX or VLX that returns False. Alternatively, we could have accounted for the invocations that returns False because of contention by allowing spurious failures in the sequential specification of the operations. However, this would unnecessarily complicate the sequential specification. Intuitively, an algorithm designer using LLX, SCX and VLX is most likely to be interested in invocations of SCX and VLX that return True since these, respectively, change the sequential data structure, and indicate that a set of Data-record have not changed since they were last passed to successful invocations of LLX by this process. Knowing whether an invocation of SCX or VLX was unsuccessful because of a change to the sequential data structure, or because of contention, is less likely to be useful.

Before we give the linearization points, we state precisely which invocations of SCX we shall linearize. Let S be an invocation of SCX, and U be the SCX-record it creates. We linearize S if and only if there is an update CAS belonging to U. By Lemma 55, every successful invocation of SCX will be linearized. (By Lemma 56, no unsuccessful invocation of SCX will be linearized.)

We first give the linearization points of the operations, then we prove our LLX/SCX/VLX implementation respects the correctness specification given in Section 3.

Linearization points:

- An LLX(r) that returns values at line 11 is linearized at line 9. We linearize an LLX(r) that returns Finalized at line 13.
- Let U be an SCX-record created by an invocation S of SCX. Suppose there is an update CAS belonging to U. We linearize S at the first such update CAS (which is the unique successful update CAS belonging to U, by Lemma 54).
- An invocation I of VLX that returns True is linearized at the first execution of line 47.
- We assume reads are atomic. Hence, a read is simply linearized when it occurs.

Lemma 58 The linearization point of each linearized operation occurs during the operation.

Proof. This is trivial to see for reads, and invocations of LLX and VLX. Let U be an SCX-record created by a linearized invocation S of SCX, and ptr be a pointer to U. This claim is not immediately obvious for S, since the first update CAS belonging to U may be performed by a process helping U to complete (not the process performing S). Since S is linearized, there is an update CAS $upcas$ belonging to U, which can only occur in an invocation of HELP(ptr). Since ptr points to U, which is created by S, $upcas$ must occur after the start of S. If S does not terminate, then we are done. Otherwise, Lemma 55.3 implies that a commit step belongs to U, and the first such commit step occurs before any invocation of HELP(ptr) returns. From the code of HELP, $upcas$ must occur before before the first commit step belonging to U, so $upcas$ must occur before any invocation of HELP(ptr) returns. Finally, since S invokes HELP(ptr), $upcas$ must occur before S terminates.

We first show that each read returns the correct result according to its linearization point.

Lemma 59 If a read R_f of a field f is linearized after a successful invocation of SCX(V, R, fld, new), where fld points to f, then R_f returns the parameter new of the last such SCX. Otherwise, R_f returns the initial value of f.

Proof. We proceed by cases.

Case I: f is an immutable field. In this case, a pointer to f cannot be the fld parameter of an invocation of SCX. Further, by Observation 37, f cannot be modified after its initialization, so R_f returns the initial value of f.

Case II: f is a mutable field. Suppose there is no successful invocation of SCX(V, R, fld, new), where fld points to f, linearized before R_f. Since an invocation of SCX is linearized at its first update CAS, there can be no update CAS on f prior to R_f. Since f can only be modified by successful update CAS, R_f must return the initial value of f.

28
Now, suppose there is a successful invocation of SCX\((V,R,fld,new)\), where \(fld\) points to \(f\), linearized before \(R_f\). Let \(S\) be the last such invocation of SCX linearized before \(R_f\), and \(U\) be the SCX-record it creates. By Lemma 55.2, there is exactly one successful update CAS \(upcas\) belonging to \(U\), occurring at the linearization point of \(S\). Since each successful update CAS is the linearization point of some invocation of SCX, and no invocation of SCX\((V',R',fld,new')\) is linearized between \(S\) and \(R_f\), no successful update CAS occurs between \(S\) and \(R_f\). Since a mutable field can only be changed by update CAS, \(R_f\) returns the value stored by the successful update CAS \(upcas\) belonging to \(U\). By Lemma 55.2, \(upcas\) changes \(f\) to \(U.new\). Finally, since \(U.new\) does not change after it is obtained from \(new\) at line 21, the claim is proved.

Next, we prove that an LLX that returns a snapshot does return the correct result according to its linearization point.

Corollary 60 Let \(r\) be a Data-record with mutable fields \(f_1,\ldots,f_y\), and \(I\) be an invocation of LLX\((r)\) that returns a tuple of values \((m_1,\ldots,m_y)\) at line 11. For each mutable field \(f_i\) of \(r\), if \(I\) is linearized after a successful invocation of SCX\((V,R,fld,new)\), where \(fld\) points to \(f_i\), then \(m_i\) is the parameter new of the last such invocation of SCX. Otherwise, \(m_i\) is the initial value of \(f_i\).

Proof. Since \(I\) returns at line 11, the same value is read from \(r.info\) on line 4 and line 9 at times \(t_0\) and \(t_1\), respectively. By Lemma 35, \(r\) is unfrozen at line 7, which is between \(t_0\) and \(t_1\). Thus, Lemma 49 implies that \(r\) does not change during \([t_0,t_1]\). Since the values returned by the LLX are read from the fields of \(r\) between \(t_0\) and \(t_1\) (at line 8), each read returns the same result as it would if it were executed atomically at the linearization point of the LLX (line 9). Finally, Lemma 59 completes the proof.

Next, we show that an LLX\((r)\) returns \textsc{Finalized} only if \(r\) really has been finalized.

Lemma 61 Let \(I\) be an invocation of LLX\((r)\), and \(U\) be the SCX-record to which \(I\) reads a pointer at line 4. If \(I\) returns \textsc{Finalized}, then an invocation \(S\) of SCX\((V,R,fld,new)\) that created \(U\) is linearized before \(I\), and \(r\) is in \(R\).

Proof. Suppose \(I\) returns \textsc{Finalized}. Then, \(I\) is linearized at line 13. When \(I\) performs line 12, either \(r.info.state\) is Committed or \(I\)'s invocation of \textsc{Help}(\(r.info\)) returns \textsc{True}. We show that, in either case, a commit step belonging to \(U\) must have occurred before \(I\) performs line 13. If \(r.info.state\) is Committed, then this follows immediately from the fact that no SCX-record has Committed as its initial state. Otherwise, Lemma 55.3 implies that a commit step belonging to \(U\) occurs before \(I\)'s invocation of \textsc{Help}(\(r.info\)) returns. Since a commit step belongs to \(U\), Lemma 11 implies that \(U\) is not the dummy SCX-record, so there must be an invocation \(S\) of SCX\((V,R,fld,new)\) that created \(U\). From the code of \textsc{Help}, an update CAS belonging to \(U\) occurs before the first commit step belonging to \(U\). Since \(S\) is linearized at its first update CAS, \(S\) is linearized before \(I\).

It remains to show that \(r\) is in \(R\). Since \(U.R\) does not change after it is obtained from \(R\) at line 21, it suffices to show \(r\) is in \(U.R\). By line 12, \(marked_1 = \text{True}\), which means that \(r\) is marked when \(I\) reads a pointer to \(U\) from \(r.info\) at line 4. Let \(t_0\) be when \(I\) performs line 4, and \(t_1\) be when the first commit step belonging to \(U\) occurs. We consider two cases. Suppose \(t_1 < t_0\). Then, when \(I\) performs line 4, \(r\) is marked, \(r.info\) points to \(U\), and \(U.state = \text{Committed}\), which means that \(r\) is permafrozen for \(U\). By Lemma 33, \(r\) is frozen for \(U\) at all times after \(t_0\). Now, suppose \(t_0 < t_1\). In this case, Lemma 27 implies \(U.state = \text{InProgress}\) when \(I\) performs line 4, and that \(U.state\) will never be \text{Aborted}. By Lemma 15, \(r.info\) must point to \(U\) at all times in \([t_0,t_1]\). Thus, at \(t_1\), \(r\) is marked and \(r.info\) points to \(U\), which means that \(r\) is permafrozen for \(U\). By Lemma 33, \(r\) is frozen for \(U\) at all times after \(t_1\). In each case, \(r\) is frozen for \(U\) at all times in some (non-empty) suffix of the execution. Since \(r\) is marked, there must be a successful mark step belonging to some SCX-record \(W\) on \(r\). By Lemma 34, \(r\) is frozen for \(W\) at all times after this mark step. Therefore, \(U = W\), which means there is a mark step belonging to \(U\) on \(r\). Finally, line 38 implies that \(r\) is in \(U.R\).

Lemma 62 Let \(r\) be a Data-record, \(I\) be an invocation of LLX\((r)\) that terminates, and \(S\) be a linearized invocation of SCX\((V,R,fld,new)\) with \(r\) in \(R\). \(I\) returns \textsc{Finalized} if it is linearized after \(S\), or begins after \(S\) is linearized. (This implies \(I\) will be linearized in both cases.)
Proof. Let U be the SCX-record created by S.

Case I: I begins after S is linearized. In this case, S is linearized at a successful update CAS $upcas$ belonging to U that occurs before I begins. From the code of HELP, a mark step on r belonging to U must occur before $upcas$. Consider the first mark step $mstep$ on r. Since $r.marked$ is initially FALSE, $mstep$ must be successful. Let W be the SCX-record to which $mstep$ belongs. By Lemma 34, r is frozen for W at all times after $mstep$. By Lemma 48, r is frozen for U when $upcas$ occurs (which is after $mstep$). Since r can be frozen for only one SCX-record at a time, $W = U$. Therefore, $r.info$ points to U throughout I. So, when I performs line 7, it will see $state =$ Committed and $marked_2 =$ True. Moreover, when it subsequently performs line 12, it will see $rinfo.state =$ Committed and $marked_1 =$ True, so it will return $Finalized$.

Case II: I is linearized after S. I can either be linearized at line 9 or at line 13. If it is linearized at line 13, then it returns $Finalized$, and we are done. Suppose, in order to derive a contradiction, that I is linearized at line 9. Then, I returns at line 11 and, by Corollary 36, r is unfrozen at all times during $[t_0, t_1]$, where t_0 is when I performs line 5, and t_1 is when I performs line 9. Since I is linearized at time t_1, S must be linearized at an update CAS $upcas$ belonging to U that occurs before time t_1. By Corollary 48, $upcas$ can only occur while r is frozen for U. Since r is unfrozen at all times during $[t_0, t_1]$, $upcas$ must occur at some point before t_0. From the code of HELP, a mark step belonging to U must occur before $upcas$. Consider the first mark step $mstep$ belonging to any SCX-record W on r. As we argued in the previous case, r is frozen for W at all times after $mstep$. However, this contradicts our argument that r is unfrozen at all times during $[t_0, t_1]$ (since t_0 is after $mstep$). Thus, I cannot be linearized at line 9, so I must return $Finalized$.

The following lemma proves that an SCX succeeds only when it is supposed to, according to the correctness specification.

Lemma 63 If an invocation I of $VLX(V)$ or $SCX(V, R, fld, new)$ is linearized then, for each r in V, no $SCX(V', R', fld', new')$ with r in V' is linearized between the $LLX(r)$ linked to I and I.

Proof. Fix any r in V. By the preconditions of SCX and VLX, there must be an $LLX(r)$ linked to I. If I is an invocation of SCX, then let U be the SCX-record that it creates. Let L be the $LLX(r)$ linked to I, t_0 be when L performs line 4, t_1 be when L performs line 5 and t_2 be when L is linearized (at line 9). Since L is linked to I, t_2 exists. Let t_3 be when I is linearized. For SCX, t_3 is when the first update CAS belonging to U occurs. For VLX, t_3 is when I first performs line 47. Since I is linearized, t_3 exists. Finally, we define time t_4. For SCX, t_4 is when the first commit step belonging to U occurs, or the end of the execution if there is no commit step belonging to U (or ∞ if the execution is infinite). For VLX, t_4 is when I sees $rinfo = r.info$ at line 47 (in the iteration for r). If I is an invocation of VLX then, since I is linearized, it returns True. This implies that I must see $rinfo = r.info$ at line 47 in the iteration for r, so t_4 exists. Clearly, t_4 exists if I is an invocation of SCX.

We now prove $t_0 < t_1 < t_2 < t_3 < t_4$. From the code of LLX, $t_0 < t_1 < t_2$. Suppose I is an invocation of VLX. Since L terminates before I begins, $t_2 < t_3$. Trivially, $t_3 < t_4$. Now, suppose I is an invocation of SCX. Since each update CAS belonging to U occurs in an invocation of $HELP(ptr)$ where ptr points to U, and U is created during I, t_3 must occur after the start of I. Since L terminates before I begins, $t_2 < t_3$. From the code of $HELP$, the first update CAS belonging to U precedes the first commit step belonging to U (as well as the other options for t_4), so $t_3 < t_4$.

Next, we prove that, at all times in $[t_1, t_4]$, r is either frozen for U, or not frozen (i.e., r is not frozen for any SCX-record different from U at any point during $[t_1, t_4]$). We consider two cases.

Case I: Suppose I is an invocation of VLX. Then, $r.info$ contains $rinfo$ at t_0, and again at t_4. By Lemma 12, $r.info$ must contain $rinfo$ at all times in $[t_0, t_4]$. By Corollary 36, r is unfrozen at time t_1. By Lemma 31, r can only be changed from unfrozen the frozen by a change to $r.info$. Since r does not change during $[t_0, t_4]$, r is unfrozen at all times in $[t_1, t_4]$.

Case II: Suppose I is an invocation of SCX. From the code of $HELP$, a frozen step belonging to U precedes the first update CAS belonging to U. By Lemma 17, a successful freezing CAS belonging to U on r precedes the first frozen step belonging to U. Let t'_2 be when the first successful freezing CAS cas belonging to U on r occurs. It follows that $t'_2 < t_3$. Since each freezing CAS belonging to U occurs in an invocation
of HELP(ptr) where ptr points to U, and U is created during I, each freezing CAS belonging to U must occur after the start of I. Recall that L terminates before the start of I. Hence, $t_2 > t_2$. By Observation 8.3 and line 25, the old value for fcas is the value r_{info} that was read from r_{info} at line 4 of L (at t_0). Since fcas is successful, r_{info} must contain r_{info} just before fcas. Therefore, r_{info} contains r_{info} at t_0, and again at t_2. By the same argument we made in Case I (but with t_2 instead of t_4), Lemma 12, Corollary 36, and Lemma 31 imply that r is unfrozen at all times in $[t_1, t_2]$. By Lemma 28, r is frozen for U at all times in (t_2, t_4), which proves this case.

At last, we have assembled the results needed to obtain a contradiction. Suppose, to derive a contradiction, that an invocation S of SCX(V', R', fld', new') with r in V' is linearized between L and I (i.e., in (t_2, t_3)). Let W be the SCX-record created by S. S is linearized at the first update CAS $upcas$ belonging to W. From the code of HELP, a frozen step belonging to W precedes $upcas$, and $upcas$ precedes any commit step belonging to W. By Lemma 28, a successful freezing CAS $fcas$ belonging to W on r precedes $upcas$, and r is frozen for W at all times after $fcas$, and before the first commit step belonging to W. Therefore, r is frozen for W when $upcas$ occurs in (t_2, t_3). Since, at all times in $[t_1, t_4]$, r is either frozen for U, or not frozen, we must have $W = U$. This is a contradiction, since $upcas$ occurs before the first update CAS belonging to U occurs (at t_3). Thus, S cannot exist.

Theorem 64 Our implementation of LLX/SCX/VLX satisfies the correctness specification discussed in Section 3. That is, we linearize all successful LLXs, all successful SCXs, a subset of the SCXs that never terminate, all successful VLXs, and all reads, such that:

1. Each read of a field f of a Data-record r returns the last value stored in f by a linearized SCX (or f's initial value, if no linearized SCX has modified f).
2. Each linearized LLX(r) that does not return FINALIZED returns the last value stored in each mutable field f of r by a linearized SCX (or f's initial value, if no linearized SCX has modified f).
3. Each linearized LLX(r) returns FINALIZED if and only if it is linearized after an SCX($V, R, fld, new)$ with r in R.
4. If an invocation I of SCX(V, R, fld, new) or VLX(V) returns TRUE then, for all r in V, there has been no SCX(V', R', fld', new') with r in V' linearized since the LLX(r) linked to I.

Proof. By Lemma 58, the linearization point of each operation occurs during that operation. Claim 1 follows immediately from Lemma 59. Claim 2 is immediate from Lemma 60. The only-if direction of Claim 3 follows from Lemma 61, and the if direction follows from Lemma 62. Claim 4 is immediate from Lemma 63.

A.9 Progress Guarantees

Lemma 65 LLX, SCX and VLX are wait-free

Proof. The loop in H iterates over the elements of the finite sequence V and performs a constant amount of work during each iteration. If H does not return from the loop, then it performs a constant amount of work after the loop and returns. The claim then follows from the code.

Lemma 66 Our implementation satisfies the first progress property in Section 3: Each terminating LLX(r) returns FINALIZED if it begins after the end of a successful SCX(V, R, fld, new) with r in R or after another LLX(r) has returned FINALIZED.

Proof. Consider a terminating invocation I' of LLX(r). If I' begins after the end of a successful SCX(V, R, fld, new) with r in R, the claim follows from Lemma 62. If I' begins after another invocation I of LLX(r) has returned FINALIZED, then I is linearized after an invocation S of SCX(V, R, fld, new) with r in R. Since I precedes I', I' starts after S is linearized. By Lemma 62, I' returns FINALIZED.

We now begin to prove the non-blocking progress properties. First, we design a way to assign blame to an SCX for each failed invocation of LLX, VLX or SCX.
Definition 67 Let I be an invocation of LLX that returns Fail. If I enters the if-block at line 7, then let U be the SCX-record pointed to by r.info when I performs line 9. Otherwise, let U be the SCX-record pointed to by r.info when I performs line 4. We say I blames the invocation S of SCX that created U. (We prove below that S exists.)

Lemma 68 If an invocation I of LLX returns Fail, then it blames some invocation of SCX.

Proof. Suppose I enters the if-block at line 7. Then, I must see r.info ≠ r.info at line 9. Let U be the SCX-record pointed to by r.info when I performs line 9. Since I reads r.info from r.info at line 4, r.info must change to point to U between when I performs line 4 and line 9. Thus, there must be a successful freezing CAS belonging to U on r between these two times. Since a successful freezing CAS belongs to U, Lemma 11 implies that U cannot be the dummy SCX-record. Therefore, U must be created by an invocation of SCX.

Now, suppose I does not enter the if-block at line 7. Then, from the code of LLX, r.info.state cannot be Aborted when I performs line 5, so the SCX-record pointed to by r.info is not the dummy SCX-record. Since I reads the value stored in r.info from r.info at line 4, the SCX-record pointed to by r.info when I performs line 4 must have been created by an invocation of SCX.

Definition 69 Let I be an invocation of VLX(V) that returns False, and r be the Data-record in V for which I sees r.info ≠ r.info at line 47. Consider the first successful freezing CAS on r between when the LLX(r) linked to I reads r.info at line 4, and when I sees r.info ≠ r.info at line 47. Let U be the SCX-record to which this freezing CAS belongs, and S be the invocation of SCX that created U. (We prove below that S exists.) We say I blames S for r.

Lemma 70 If an invocation I of VLX returns False, then it blames some invocation of SCX.

Proof. Since I returns False, it sees r.info ≠ r.info at line 47, for some r in V. Let p be the process that performs I. By line 46, r.info is a copy of r’s info value in p’s local table of LLX results. By the precondition of VLX and the definition of an LLX(r) linked to I, this value is read from r.info at line 4 by the LLX(r) linked to I. Therefore, r.info must change between when the LLX(r) linked to I performs line 4 and when I sees r.info ≠ r.info at line 47. Thus, there must be a successful freezing CAS belonging to some SCX-record U on r between these two times. Since a freezing CAS belongs to U, Lemma 11 implies that U is not the dummy SCX-record, so U must have been created by an invocation of SCX.

Definition 71 Let U be an SCX-record created by an invocation S of SCX that returns False, and U’ be an SCX-record created by an invocation S’ of SCX. Consider the Data-records r that are in both U.V and U’.V, and for which there is no successful freezing CAS belonging to U on r. Let r’ be the Data-record among these which occurs earliest in U.V. We say S blames S’ for r’ if and only if there is a successful freezing CAS on r’ belonging to U’, and this freezing CAS is the earliest successful freezing CAS on r’ to occur between when the LLX(r’) linked to S reads r’.info at line 4 and the first freezing CAS belonging to U on r’.

Lemma 72 Let U be an SCX-record created by an invocation S of SCX. If S returns False, then it blames some other invocation of SCX.

Proof. Since S returns False, Lemma 56.2 implies that an abort step belongs to U. By Lemma 24, there is a Data-record r_k in U.V such that there is a freezing CAS belonging to U on r_k, but no successful one. Moreover, r_k.info changes after time t_1, when the LLX(r_k) linked to S reads r_k.info at line 9, and before time t_2, when the first freezing CAS belonging to U on r_k occurs. Since the LLX(r_k) linked to S terminates before U is created (at line 21 of S), and a freezing CAS belonging to U can only occur after U is created, we know t_1 < t_2. Let t_0 be the time when the LLX(r_k) performs line 4. Note that t_0 < t_1 < t_2. Since r_k.info can only be changed by a successful freezing CAS, there must be a successful freezing CAS on r_k during (t_1, t_2).
Let f_{cas} the earliest successful freezing CAS on r_k during (t_0, t_2), and let U' be the SCX-record to which it belongs. Since f_{cas} occurs before the first freezing CAS belonging to U on r_k, we know that $U \neq U'$. Let
\[
\rho = \{ r | r \text{ is in } U.V \text{ and } r \text{ is in } U'.V \text{ and } \# \text{ successful freezing CAS belonging to } U \text{ on } r \}.
\]

By the code of HELP, a freezing CAS belonging to U' can only modify a Data-record in $U'.V$. Thus, $r_k \in \rho$.

We now show r_k is the element of ρ that occurs earliest in $U.V$. Suppose, to derive a contradiction, that some $r_i \in \rho$ comes before r_k in $U.V$. By Lemma 24.1 and Lemma 24.2, there is an unsuccessful freezing CAS belonging to U on r_k. By Lemma 18, before this unsuccessful freezing CAS, there must be a successful freezing CAS belonging to U on r_i. However, this implies $r_i \notin \rho$, which is a contradiction.

Let S' be the invocation of SCX that creates U'. Thus far, we have shown that S blames S'. It remains to show that $S \neq S'$. By Lemma 11, a freezing CAS or abort step cannot belong to the dummy SCX-record. Therefore, neither U nor U' can be the dummy SCX-record. Since $U \neq U'$, U and U' must be created by different invocations of SCX.

We now prove that an invocation of LLX(r) can return Fail only under certain circumstances.

Definition 73 Let U be an SCX-record created by an invocation S of SCX. The **threatening section** of S begins with the first freezing CAS belonging to U, and ends with the first commit step or abort step belonging to U.

Lemma 74 Let U be an SCX-record created by an invocation S of SCX. The threatening section of S lies within S, and every successful freezing CAS or update CAS belonging to U occurs during S’s threatening section.

Proof. Let ptr be a pointer to U, and t_0 and t_1 be the times when S’s threatening section begins and ends, respectively. Since each freezing CAS, update CAS, abort step or commit step belonging to U occurs in an invocation of $\text{HELP}(\text{ptr})$, and S creates U, we know that these steps can only occur after S begins. Hence, t_0 is after S begins. Clearly every freezing CAS belonging to U occurs after t_0. From the code of HELP, the first update CAS belonging to U occurs between t_0 and t_1. By Lemma 47, this is the only update CAS belonging to U that can succeed. By Lemma 14, no freezing CAS belonging to U can succeed after the first frozen step or abort step belonging to U. From the code of HELP, the first frozen step belonging to U must occur before the first commit step belonging to U. Thus, every successful freezing CAS belonging to U occurs between t_0 and t_1. From the code of SCX, S performs an invocation H of $\text{HELP}(\text{ptr})$ before it returns, and H will perform either a commit step or abort step belonging to U, so long as it does not return from line 31. By Lemma 53, H cannot return from line 31 until after the first commit step belonging to U. Therefore, a commit step or abort step belonging to U must occur before S terminates, so t_1 is before S terminates.

Observation 75 Let S be an invocation of SCX($V, R, \text{fld}, \text{new}$), and U be the SCX-record it creates. If there is a freezing CAS belonging to U on r, then r is in V.

Proof. From the code of HELP, there will only be a freezing CAS belonging to U on r if r is in $U.V$, and line 21 implies that r in V.

Lemma 76 An invocation I of LLX(r) can return Fail only if it overlaps the threatening section of some invocation of SCX($V, R, \text{fld}, \text{new}$) with r in V.

Proof. By Lemma 68, I blames an invocation S of SCX. Let U be the SCX-record created by S, and ptr be a pointer to U. By Definition 67, I reads a pointer to U from $r.info$. Since U is not the dummy SCX-record, $r.info$ can only point to U after a successful freezing CAS belonging to U on r. By Observation 75, r is in V. We now show that I overlaps the threatening section of S. Consider the two cases of Definition 67.

Case 1: I enters the if-block at line 7, and reads a pointer to U from $r.info$ at line 9. In this case, from the code of LLX, we know that $r.info$ changes between when I performs line 4 and when I performs line 9. Since $r.info$ can only be changed to point to U by a successful freezing CAS belonging to U, there must be
a successful freezing CAS belonging to \(U \) during \(I \). By Lemma 74, \(I \) must overlap the threatening section of \(S \).

Case II: \(I \) does not enter the if-block at line 7. Since \(I \) reads a pointer to \(U \) from \(r.info \) at line 4, we know that \(r.info \) is a pointer to \(U \). By the test at line 7, either \(state = Committed \) and \(marked_2 = True \), or \(state = InProgress \).

Suppose \(state = InProgress \). Then, \(U.state = InProgress \) when \(I \) performs line 5. Since \(U \) is not the dummy SCX-record, a pointer to \(U \) can appear in \(r.info \) only after a successful freezing CAS belonging to \(U \). By Corollary 23, \(U.state \) can only be InProgress before the first commit step or abort step belonging to \(U \). Therefore, Definition 73 implies that \(I \) performs line 5 during the threatening section of \(S \).

Now, suppose \(state = Committed \) and \(marked_2 = True \). By Corollary 23, \(U.state = Committed \) at all times after \(I \) performs line 5. We consider two sub-cases. If \(marked_1 = True \), then \(I \) will return Finalized if it reaches line 12. Since we have assumed that \(I \) returns Fail, this case is impossible. Otherwise, a mark step \(mstep \) belonging to some SCX-record \(W \) changes \(r.marked \) to \(True \) between line 3 and line 6. It remains only to show that \(mstep \) occurs during the threatening section of the invocation of SCX that created \(W \). Since \(r.marked \) is initially \(False \) and is never changed from \(True \) to \(False \), \(mstep \) must be the first mark step belonging to \(W \) on \(r \). From the code of HELP, a frozen step belonging to \(W \) must precede \(mstep \).

Therefore, Lemma 21 implies that no abort step belonging to \(W \) ever occurs. From the code of HELP, \(mstep \) must occur after the first freezing CAS belonging to \(W \), and before the first commit step belonging to \(W \). By Definition 73, \(mstep \) occurs during the threatening section of the invocation of SCX that created \(W \).

We now prove that an invocation of SCX or VLX can return False only under certain circumstances.

Definition 77 The **vulnerable interval** of an invocation \(I \) of SCX or VLX begins at the earliest starting time of an LLX(r) linked to \(I \), and ends when \(I \) ends.

Lemma 78 Let \(I \) be an invocation of SCX or VLX, and \(U \) be an SCX-record created by an invocation \(S \) of SCX. If \(I \) blames \(S \) for a Data-record \(r \), then a successful freezing CAS belonging to \(U \) on \(r \) occurs during \(I \)'s vulnerable interval.

Proof. Suppose \(I \) is an invocation of SCX. Let \(U_I \) be the SCX-record created by \(I \). By Definition 71, a successful freezing CAS belonging to \(U \) on \(r \) occurs between when the LLX(r) linked to \(I \) performs line 4, and the first freezing CAS \(fcas \) belonging to \(U_I \) on \(r \). By Lemma 74, \(fcas \) occurs during \(I \). Now, suppose \(I \) is an invocation of VLX. Then, by Definition 69, a successful freezing CAS belonging to \(U \) on \(r \) occurs between when the LLX(r) linked to \(I \) performs line 4, and when \(I \) sees \(r.info \neq r.info \) at line 9.

Observation 79 If an invocation \(I \) of SCX(V,R, fld, new) or VLX(V) blames an invocation of SCX for a Data-record \(r \), then \(r \) is in \(V \).

Proof. Suppose \(I \) is an invocation of SCX. Let \(U \) be the SCX-record created by \(I \). By Definition 71, \(r \) is in \(U.V \). Since \(U.V \) does not change after \(U \) is created at line 21 of \(I \), \(r \) is in \(V \). Now, suppose \(I \) is an invocation of VLX. In this case, the claim is immediate from Definition 69.

Observation 80 If an invocation \(I \) of SCX or VLX blames an invocation \(S \) of SCX(V,R, fld, new) for a Data-record \(r \), then \(r \) is in \(V \).

Proof. Let \(U \) be the SCX-record created by \(S \). By Lemma 78, there is a successful freezing CAS belonging to \(U \) on \(r \). The claim then follows from Observation 75.

Lemma 81 An invocation \(I \) of SCX(V,R, fld, new) or VLX(V) ending at time \(t \) can return False only if its vulnerable interval overlaps the threatening section of some other SCX(V',R',fld',new'), where some Data-record appears in both \(V \) and \(V' \).
Proof. Suppose I returns FALSE. By Lemma 70 and Lemma 72, I blames an invocation S of SCX(V', R', f_{ld}', new'), where $I \neq S$, for a Data-record r. Let U be the SCX-record created by S, and U_I be the SCX-record created by I. By Lemma 78, a successful freezing CAS feas belonging to U on r occurs during I's vulnerable interval. By Lemma 74, feas occurs during the threatening section of S. Therefore, I's vulnerable interval overlaps the threatening section of S. By Observation 79 and Observation 80, r is in both V and V'.

We now prove bounds on the number of invocations of LLX, SCX and VLX that can blame an invocation of SCX.

Lemma 82 Let I be an invocation of LLX(r) that returns Fail, and U be the SCX-record created by the invocation of SCX that is blamed by I. A commit step or abort step belonging to U occurs before I returns.

Proof. By Definition 67, we know that I reads a pointer to U from r.info. By Lemma 68, U is not the dummy SCX-record. This implies that a pointer to U can only appear in r.info after a successful freezing CAS belonging to U on r. By Corollary 26, r.info points to U at all times after the first freezing CAS belonging to U on r, and before the first commit step or abort step belonging to U. Thus, if r.info changes after a pointer to U is read from r.info at line 4 or line 9, and before either of the two times that r.info is read at line 15, then we know that a commit step or abort step belonging to U has already occurred. Otherwise, any read of r.info at line 15 returns a pointer to U. Hence, I checks whether U.state = InProgress at line 15 and, if so, I helps U. We consider two cases.

Case I: I sees U.state = InProgress at line 15. In this case, I helps U before returning. From the code of HELP, if I's invocation of HELP returns FALSE, then I performs an abort step belonging to U during its invocation of HELP. Otherwise, by Lemma 55.3, a commit step belonging to U occurs before I's invocation of HELP returns.

Case II: I sees U.state \neq InProgress at line 15. In this case, U.state must be Committed or Aborted. Since U is not the dummy SCX-record, we know that U.state is initially InProgress. Therefore, a commit step or abort step belonging to U must occur before line 15.

Lemma 83 Each invocation of SCX can be blamed by at most two invocations of LLX per process.

Proof. Let S be an invocation of SCX. To derive a contradiction, suppose there is some process p that blames S for three failed invocations of LLX, I'', I' and I (which are performed by p in this order). By Definition 67, I, I' and I'' each read a pointer to U from r.info, either at line 4 or at line 9. Since r.info points to U at some point during I'', and again at or after the time I' performs line 4, we know from Lemma 12 that r.info points to U when I' performs line 4. By the same argument, r.info points to U when I performs line 4. Thus, in both I' and I, the local variable r.info is a pointer to U.

By Lemma 82, a commit step or abort step belonging to U occurs prior to the termination of I'', which is before the start of I'. By Corollary 23, r.info does not change after it is set to Committed or Aborted by this commit step or abort step. Since I' returns FAIL, when I' performs line 12, either r.info.state = Committed and marked$_1$ = FALSE, or r.info.state = Aborted.

Suppose r.info.state = Aborted when I' performs line 12. Then, r.info.state was Aborted when I' performed line 5, and I' passed the test at line 7, and entered the if-block. Since we have assumed that I' blames S, I' must read a pointer to U from r.info when it performs line 9. However, since I' returns FAIL, the value I' reads from r.info at line 9 is different from the value read at line 4, which is a contradiction. Hence, this case is impossible.

Now, suppose r.info.state = Committed and marked$_1$ = FALSE when I' performs line 12. Then, r.info.state was Committed at all times since I' began, so state = Committed. If marked$_2$ was also FALSE when I' performed line 7, then I' passed the test at line 7, and entered the if-block, so we obtain the same contradiction as above. Hence, this case, too, is impossible. Thus, marked$_2$ must have been TRUE when I' performed line 7, which means r was marked when I' performed line 6. Since a commit step belonging to U had already occurred when I' performed line 3, the code of HELP implies that, if r were in U.R, then the first mark step belonging to U on r would already have occurred before I' performed line 3. Since a marked bit is never changed from TRUE to FALSE, r would be marked when I' performed line 3, which is incompatible with our
assumption that \(marked_1 = False\). Therefore, \(r\) is not in \(U.R\), so no mark step belonging to \(U\) on \(r\) can ever occur. Since \(r\) was marked when \(I'\) performed line 6, there must have been a successful mark step \(mstep\) belonging to some other SCX-record \(W\) on \(r\) after \(I'\) performed line 3, and before \(I'\) performed line 6. By Lemma 34, \(r.info\) points to \(W\) when \(mstep\) occurs. However, since \(r.info\) points to \(U\) during \(I''\), which is before \(mstep\), and again during \(I\), which is after \(mstep\), at some point after \(mstep\), \(r.info\) must be changed to a value \((U)\) that has previously appeared there, which contradicts Lemma 12. Thus, it is impossible for three or more invocations of LLX by \(p\) to blame the same invocation of SCX.

Lemma 84 Each invocation of SCX(\(V,R,fld,new\)) can be blamed by at most \(|V|\) invocations of SCX or VLX per process.

Proof. By Observation 80, if an invocation of SCX or VLX blames an invocation of SCX(V,R,fld,new) for \(r\), then \(r\) is in \(V\). Thus, it suffices to prove that an invocation \(S\) of SCX(V,R,fld,new) cannot be blamed for any \(r\) in \(V\) by more than one invocation of SCX or VLX performed by process \(p\).

Let \(I\) and \(I'\) be invocations of SCX or VLX performed by process \(p\), and \(U, U'\) and \(U_S\) be the SCX-records created by \(I, I'\) and \(S\), respectively. Without loss of generality, let \(I'\) occur after \(I\). Suppose, in order to derive a contradiction, that \(I\) and \(I'\) both blame \(S\) for the same Data-record \(r\). Let \(t_0, t'_0\) be the time when the LLX(\(r\)) linked to \(I (I')\) performs line 4, and \(t_1, t'_1\) be the time when \(I (I')\) finishes. By Lemma 78, a successful freezing CAS belonging to \(U_S\) occurs between \(t_0\) and \(t_1\), and a successful freezing CAS belonging to \(U_S\) occurs between \(t'_0\) and \(t'_1\). If we can show \(t_0 < t_1 < t'_0 < t'_1\), then we shall have demonstrated that there must be two such freezing CASs, which contradicts Lemma 14.

Since the LLX(\(r\)) linked to \(I (I')\) terminates before \(I (I')\), we know \(t_0 < t_1\) \((t'_0 < t'_1)\). By Observation 79, \(r\) is in the \(V\) sequences of invocations \(I\) and \(I'\). Hence, Definition 7.2 implies that \(t_1 \not\in [t'_0, t'_1]\), and \(t'_1 \not\in [t_0, t_1]\). Since \(I'\) occurs after \(I\), \(t_1 < t'_1\). Therefore, \(t_0 < t_1 < t'_0 < t'_1\).

We now define the blame graph and prove a number of its properties.

Definition 85 We define the blame graph for an execution to be a directed graph whose nodes are the invocations of LLX, VLX and SCX, with an edge from an invocation \(I\) to another invocation \(I'\) if and only if \(I\) blames \(I'\). (Note that only the nodes corresponding to invocations of SCX can have incoming edges.)

The next property we prove is that, for each execution, there is a bound on the length of the longest path in the blame graph. As mentioned in Section 3, we require the following constraint in order to prove this bound exists.

Constraint 86 If there is a configuration \(C\) after which the value of no field of any Data-record changes, then there is a total order \(<\) on all Data-records created during the execution such that, if Data-record \(r_1\) appears before data Data-record \(r_2\) in the sequence \(V\) passed to an invocation of SCX whose linked LLXs begin after \(C\), then \(r_1 < r_2\).

Lemma 87 Let \(U\) be an SCX-record created by an invocation of SCX whose linked LLXs begin after the configuration \(C\) that is specified in Constraint 86. Immediately after a successful freezing CAS belonging to \(U\) on \(r\), \(r.info\) points to \(U\) and, for each \(r'\) in \(U.V\), where \(r' < r\), \(r'.info\) points to \(U\) and a successful freezing CAS belonging to \(U\) on \(r'\) has occurred.

Proof. Let \(feas\) be a successful freezing CAS belonging to \(U\) on \(r\), and let \(r'\) be any Data-record in \(U.V\) that satisfies \(r' < r\). By Constraint 86, \(r'\) must occur before \(r\) in the sequence \(U.V\). By Lemma 18, a successful freezing CAS \(feas\) belonging to \(U\) on \(r'\) occurs prior to \(feas\). Thus, Corollary 26 implies that \(r'.info\) points to \(U\) at all times after \(feas\) and before the first commit step or abort step belonging to \(U\). Similarly, \(r.info\) points to \(U\) at all times after \(feas\) and before the first commit step or abort step belonging to \(U\). By Lemma 25, \(feas\) must precede the first frozen step or abort step belonging to \(U\). From the code of HELP, the first frozen step belonging to \(U\) must precede the first commit step belonging to \(U\). Hence, \(feas\) and \(feas'\) both precede the first commit step or abort step belonging to \(U\). Therefore, immediately after \(feas\), the info fields of \(r\) and \(r'\) both point to \(U\).
Lemma 88 Let U_1, U_2 and U_3 be SCX-records respectively created by invocations S_1, S_2 and S_3 of SCX whose linked LLXs begin after the configuration C that is specified in Constraint 86, and r and r' be Data-records. If S_1 blames S_2 for r, and S_2 blames S_3 for r', then $r \prec r'$.

Proof. Since S_1 blames S_2 for r, we know from Definition 71 that r is in $U_2.V$. Similarly, since S_2 blames S_3 for r', we know r' is in $U_2.V$. Furthermore, a successful freezing CAS belonging to U_2 on r occurs, and no successful freezing CAS belonging to U_2 on r' occurs. By Lemma 18, r must occur before r' in the sequence $U_2.V$. Thus, Constraint 86 implies $r \prec r'$.

Lemma 89 There can be only as many successful update CASs as there are invocations of SCX that either return True, or do not terminate.

Proof. From the code, an update CAS can only occur in an invocation of \texttt{HELP(ptr)}, where \texttt{ptr} points to an SCX-record U. Further, from the code of \texttt{HELP}, there is at least one freezing CAS belonging to U or frozen step belonging to U. Hence, Lemma 11 implies that U is not the dummy SCX-record. Thus, U is created by an invocation of SCX at line 21. By Lemma 47, only the first update CAS belonging to an SCX-record can succeed. By Lemma 56.3, no update CAS belongs to an SCX-record created by an unsuccessful invocation of SCX.

We think of processes as accessing such a data structure via a fixed number of special Data-records called entry points, each of which has a single mutable pointer to a Data-record. We assume there is always some Data-record reachable by following pointers from an entry point that is not finalized. (This assumption that entry points cannot be finalized is not crucial, but it simplifies the statement of some progress guarantees.)

Definition 90 A Data-record is initiated at all times after it first becomes reachable by following Data-record pointers from an entry point.

Observation 91 The only step in an execution that can cause a Data-record to become initiated is a successful update CAS.

Proof. Follows immediately from Observation 38.

Lemma 92 Let S_1 and S_2 be invocations of SCX, and let r be a Data-record. If S_1 blames S_2 for r, then r was initiated before the start of S_1, and before the start of S_2.

Proof. Let U_1 and U_2 be the SCX-records created by S_1 and S_2, respectively. By Definition 71, r is in both $U.V$ and $U'.V$. By Observation 8.3, there are invocations of LLX(r) linked to S_1 and S_2, respectively. By the precondition of LLX, r must be initiated before the LLX(r) linked to S_1, and before the LLX(r) linked to S_2. Finally, the LLX(r) linked to S_1 must terminate before S_1 begins, and the LLX(r) linked to S_2 must terminate before S_2 begins.

Lemma 93 If no SCX is linearized after some time t, then the following hold.

1. A finite number N of Data-records are ever initiated in the execution.
2. Let σ be the set of invocations of SCX in the execution whose vulnerable intervals start at or before t.

 The longest path in the blame graph consisting entirely of invocations of LLX, SCX, and VLX that are not in σ has length at most $N + 2$

Proof. Claim 1 follows immediately from Observation 91 and Lemma 89.

We now prove claim 2. Suppose, in order to derive a contradiction, that there is a path of length at least $N + 3$ in the blame graph consisting entirely of invocations of LLX, SCX, and VLX that are not in σ. Since only invocations of SCX can be blamed, at least $N + 2$ of the nodes on this path must correspond to invocations of SCX. Let $S_1, S_2, ..., S_{N+2}$ be invocations of SCX corresponding to any $N + 2$ consecutive nodes on this path, and let $U_1, U_2, ..., U_{N+2}$ be the SCX-records they created, respectively. For each $i \in$
\{1, 2, ..., N + 1\}, let \(r_i \) be the Data-record for which \(S_i \) blames \(S_{i+1} \). Since no invocation of SCX is linearized after \(t \), and the vulnerable sections of \(S_1, S_2, ..., S_{N+2} \) all start after \(t \), no invocation of SCX is linearized after the first LLX(\(r \)) linked to any of these invocations of SCX. Therefore, from Lemma 88 and the fact that, for each \(i \in \{1, 2, ..., N\} \), \(S_i \) blames \(S_{i+1} \) for \(r_i \) and \(S_{i+1} \) blames \(S_{i+2} \) for \(r_{i+1} \), we obtain \(r_i \prec r_{i+1} \). By Lemma 92, before any invocation of SCX in \(\{ S_1, S_2, ..., S_{N+2} \} \) begins, \(r_1, r_2, ..., r_{N+1} \) have all been initiated. Therefore, some Data-record \(r \) appears twice in \(\{ r_1, r_2, ..., r_{N+1} \} \). Since the \(\prec \) relation is transitive, we obtain \(r \prec r \), which is a contradiction.

We now prove the main progress property for SCX.

Lemma 94 If invocations of SCX complete infinitely often, then invocations of SCX succeed infinitely often.

Proof. Suppose, to derive a contradiction, that after some time \(t' \), invocations of SCX are performed infinitely often, but no invocation of SCX is successful. Then, since we only linearize successful SCXs, and a subset of the non-terminating SCXs, there is a time \(t \geq t' \) after which no invocation of SCX is linearized. Let \(\sigma \) be the set of invocations of SCX in the execution whose vulnerable intervals start at or before \(t \). By Lemma 83 and Lemma 84, the in-degree of each node in the blame graph is bounded. Since \(\sigma \) is finite, and the in-degree of each node in \(\sigma \) is bounded, only a finite number of invocations of SCX can blame invocations in \(\sigma \). Now, consider any maximal path \(\pi \) consisting entirely of invocations of LLX, SCX, and VLX that are not in \(\sigma \). By Lemma 93.2, \(\pi \) has length at most \(N + 3 \). Since no invocation of SCX is successful after \(t \), the invocation \(S \) of SCX corresponding to the last node on path \(\pi \) must be unsuccessful. By Lemma 72, \(S \) must blame some other invocation of SCX. Since \(\pi \) is maximal, \(S \) must blame an invocation of SCX in \(\sigma \). Thus, there can be only finitely many of these paths (of bounded length). However, this contradicts our assumption that invocations of SCX occur infinitely often.

Unfortunately, since SCX cannot be invoked unless a sequence of invocations of LLX (linked to this SCX) return values different from FAIL or FINALIZED, the previous result is not strong enough unless we can guarantee that processes can invoke SCX infinitely often. To address this, we define *setting up* an invocation of SCX.

Definition 95 A process \(p \) sets up an invocation of SCX(\(V, R, \text{fld}, \text{new} \)) by invoking LLX(\(r \)) for each \(r \) in \(V \), and then invoking SCX(\(V, R, \text{fld}, \text{new} \)) if none of these LLXs return FAIL or FINALIZED.

Theorem 96 Our implementation of LLX/SCX/VLX satisfies the following progress properties.

1. If operations (LLX, SCX, VLX) are performed infinitely often, then operations succeed infinitely often.
2. If invocations of SCX are set up infinitely often, then invocations of SCX succeed infinitely often.
3. If there is always some Data-record reachable by following pointers from an entry point that is not finalized, then invocations of SCX can be set up infinitely often.

Proof. Claim 3 is obvious. The first two claims have similar proofs, by cases.

Proof of Claim 1. Suppose operations are performed infinitely often.

Case I: invocations of SCX are performed infinitely often. In this case, Lemma 94 implies that invocations of SCX will succeed infinitely often, and the claim is proved.

Case II: after some time \(t \), no invocation of SCX is performed. In this case, the blame graph contains a finite number of invocations of SCX. By Lemma 83 and Lemma 84, the in-degree of each node in the blame graph is bounded. By Lemma 68 and Lemma 70, each unsuccessful invocation of LLX or VLX blames an invocation of SCX. Therefore, only finitely many invocations of LLX and VLX can be unsuccessful. Thus, eventually, every invocation of LLX or VLX succeeds.

Proof of Claim 2. Suppose invocations of SCX are set up infinitely often.

Case I: invocations of SCX are performed infinitely often. In this case, Lemma 94 implies that invocations of SCX will succeed infinitely often, and the claim is proved.
Case II: after some time t, no invocation of SCX is performed. Suppose, to derive a contradiction, that after some time t, SCX is never invoked. Then, as we argued in Case II, above, only finitely many invocations of LLX and VLX can be unsuccessful. This implies that, after some time t', every invocation of LLX is successful. If a process p begins setting up an invocation of SCX after t', then all of its invocations of LLX will be successful, and the only way that p will not invoke SCX is if some invocation of LLX(r) by p returns Finalized. By Definition 95, p will not invoke LLX(r) next time it sets up an invocation of SCX. By Lemma 93, there are a finite number N of Data-records that are ever initiated in the execution. Therefore, eventually, p will have performed an invocation of LLX(r') that returned Finalized for every Data-record r' that is ever initiated in the execution. After this, p will no longer be able to set up invocations of SCX. This contradicts our assumption that invocations of SCX are set up infinitely often.
B Additional properties of LLX/SCX/VLX

In this section we prove some additional properties of LLX/SCX/VLX that are intended to simplify the design of certain data structures. At this level, a configuration consists of the state of each process, and a collection of Data-records (which have only mutable and immutable fields). A step is either a Read, or a linearized invocation of LLX, SCX or VLX.

Definition 97 A Data-record \(r \) is in the data structure in some configuration \(C \) if and only if \(r \) is reachable by following pointers from an entry point. We say a Data-record \(r \) is removed (from the data structure) by some step \(s \) if and only if \(r \) is in the data structure immediately before \(s \), and \(r \) is not in the data structure immediately after \(s \). We say a Data-record \(r \) is added (to the data structure) by some step \(s \) if and only if \(r \) is not in the data structure immediately before \(s \), and \(r \) is in the data structure immediately after \(s \).

Note that a Data-record can be removed from or added to the data structure only by a linearized invocation of SCX.

If the following constraint is satisfied, then the results of this section apply.

Constraint 98 For each linearized invocation \(S \) of SCX(\(V, R, fld, new \)), \(R \) contains precisely the Data-records that are removed from the data structure by \(S \).

Lemma 99 If a Data-record \(r \) is removed from the data structure for the first time by step \(s \), then no linearized invocation of SCX(\(V, R, fld, new \)), where \(fld \) is a mutable field of \(r \), occurs at or after \(s \). (Hence, \(r \) does not change at or after \(s \).)

Proof. The only step that can change \(r \) is a linearized invocation of SCX. The invocation \(S' \) of SCX(\(V', R', fld', new' \)) that removes \(r \) modifies a mutable field of some Data-record different from \(r \). Thus, \(fld' \) is not a field of \(r \). Since this is the only change to the data structure when \(s \) occurs, \(r \) does not change when \(s \) occurs. Suppose, to derive a contradiction, that an invocation \(S \) of SCX(\(V, R, fld, new \)), where \(fld \) is a mutable field of \(r \), occurs after \(s \). Then, since \(r \) is in \(V \), the precondition of SCX implies that an invocation \(I \) of LLX(\(r \)) linked to \(S \) must occur before \(S \). By Constraint 98, \(r \) is in \(R' \). Thus, if \(I \) occurs after \(S' \), then it returns FINALIZED, which contradicts Definition 7. Otherwise, \(S' \) occurs between \(I \) and \(S \), so \(S \) cannot be linearized, which contradicts our assumption.

Lemma 100 If an invocation \(I \) of LLX(\(r \)) returns a value different from Fail or FINALIZED, then \(r \) is in the data structure just before \(I \) is linearized.

Proof. By the precondition of LLX, \(r \) is initiated and, hence, in the data structure, at some point before \(I \). Suppose, to derive a contradiction, that \(r \) is not in the data structure just before \(I \) is linearized. Then, some linearized invocation of SCX(\(V, R, fld, new \)) must remove \(r \) before \(I \) is linearized. By Constraint 98, \(r \) is in \(R \). However, this implies that \(I \) must return FINALIZED, which is a contradiction.

Lemma 101 If \(S \) is a linearized invocation of SCX(\(V, R, fld, new \)), where \(new \) is a Data-record, then \(new \) is in the data structure just after \(S \).

Proof. Note that \(fld \) is a mutable field of a Data-record \(r \) in \(V \). We first show that \(r \) is in the data structure at some point before \(S \). By the precondition of SCX, before \(S \), there is an LLX(\(r \)) linked to \(S \). By the precondition of LLX, \(r \) must be initiated when this linked LLX occurs. Thus, Definition 90 and Definition 97 imply that \(r \) is in the data structure at some point before \(S \). Suppose, to derive a contradiction, that \(r \) is not in the data structure just after \(S \). Then, \(r \) must either be removed by \(S \), or by some previous step. However, this directly contradicts Lemma 99.

Let \(C_1 \) and \(C_2 \) be configurations in the execution. We use \(C_1 < C_2 \) to mean that \(C_1 \) precedes \(C_2 \) in the execution. We say \(C_1 \leq C_2 \) precisely when \(C_1 = C_2 \) or \(C_1 < C_2 \). We denote by \([C_1, C_2]\) the set of configurations \(\{C \mid C_1 \leq C \leq C_2\} \).
Lemma 102 Let $r_1, r_2, ..., r_l$ be a sequence of Data-records, where r_1 is an entry point, and $C_1, C_2, ..., C_{l-1}$ be a sequence of configurations satisfying $C_1 < C_2 < ... < C_{l-1}$. If, for each $i \in \{1, 2, ..., l-1\}$, a field of r_i points to r_{i+1} in configuration C_i, then r_{i+1} is in the data structure in some configuration in $[C_1, C_i]$. Additionally, if a mutable field f of r_l contains a value v in some configuration C_l after C_{l-1} then, in some configuration in $[C_1, C_l]$, r_l is in the data structure and f contains v.

Proof. We prove the first part of this result by induction on i.

Since each entry point is always in the data structure, and r_1 points to r_2 in configuration C_1, r_2 is in the data structure in C_1. Thus, the claim holds for $i = 1$.

Suppose the claim holds for i, $1 \leq i \leq l - 2$. We prove it holds for $i + 1$. If r_i is in the data structure when it points to r_{i+1} in C_i, then r_{i+1} is in the data structure in C_i, and we are done. Suppose r_i is not in the data structure in some configuration in $[C_1, C_{i-1}]$. Let s, $C_1 < s < C_i$, be the first step such that r_i is removed from the data structure by s. In the configuration C_i just before s, r_i is in the data structure. By Lemma 99, r_i does not change at or after s. Thus, r_i does not change after C. Since C occurs before C_i, and r_i points to r_{i+1} in C_i, r_i must point to r_{i+1} in C. Therefore, in C (which satisfies $C_1 \leq C < C_i$), r_i is in the data structure and points to r_{i+1}.

The second part of the proof is quite similar to the inductive step we just finished. Suppose f contains v in C_i. If r_l is in the data structure in C_i, then we are done. Suppose r_l is not in the data structure in C_i. We have shown above that r_l is in the data structure in some configuration in $[C_1, C_l]$. Let s', $C_1 < s' < C_l$, be the first step such that r_l is removed from the data structure by s'. In the configuration C' just before s', r_l is in the data structure. By Lemma 99, r_l does not change at or after s'. Thus, r_l does not change after C'. Since C' occurs before C_l, and f contains v in C_l, f must contain v in C'. Therefore, in C' (which satisfies $C_1 \leq C' < C_l$), r_l is in the data structure and f contains v.

41
C Complete Proof of Multiset Implementation

The full pseudocode for the multiset algorithm appears in Fig. 6. Initially, the data structure contains a head entry point, containing a single mutable field next that points to a sentinel Node with a special key ∞ that is larger than any key that can appear in the multiset.

In the following, we define the response of a SEARCH to be a step at which a value is returned. Note that we specify Lemma 103.3, instead of directly proving the considerably simpler statement in Constraint 98, so that we can reuse the intermediate results when proving linearizability.

Lemma 103 The multiset algorithm satisfies the following properties.

1. Every invocation of LLX or SCX has valid arguments, and satisfies its preconditions.
2. Every invocation of SEARCH satisfies its postconditions.
3. Let S be an invocation of SCX(V, R, fld, new) performed by an invocation I of INSERT or DELETE, and p, r and rnext refer to the local variables of I. If I performs S at line 20, then no Data-record is added or removed by S, and R = ∅. If I performs S at line 24, then only new is added by S, no Data-record is removed by S, and R = ∅. If I performs S at line 33, then only new is added by S, only r is removed by S, and R = {r}. If I performs S at line 36, then only new is added by S, only r and rnext are removed by S, and R = {r, rnext}.
4. The head entry point always points to a Node, the next pointer of each Node with key ≠ ∞ points to some Node with a strictly larger key, and the next pointer of each Node with key = ∞ is Nil.

Proof. We prove these claims by induction on the sequence of steps taken in the execution. The only steps that can affect these claims are invocations of LLX and SCX, and responses of SEARCHes. Base case. Clearly, Claim 1, Claim 2 and Claim 3 hold before any such step occurs. Before the first SCX, the data structure is in its initial configuration. Thus, Claim 4 holds before any step occurs. Inductive step. Suppose these claims hold before some step s. We prove they hold after s.

Proof of Claim 1. The only steps that can affect this claim are invocations of LLX and SCX.

Suppose s is an invocation of LLX. By inductive Claim 3 and Observation 105, Constraint 98 is satisfied at all times before s occurs. The only places in the code where s can occur are at lines 18, 22, 28, 29 and 35. Suppose s occurs at line 18, 22, 28 or 29. Then, by inductive Claim 2, argument to s is non-nil. We can apply Lemma 102 to show that the argument to s is in the data structure and, hence, initiated, at some point during the last SEARCH before s. Now, suppose s occurs at line 35 (so localr.next is the argument to s). Then, key = r.key when line 31 is performed so, by the precondition of DELETE, r.key ≠ ∞. By inductive Claim 4, r.next ≠ Nil when LLX(r) is performed at line 29, so localr.next ≠ Nil. We can apply Lemma 102 to show that localr.next is in the data structure and, hence, initialized, at some point between the start of the last SEARCH before s and the last LLX(r) before s (which reads localr.next from r.next).

Suppose s is a step that performs an invocation S of SCX(V, R, fld, new). Then, the only places in the code where s can occur are at lines 20, 24, 33 and 36. It is a trivial exercise to inspect the code of INSERT and DELETE, and argue that the process that performs s has done an LLX(r) linked to S for each r ∈ V, that R ⊆ V, and that fld points to a mutable field of a Data-record in V. It remains to prove that Precondition (2) and Precondition (3) of SCX are satisfied. Let I be the invocation of LLX(r) linked to S. Suppose s occurs at line 20. The only step that can affect the claim is a linearized invocation s of SCX(V, R, fld, new) performed at line 20. From the code, fld is r.count. Since s is linearized, no invocation of SCX(V”, R”, fld”, new”) with r ∈ V” is linearized between I and s. Thus, r.count does not change between when I and s are linearized. From the code, new = count plus the value read from r.count by I. Therefore, new is strictly larger than r.count when s was when I was linearized, which implies that new is strictly larger than r.count when s is linearized. This immediately implies Precondition (2) and Precondition (3) of SCX. Now, suppose s occurs at line 24, 33 or 36. Then, new is a pointer to a Node that was created after I. Thus, no invocation of SCX(V′, R′, fld, new) can even begin before I. We now prove that new is not the initial value of the field pointed to by fld. From the code, fld is p.next. If p.next is initially Nil, then we are done. Otherwise, p.next initially points to some Node r′. Clearly, r′ must be created before p. Hence, r′
must be created before the invocation of SEARCH followed a pointer to p. Since new is a pointer to a Node that is created after this invocation of SEARCH, new $\neq r'$.

Proof of Claim 2. To affect this claim, s must be the response of an invocation of SEARCH(key). We prove a loop invariant that states r is a Node, and either p is a Node and $p.key < key$ or $p = head$. Before the loop, $p = head$ and $r = head.next$. By inductive Claim 4 head.next is always a Node, so the claim holds before the loop. Suppose the claim holds at the beginning of an iteration. Let r and p be the respective values of local variables r and p at the beginning of the iteration, and r' and p' be their values at the end of the iteration. From the code, $p' = r$ and r' is the value read from $r.next$ at line 12. By the inductive hypothesis, p' is a Node. Since the loop did not exit before this iteration, $key > p'.key$. Further, since SEARCH(key) is invoked only when $key < \infty$ (by inspection of the code and preconditions), $p'.key < \infty$. By inductive Claim 4, $p'.next = r.next$ always points to a Node, so r' is a Node, and the inductive claim holds at the end of the iteration. Finally, the exit condition of the loop implies $key \leq r'.key$, so SEARCH satisfies its postcondition.

Proof of Claim 3. Since a Data-record can be removed from the data structure only by a change to a mutable field of some other Data-record, this claim can be affected only by linearized invocations of SCX. Suppose s is a linearized invocation of SCX(V,R,fld,new). Then, s can occur only at line 20, 24, 33 or 36. Let I be the invocation of INSERT or DELETE in which s occurs. We proceed by cases.

Suppose s occurs at line 20. Then, fld is a pointer to $r.count$. Thus, s changes a count field, not a next pointer. Since this is the only change that is made by s, no Data-record is removed by s, and no Data-record is added by s. Since $R = \emptyset$, the claim holds.

Suppose s occurs at line 24. Then, fld is a pointer to $p.next$, and new is a pointer to a new Node. Before performing s, I performs an invocation L_1 of LLX(p), which returns a value different from FAIL, or FINALIZED, at line 28. Just after performing L_1, I sees that localp.next = r. Note that L_1 is linked to s. Since s is linearized, and $p \in V$, $p.next$ does not change in between when L_1 and s are linearized. Therefore, s changes $p.next$ from r to point to a new Node whose next pointer points to r. Since s is linearized, Lemma 99 implies that p must be in the data structure just before s (and when its change occurs). Since this is the only change that is made by s, no Data-record is removed by s, and new points to the only Data-record that is added by s. Since $R = \emptyset$, the claim holds.

Suppose s occurs at line 33 or line 36. Then, fld is a pointer to $p.next$, and new is a pointer to a new Node. Before performing s, I performs invocations L_1 and L_2 of LLX(p) and LLX(r), respectively, which each return a value different from FAIL, or FINALIZED. Note that L_1 and L_2 are linked to s. Just after performing L_1, I sees that localp.next = r. Since s is linearized, and $p \in V$, $p.next$ does not change in between when L_1 and s are linearized. Similarly, since $r \in V$, $r.next$ does not change between when L_1 and s are linearized. Before s, I sees key = $r.key$ at line 31. By the precondition of DELETE, $r.key \neq \infty$. Thus, inductive Claim 4 (and the fact that keys do not change) implies that $r.next$ points to some Node $rnext = localp.next$ at all times between when L_2 and s are linearized. We consider two sub-cases.

Case I: s occurs at line 33. Therefore, s changes $p.next$ from r to point to a new Node whose next pointer points to $rnext$ and, when this change occurs, $r.next$ points to $rnext$. Since s is linearized, Lemma 99 implies that p must be in the data structure just before s (and when its change occurs). Since this is the only change that is made by s, r points to the only Data-record that is removed by s, and new points to the only Data-record that is added by s. Since $R = \{r\}$, the claim holds.

Case II: s occurs at line 36. Since $rnext \in V$, $rnext.next$ does not change between when the LLX at line 35 and s are linearized. Thus, $rnext.next$ contains the same value v throughout this time. Therefore, s changes $p.next$ from r to point to a new Node whose next pointer contains v and, when this change occurs, $p.next$ points to r, $r.next$ points to $rnext$, and $rnext.next$ contains v. Since s is linearized, Lemma 99 implies that p must be in the data structure just before s (and when its change occurs). Since this is the only change that is made by s, r and $rnext$ point to the only Data-records that are removed by s, and new points to the only Data-record that is added by s. Since $R = \{r\$, the claim holds.

Proof of Claim 4. This claim can be affected only by a linearized invocation of SCX that changes a next pointer. Suppose s is a linearized invocation of SCX(V,R,fld,new). Then, s can occur only at line 24, 33 or 36. We argued in the proof of Claim 3 that, in each of these cases, s changes $p.next$ from r to point to
a new Node, and that this is the only change that it makes. Let \(I \) be the invocation of \textsc{Insert} or \textsc{Delete} in which \(s \) occurs.

Suppose \(s \) occurs at line 33. We argued in the proof of Claim 3 that, at all times between when the \textsc{LLX}(\(r \)) at line 29 and \(s \) are linearized, \(p.next \) points to \(r \) and \(r.next \) points to some Node \(rnext \). Therefore, \(new.key = r.key \) and \(new.next \) points to \(rnext \). We show \(r \) is a Node (and not the head entry point), and \(r.key \neq \infty \). Since \(r.next \) points to a Node \(rnext \neq \text{Nil} \), \(r \neq \text{Nil} \) and \(r.key \neq \infty \) (by the inductive hypothesis). Similarly, since \(p.next \) points to \(r \), either \(r = \text{Nil} \) or \(r \) is a Node, so we are done. Since \(r.next \) points to \(rnext \) just before \(s \) is linearized, setting \(new.next \) to point to \(rnext \) does not violate the inductive hypothesis. Since \(p.next \) points to \(r \), the inductive hypothesis implies that either \(p \) is the head entry point or \(p.key < r.key \). Clearly, setting \(p.next \) to point to \(new \) does not violate the inductive hypothesis in either case.

Suppose \(s \) occurs at line 24. Then, \(new.key = key \) and \(new.next \) points to \(r \). Before \(s \), \(I \) invokes \textsc{Search}(\(key \)) at line 16, and then sees \(key \neq r.key \) at line 17. By inductive Claim 2, this invocation of \textsc{Search} satisfies its postconditions, which implies that \(r \) points to a Node which satisfies \(key < r.key \). Since \textsc{Search}(\(key \)) is invoked only when \(key < \infty \) (by inspection of the code and preconditions), \(key < \infty \). Thus, setting \(new.next \) to point to \(r \) does not violate the inductive hypothesis. The post conditions of \textsc{Search} also imply that either \(p \) is a Node and \(p.key < key \) or \(p = \text{head} \). Therefore, setting \(p.next \) to point to \(new \) does not violate the inductive hypothesis.

Suppose \(s \) occurs at line 36. We argued in the proof of Claim 3 that, at all times between when the \textsc{LLX}(\(r \)) at line 29 and \(s \) are linearized, \(p.next \) points to \(r \), \(r.next \) points to some Node \(rnext \) (pointed to by \textsc{localr.next}) and \(rnext.next \) points to some Node \(rnext' \). Thus, \(new.key = rnext.key \) and \(new.next \) points to \(rnext' \). Since \(rnext.next \) points to a Node \(rnext' \), \(rnext.key < \infty \) (by the inductive hypothesis). Therefore, since \(rnext.next \) points to \(rnext' \) just before \(s \), setting \(new.next \) to point to \(rnext' \) does not violate the inductive hypothesis. By the inductive hypothesis, either \(p \) is the head entry point, or \(p.key < r.key < rnext.key = new.key < \infty \). Clearly, setting \(p.next \) to point to \(new \) does not violate the inductive hypothesis in either case.

Corollary 104 The head entry point always points to a sorted list with strictly increasing keys.

Proof. Immediate from Lemma 103.4.

Observation 105 Lemma 103.3 implies Constraint 98.

We now argue that the multiset algorithm satisfies a constraint placed on the use of \textsc{LLX} and \textsc{SCX}. This constraint is used to guarantee progress for \textsc{SCX}.

Observation 106 Consider any execution that contains a configuration \(C \) after which no field of any Data-record changes. There is a total order on all Data-records created during this execution such that, if Data-record \(r_1 \) appears before Data-record \(r_2 \) in the sequence \(V \) passed to an invocation \(S \) of \textsc{SCX} whose linked \textsc{LLX}s begin after \(C \), then \(r_1 < r_2 \).

Proof. Since the \textsc{LLX}s linked to \(S \) begin after \(C \), it follows immediately from the multiset code that \(V \) is a subsequence of nodes in the list. By Corollary 104, they occur in order of strictly increasing keys, so \(r_1 \) before \(r_2 \) in \(V \) implies \(r_1.key < r_2.key \). Thus, we take the total order on keys to be our total order.

Definition 107 The number of occurrences of \(key \neq \infty \) in the data structure at time \(t \) is count if there is a Data-record \(r \) in the data structure at time \(t \) such that \(r.key = key \) and \(r.count = count \), and zero, otherwise.

We call an invocation of \textsc{Insert} or \textsc{Delete} effective if it performs a linearized invocation of \textsc{SCX} (which either returns \textsc{True}, or does not terminate). From the code of \textsc{Insert} and \textsc{Delete}, each effective invocation of \textsc{Insert} or \textsc{Delete} performs exactly one linearized invocation of \textsc{SCX}, each invocation of \textsc{Insert} that returns is effective, and each invocation of \textsc{Delete} that returns \textsc{True} is effective. We linearize
each effective invocation of INSERT or DELETE at its linearized invocation of SCX. The linearization point for an invocation I of DELETE($key, count$) that returns FALSE is subtle. Suppose I returns FALSE after seeing $r.key \neq key$. Then, we must linearize it at a time when the nodes p and r returned by its invocation I' of SEARCH are both in the data structure and $p.next$ points to r. By Observation 105, Constraint 98 is satisfied. This means we can apply Lemma 102 to show that there is a time during I' when p is in the data structure and $p.next = r$ (so r is also in the data structure). We linearize I at the last such time. Now, suppose I returns FALSE after seeing $r.count < count$. Then, we must linearize it at a time when the node r returned by its invocation I' of SEARCH is both in the data structure, and satisfies $r.count < count$. As in the previous case, we can apply Lemma 102 to show that there is a time after the start of I', and at or before when I reads a value v from $r.count$ at line 31, such that r is in the data structure and $r.count = v$.

We linearize I at the last such time. Similarly, we linearize each GET at the last time after the start of the SEARCH in GET, and at or before when the GET reads a value v from $r.count$, such that r is in the data structure and $r.count = v$. Clearly, each operation is linearized during that operation.

Lemma 108 At all times t, the multiset σ of keys in the data structure is equal to the multiset σ_L of keys that would result from the atomic execution of the sequence of operations linearized up to time t.

Proof. We prove this claim by induction on the sequence of steps taken in the execution. Since next pointers and count fields can be changed only by linearized invocations of SCX (and key fields do not change), we need only consider linearized invocations of SCX when reasoning about σ. Thus, invocations of INSERT and DELETE that are not effective cannot change the data structure. Since invocations of GET do not invoke SCX, they cannot change the data structure. Therefore, we need only consider effective invocations of INSERT and DELETE when reasoning about σ_L. Since each effective invocation of INSERT or DELETE is linearized at its linearized invocation of SCX, the steps that can affect σ and σ_L are exactly the same. Base case. Before any linearized SCX has occurred, no next pointer has been changed. Thus, the data structure is in its initial configuration, which implies $\sigma = \emptyset$. Since no effective invocation of INSERT or DELETE has been linearized, $\sigma_L = \emptyset$. Inductive step. Let s be a linearized invocation S of SCX(V, R, fld, new), I be the (effective) invocation of INSERT or DELETE that performs S, and p, r and $r.next$ refer to the local variables of I. Suppose $\sigma = \sigma_L$ before s. Let σ' denote σ after s, and σ'_L denote σ_L after s. We prove $\sigma' = \sigma'_L$.

Suppose S is performed at line 20. Then, I is an invocation of INSERT($key, count$), and $\sigma'_L = \sigma_L + \{\text{count copies of } key\}$. By Lemma 103.3, no Data-record is added or removed by S. Before I performs S, I performs an invocation L of LLX(r) linked to S at line 18. Since S is linearized, no mutable field of r changes between when L and S are linearized. Therefore, the value localr.count that L reads from $r.count$ is equal to the value of $r.count$ at all times between when L and S are linearized, and line 20 implies that S changes $r.count$ from localr.count to localr.count + count. Since S is linearized, Lemma 99 implies that r must be in the data structure just before S is linearized. By Lemma 103.4, r is the only Node in the data structure with key key, so σ contains exactly v copies of key just before S is linearized. Since this is the only change made by S, $\sigma' = \sigma + \{\text{count copies of } key\}$, and the inductive hypothesis implies $\sigma' = \sigma'_L$.

Suppose S is performed at line 24. Then, I is an invocation of INSERT($key, count$), and $\sigma'_L = \sigma_L + \{\text{count copies of } key\}$. By Lemma 103.3, no Data-record is removed by S, and only new is added by S. From the code of INSERT, new.key = key and new.count = count. Therefore, $\sigma' = \sigma + \{\text{count copies of } key\}$, and the inductive hypothesis implies $\sigma' = \sigma'_L$.

Suppose S is performed at line 33. Then, I is an invocation of DELETE($key, count$). Before I performs S, I performs an invocation L of LLX(r) linked to S at line 29. Since S is linearized, no mutable field of r changes between when L and S are linearized. Thus, the value localr.count that L reads from $r.count$ is equal to the value of $r.count$ at all times between when L and S are linearized. This implies that I sees $r.key = key$ and $r.count \geq count$ at line 31. By Lemma 103.3, r is the only Data-record removed by S, and new is the only Data-record added by S. By Definition 97, r must be in the data structure just before S is linearized. By Lemma 103.4, r is the only Node in the data structure with key key. Hence, σ contains exactly localr.count copies of key just before S is linearized. From the code of DELETE, new.key = r.key and new.count = localr.count − count. Therefore, $\sigma' = \sigma - \{\text{count copies of } key\}$. By the inductive hypothesis, $\sigma = \sigma_L$. Thus, there are localr.count \geq count copies of key in σ_L. Therefore, if I is performed atomically at its linearization point, it will enter the if-block at line 32, so $\sigma'_L = \sigma_L - \{\text{count copies of } key\} = \sigma'$. 45
Suppose \(S \) is performed at line 36. Then, \(I \) is an invocation of \(\text{DELETE}(key, count) \). Before \(I \) performs \(S, I \) performs an invocation \(L \) of \(\text{LLX}(r) \) linked to \(S \) at line 29. Since \(S \) is linearized, no mutable field of \(r \) changes between when \(L \) and \(S \) are linearized. Thus, the value \(\text{localr.count} \) that \(L \) reads from \(r.count \) is equal to the value of \(r.count \) at all times between when \(L \) and \(S \) are linearized. This implies that \(I \) sees \(r.key = key \) and \(r.count \geq count \) at line 31, and \(count \geq r.count \) at line 32. Hence, \(r.count = count \) at all times between when \(L \) and \(S \) are linearized. Let \(rnext \) be the Node pointed to by \(I \)'s local variable \(\text{localr.next} \). (We know \(rnext \) is a Node, and not \(\text{Nil} \), from \(r.key = key < \infty \) and Lemma 103.4.) After \(L, I \) performs an invocation \(L' \) of \(\text{LLX}(rnext) \) linked to \(S \) at line 35. By the same argument as for \(r.count \), the value \(v \) that \(L' \) reads from \(rnext.count \) is equal to the value of \(rnext.count \) at all times between when \(L' \) and \(S \) are linearized. By Lemma 103.3, \(r \) and \(rnext \) are the only Data-records removed by \(S \), and \(new \) is the only Data-record added by \(S \). By Definition 97, \(r \) and \(rnext \) must be in the data structure just before \(S \). By Lemma 103.4, \(r \) is the only Node in the data structure with key \(key \), and \(rnext \) is the only Node in the data structure with its key. Hence, \(\sigma \) contains exactly \(r.count = count \) copies of \(key \), and exactly \(v \) copies of \(rnext.key \). From the code of \(\text{DELETE} \), \(\text{new.key} = rnext.key \) and \(\text{new.count} = rnext.count = v \). Therefore, \(\sigma' = \sigma - \{ \text{count} \text{ copies of } key \} \). By the inductive hypothesis, \(\sigma = \sigma_L \). Thus, there are exactly \(count \) copies of \(key \) just before \(I \) in the linearized execution. From the code of \(\text{DELETE} \), in the linearized execution, \(I \) will enter the else block at line 34, so \(\sigma'_L = \sigma_L - \{ \text{count} \text{ copies of } key \} = \sigma' \).

Lemma 109 Each invocation of \(\text{GET}(key) \) that terminates returns the number of occurrences of \(key \) in the data structure just before it is linearized.

Proof. Consider any invocation \(I \) of \(\text{GET}(key) \). Let \(I' \) be the invocation of \(\text{SEARCH}(key) \) performed by \(\text{GET}(key) \), and \(p \) and \(r \) refer to the local variables of \(I' \). By Lemma 103.2, \(I' \) satisfies its postcondition, which means that \(key \leq r.key \), and either \(p.key < key \) or \(p = \text{head} \). We proceed by cases. Suppose \(key = r.key \). Then, after \(I' \), \(I \) reads a value \(v \) from \(r.count \) and returns \(v \). By Observation 105, Constraint 98 is satisfied. By Lemma 102, there is a time after the start of \(I' \), and at or before when \(I \) reads \(r.count \), such that \(r \) is in the data structure and \(r.count = v \). \(I \) is linearized at the last such time. By Corollary 104, \(r \) is the only Data-record in the list that contains key \(key \). Suppose that either \(key < r.key \) and \(p = \text{head} \), or \(key < r.key \) and \(p.key < key \). Then, \(I \) returns zero. By Lemma 102, at sometime during \(I' \), \(p \) was in the data structure and \(p.next \) pointed to \(r \). \(I \) is linearized at the last such time. By Corollary 104, the data structure contains no occurrences of \(key \) when \(I \) is linearized.

Lemma 110 Each invocation \(I \) of \(\text{DELETE}(key, count) \) that terminates returns True if the data structure contains at least \(count \) occurrences of \(key \) just before \(I \) is linearized, and False otherwise.

Proof. **Case I:** \(I \) returns False. In this case, \(I \) satisfies \(key \neq r.key \) or \(\text{localr.count} < count \) at line 31. Suppose \(key \neq r.key \). Then, by the postcondition of \(\text{SEARCH} \), \(key < r.key \), and either \(p.key < key \) or \(p = \text{head} \). By Observation 105, Constraint 98 is satisfied. By Lemma 102, there is a time during the preceding invocation \(I' \) of \(\text{SEARCH} \), when \(p \) was in the data structure and \(p.next \) pointed to \(r \). \(I \) is linearized at the last such time. Corollary 104 implies that there are no occurrences of \(key \) in the data structure when \(I \) is linearized. By the precondition of \(\text{DELETE} \), \(count > 0 \), so the claim is satisfied.

Now, suppose \(\text{localr.count} < count \) at line 31. By Lemma 102, there is a time after the start of \(I' \), and before \(I' \)'s \(\text{LLX}(r) \) reads \(\text{localr.count} \) from \(r.count \), such that \(r \) is in the data structure and \(r.count = \text{localr.count} \). \(I \) is linearized at the last such time. By Corollary 104, \(r \) is the only Data-record in the list that contains key \(key \), so there are \(r.count < count \) occurrences of \(r.key = key \) in the data structure when \(I \) is linearized.

Case II: \(I \) returns True. In this case, \(I \) satisfies \(key = r.key \) and \(\text{localr.count} \geq count \) at line 31, and \(I \) is linearized at an invocation \(S \) of \(\text{SCX} \) at line 33 or 36. In each case, Lemma 103.3 implies that \(r \) is removed by \(S \), so \(r \) is in the data structure just before \(S \) is linearized. Hence, \(r \) is in the data structure just before \(I \) is linearized. Before \(I \) performs \(S, I \) performs an invocation \(L \) of \(\text{LLX}(r) \) linked to \(S \) at line 29 that reads \(\text{localr.count} \) from \(r.count \). Since \(S \) is linearized, no mutable field of \(r \) changes between when \(L \) and \(S \) are linearized. Therefore, the value of \(\text{localr.count} \) is equal to the value of \(r.count \) at all times between when \(L \)
and S are linearized. Thus, just before I is linearized, r is in the data structure and $r.count \geq count$. Finally, Corollary 104 implies that r is the only Data-record in the list that contains key key, so the claim holds.

We now prove that our algorithm satisfies an assumption that we made in the paper.

Lemma 111 No process performs more than one invocation of $LLX(r)$ that returns $Finalized$, for any Data-record r.

Proof. Let r be a Data-record. Suppose, to derive a contradiction, that a process p performs two invocations L and L' of $LLX(r)$ that return $Finalized$. Without loss of generality, let L occur before L'. From the code of $Insert$ and $Delete$, p must perform an invocation of $Search$, L, another invocation I of $Search$, and then L'. Since L returns $Finalized$, it is linearized after an invocation S of $SCX(V, R, fld, new)$ with $r \in R$. By Lemma 103.3, r is removed from the data structure by S. We now show that r cannot be added back into the data structure by any subsequent invocation of SCX. From the code of $Insert$ and $Delete$, each invocation of $SCX(V', R', fld', new')$ that changes a next pointer is passed a newly created Node, that is not known to any other process, as its new' argument. This implies that new' is not initiated, and cannot have previously been removed from the data structure. Therefore, r is not in the data structure at any point during I. By Observation 105, Constraint 98 is satisfied. By Lemma 102, r is in the data structure at some point during I, which is a contradiction.

Lemma 112 If operations ($Insert$, $Delete$ and Get) are invoked infinitely often, then operations complete infinitely often.

Proof. Suppose, to derive a contradiction, that operations are invoked infinitely often but, after some time t, no operation completes. If SCXs are performed infinitely often, then they will succeed infinitely often and, hence, operations will succeed infinitely often. Thus, there must be some time $t' \geq t$ after which no SCX is performed. Then, after t', the data structure does not change, and only a finite number of nodes with keys different from ∞ are ever added to the data structure. Consider an invocation I of $Search(key)$ that is executing after t'. Each time I performs line 12, it reads a Node $rnext$ from $r.next$, and $rnext.key > r.key$. Therefore, by Corollary 104, I will eventually see $r.key = \infty$ at line 10. This implies that every invocation of Get eventually completes. Therefore, $Insert$ and $Delete$ must be invoked infinitely often after t'. From the code of $Insert$ ($Delete$), in each iteration of the while loop, a $Search$ is performed, followed by a sequence of LLXs. If these LLXs all return values different from $Fail$ or $Finalized$, then an invocation of SCX is performed. Since every invocation of $Search$ eventually completes, Definition 95 implies that invocations of SCX are set up infinitely often. Thus, invocations of SCX succeed infinitely often. From the code of $Insert$ and $Delete$, after performing a successful invocation of SCX, an invocation of $Insert$ or $Delete$ will immediately return.