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Abstract: This article discusses the development of a
mobile bus-mounted machine vision system for transit
and traffic monitoring in urban corridors, as required by
intelligent transportation systems. In contrast to earlier
machine vision technologies used for traffic management,
which rely mainly on fixed-point detection and simpler
algorithms to detect certain traffic characteristics, the new
proposed approach makes use of a recent trend in com-
puter vision research; namely, the active vision paradigm.
Active vision systems have mechanisms that can actively
control camera parameters such as orientation, focus,
zoom, and vergence in response to the requirements of the
task and external stimuli. Mounting active vision systems
on buses will have the advantage of providing real-time
feedback of the current traffic conditions, while possess-
ing the intelligence and visual skills that allow them to
interact with a rapidly changing dynamic environment,
such as moving traffic and continuously changing image
background.

1 INTRODUCTION

Machine vision and video technologies are becoming in-
creasingly popular in intelligent transportation systems

∗To whom correspondence should be addressed. E-mail: tamer@cs.
utoronto.ca.

(ITS) applications. Traffic surveillance and incident de-
tection and management constitute the most widespread
uses of video technology, whereas machine vision pro-
cessing of license plate images for purposes of electronic
toll enforcement makes up most of the other common ap-
plications. Recently, these technologies have been used
in adaptive traffic signal control systems, for monitoring
speeds, and for collecting travel time data.

ITS is an emerging global industry that capitalizes on
advanced technologies to better manage the dynamic,
overcongested transportation networks of today. The
current ITS boom has given rise to the need for a compre-
hensive real-time surveillance of traffic conditions over
the transportation network to allow for dynamic con-
trol and management of traffic. Existing traffic detection
technologies cover a wide spectrum of technologies as
well as performance, ranging from modest pavement-
buried inductive loop detectors to more advanced pole-
mounted off-road detectors such as microwave, radar,
and camera-based detectors. All existing detector types,
however, share a common limitation of being point de-
tectors reflecting only traffic conditions at the locations
of the detectors.

Many ITS applications require the collection of traffic
data over an extended time period at one or more loca-
tions. Wide area video traffic surveillance is one such
example. Such applications require the installation of
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numerous video cameras along with communications in-
frastructure to transmit video images to a Traffic or Tran-
sit Management Center (TMC) housing computer and
video equipment for data processing and dissemination
of information or control. In contrast, other applications
require video images to be collected by means of tripod-
mounted camcorders, with the images stored on video-
tape for subsequent viewing or machine vision process-
ing (Shuldiner, 1999).

In the past, vehicle-mounted machine vision technolo-
gies have been employed extensively in a variety of ap-
plications that deal mainly with intelligent vehicle (IV)
systems and automatic vehicle driving (AVD). AVD is
a generic term used to address a technique aimed at au-
tomating, entirely or in part, one or more driving tasks.
The main challenges that AVD techniques have to con-
tend with include: the possibility to follow the road and
keep within the right lane, maintaining a safe distance be-
tween vehicles, adjusting the vehicle’s speed according
to traffic conditions and road characteristics, changing
lanes to overtake vehicles and avoid obstacles, helping
to find the correct and shortest route to a destination, and
the movement and parking within urban environments
(Broggi et al., 1998). Unlike existing technologies, our
research focuses on integrated development of a wide-
area mobile-surveillance system, where the tracker (the
vision system on the bus), the target (traffic in the cam-
era view) and the processing tools (computer, systems,
and algorithms) are all in a mobile environment, posing
new challenges to be addressed.

2 THE BUS-MOUNTED ACTIVE VISION SYSTEM

In this project, we develop a binocular machine vision
system, mounted on buses in an urban corridor, to dy-
namically monitor traffic conditions along the corridor.
Although the concept of using buses as probes of traf-
fic conditions has recently gained considerable momen-
tum, the use of mobile vision technology as proposed in
this work has not been investigated to the best of our
knowledge. Stationary real-time monocular machine vi-
sion systems have recently been developed for tracking
vehicles under congested conditions for the purpose of
traffic management (Beymer et al., 1997).

From a technical perspective, our machine-vision-
based approach is active and dynamic, as both the track-
ing agent and the targets are mobile in a dynamic envi-
ronment. The level of complexity is significantly higher
than the case of pole-mounted video technology, where
the camera and the background are both practically
static, which mainly relies on passive-vision techniques
to detect moving traffic objects and characteristics. The
proposed approach employs recent trends in computer

vision research, namely, the active vision paradigm. Ac-
tive vision systems have mechanisms that can actively
control camera parameters such as orientation, focus,
zoom, and vergence in response to the requirements of
the task and external stimuli.

Mounting active vision systems on buses has the ad-
vantage of providing real-time network-wide feedback
of the current traffic conditions while possessing the in-
telligence and visual skills that allow them to interact
with a rapidly changing dynamic environment, such as
moving traffic. The main approach is to stabilize the vi-
sual field of view of the camera system by compensat-
ing for the vibrations due to the motion of the bus. This
can be achieved by computing the displacement between
successive video image frames and updating the gaze an-
gles of the camera to cancel out this displacement, which
can be computed as a translational offset in the image co-
ordinate system. Once the video image stream is stable,
the next task is to detect and track vehicles that appear
in the camera field of view. The relative speed of vehi-
cles with respect to the speed of the bus can be estimated
by tracking the motion of vehicles between frames. An
accurate estimate of traffic speed can be obtained from
the knowledge of the speed of the camera, which has
the same speed as the bus, and the relative speeds esti-
mated from the video images. Further traffic character-
istics such as density and the presence of incidents can
also be deduced from the image sequence.

2.1 Technical rationale and approach

Components similar to the bus-mounted machine vi-
sion system are currently available in other fields. In
particular, recent research carried out by Rabie and
Terzopoulos (1996, 1997, 1998) on active vision in a
simulated 3D virtual environment has enabled a new
paradigm for computer vision research that is called “an-
imat vision.” The essence of the concept is to implement
active vision systems allowing virtual animal robots (or
animats) to understand perceptually the realistic virtual
worlds in which they are situated, so that they may inter-
act effectively with other animats situated within these
worlds. A set of active vision algorithms have success-
fully been implemented, within the animat vision frame-
work, that integrate motion, stereo, and color analysis.
These algorithms support robust color-object tracking,
vision-guided navigation, visual perception, and obsta-
cle recognition and avoidance abilities, enabling the an-
imat to better understand and interact with its dynamic
virtual environment. It should be pointed out that the
images acquired by the animats are 2D projections of
the simulated 3D virtual world using computer graphics
camera models. In comparison, the images acquired by
the bus-mounted vision cameras are real-world images.
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We are combining the stereo, motion, and color algo-
rithms together with a robust tracking algorithm, namely,
the KLT (Kanade–Lucas–Tomasi) feature tracker, to in-
crease the robustness and functionality of our overall
vision system. The KLT feature tracker is based on the
early work of Lucas and Kanade (1981), and later devel-
oped fully by Tomasi and Kanade (1991). The only pub-
lished and readily accessible description of this tracker
is contained in an article by Shi and Tomasi (1994). The
final bus-mounted vision system is designed to be able to
detect moving targets of interest (moving vehicles) and
segment their region of support using motion detection
and optical-flow estimation. It then changes its stereo
camera gaze angles to fixate the detected target of in-
terest. With the target inside the left and right camera’s
field of view, the feature tracker algorithm takes control
to keep the moving target fixated and in view. Track-
ing also facilitates the estimation of the relative speed
of the tracked vehicle. The stereo algorithm estimates
the relative distance between the bus-mounted cameras
and vehicles visible in front of the bus. These distances
are used by the tracker to filter out undesirable features
(disconnected features and features on objects that are
too close to the bus), and focus on tracking features that
belong to the same vehicle.

Fig. 1. The prototype bus-mounted active vision system diagram.

This research builds on existing and tested vision tech-
niques as a starting point from which we continue fur-
ther development, augmenting them with enhancements
suitable for the new application at hand.

2.2 The prototype bus-mounted vision system

The bus-mounted vision system, which was briefly dis-
cussed in Rabie et al. (2002), consists of two main mod-
ules: the motion stabilization module and the stereo-
tracking module, as shown in Figure 1. Together they
implement a gaze control capability that enables the
camera system to stabilize the visual world due to vi-
brations caused by the motion of the bus, as well as to
detect visual targets in the camera field of view, change
the gaze to lock them in, and visually track them between
image frames. Disparities between the stabilized left and
right camera images are estimated by the stereo-tracking
module, thus giving an estimate of the relative distance
to objects in the image.

2.3 Visual field stabilization using optical flow

It is necessary to stabilize the visual field of the stereo
camera system because of the continuous motion of the
bus. The optokinetic reflex in animals stabilizes vision by
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measuring image motion and producing compensatory
eye movements. Stabilization is achieved by computing
the displacement between successive image frames and
updating the camera gaze angles by this displacement
offset. The displacement is computed as a translational
offset in the image frame coordinate system by a least-
squares minimization of the optical flow constraint equa-
tion between image frames at times t and t − 1 (Burt et al.,
1989; Irani et al., 1994). Given a sequence of time-varying
images, points imaged on the retina appear to move be-
cause of the relative motion between the eye and ob-
jects in the scene (Gibson, 1979). The instantaneous
velocity vector field of this apparent motion is usually
called optical flow (Ballard and Brown, 1982). Optical
flow can provide important information about the spa-
tial arrangement of objects viewed and the rate of change
of this arrangement (Horn, 1986). Various techniques
for determining optical flow from a sequence of two or
more frames have been proposed in the literature (Horn
and Schunck, 1981; Anandan, 1989; Lucas and Kanade,
1981). The optical flow constraint equation is given by
(Horn, 1986)

uIx + vIy + It = 0 (1)

where (Ix , Iy , It )T is the spatiotemporal image intensity
gradient given as ( ∂I

∂x , ∂I
∂y , ∂I

∂t )T. Values of (u, v) satisfying
this constraint equation lie on a straight line in velocity
space. The image intensity is computed as

I(x, y, t) = 1
3

[R(x, y, t) + G(x, y, t) + B(x, y, t)] (2)

where R, G, and B denote the color component channels.
The error function

E(u, v) =
∑

x,y∈fovea

(uIx + vIy + It )2 (3)

is minimized by simultaneously solving the two equa-
tions ∂E/∂u = 0 and ∂E/∂v = 0 for the image displace-
ment (u, v).

Optical flow, once reliably estimated, can be very use-
ful in various computer vision applications. Discontinu-
ities in the optical flow can be used in segmenting images
into moving objects (Burt et al., 1989; Irani and Peleg,
1992). Navigation using optical flow and estimation of
time-to-collision maps have been discussed in Campani
et al. (1995) and Meyer and Bouthemy (1992).

Once the camera’s visual view is stabilized against any
vibrations, the camera gaze is redirected at a moving tar-
get of interest. Redirecting gaze when a target of interest
appears in the image frame can be a complex task. One
solution would be to section the peripheral image into
smaller patches or focal probes (Burt et al., 1989) and
search all the probes for large motion fields. The strat-
egy would work well for sufficiently small images, but for

dynamic vision systems that must process natural images,
this approach is not effective. We are exploring a method
based on motion cues to help narrow down the search for
a suitable gaze direction. We first create a saliency image
consisting of the optical flow field between two stabilized
image frames. The saliency image is then convolved with
a circular disk of area equal to the expected area of the
target object of interest as it appears in the image frame.
Reasonably, small areas suffice because objects in the im-
age frame are typically small in front of the bus-mounted
camera. Methods for estimating appropriate areas for
the object, such as Jagersand’s information theoretic ap-
proach (Jagersand, 1995), may be applied. The blurring
of the saliency image emphasizes moving objects in the
image. The maximum in the blurred saliency image is
taken as the location of the fastest moving object and
serves as the new gaze direction for the stereo camera
system.

3 TARGET TRACKING

Once the stereo camera system has been redirected to
gaze at an appropriate target, the stereo-tracking mod-
ule assumes the task of selecting good features from the
current image frame, consistently tracking these features
over time. Tracking moving objects in video streams has
been a popular topic in the field of computer vision in
the last few years. The different tracking techniques for
video data can be classified into four main approaches:

1. 3D Model-Based Tracking: Three-dimensional
model-based vehicle-tracking systems have previ-
ously been investigated in the literature (Koller
et al., 1993; Baker and Sullivan, 1992). The emphasis
is on recovering trajectories and models with high
accuracy for a small number of vehicles. The most
serious weakness of this approach is the reliance on
detailed geometric object models. It is unrealistic
to expect to be able to have detailed models for all
vehicles that could be found on the roadway.

2. Region-Based Tracking: The idea here is to iden-
tify a connected region in the image associated
with each vehicle and then track this region over
time using a cross-correlation measure. Initializa-
tion of the process is most easily done by subtract-
ing the background scene from the acquired image.
A Kalman filter-based adaptive background model
allows the background estimate to evolve while
the weather and time of day affect lighting condi-
tions. Foreground objects (vehicles) are detected by
subtracting the incoming image from the current
background estimate, looking for pixels where this
difference image is above some threshold and then
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finding connected components (Gloyer et al., 1994).
This approach works fairly well in free-flowing traf-
fic. However, under congested traffic conditions, ve-
hicles partially occlude one another instead of being
spatially isolated, which makes the task of segment-
ing individual vehicles difficult. Such vehicles will
become grouped together as one large blob in the
foreground image.

3. Active Contour-Based Tracking: A dual to the
region-based approach is tracking based on active
contour models, or snakes (Kass et al., 1987). The
idea is to have a representation of the bounding con-
tour of the object and keep dynamically updating it.
The advantage of having a contour-based represen-
tation instead of a region-based representation is
reduced computational complexity. However, the
inability to segment vehicles that are partially oc-
cluded remains. If one could initialize a separate
contour for each vehicle, then one could track even
in the presence of partial occlusion (Beymer et al.,
1997).

4. Feature-Based Tracking: Finally, yet another ap-
proach to tracking abandons the idea of tracking
objects as a whole, but instead tracks subfeatures
such as distinguishable points or lines on the ob-
ject. The advantage of this approach is that even in
the presence of partial occlusion, some of the sub-
features of the moving object remain visible. The
technology of tracking points and line features is de-
veloped fully as the KLT feature tracker by Tomasi
and Kanade (1991).

For our specific application, we require efficiency, ro-
bustness to occlusion, and real-time tracking at all times.
The feature-based tracking approach, described above,

Fig. 2. An image from a single bus-mounted camera. Difference images I�(t) = |I(t) − I(t − 1)| are fed
to the KLT feature-tracking algorithm instead of the actual images.

satisfies our requirements. We, thus, incorporate the KLT
feature tracker into the stereo-tracking module. This
tracker locates good features by examining the minimum
eigenvalue of each 2 by 2 image-gradient matrix, and fea-
tures are tracked using a Newton–Raphson method of
minimizing the difference between the two matrices in
two consecutive frames. Multiresolution tracking allows
for large displacements between images. A readily ac-
cessible mathematical description of this tracker is con-
tained in the article by Shi and Tomasi (1994).

3.1 Vehicle speed estimation

To help our tracking algorithm focus on the tracked ve-
hicle and to reduce distraction due to background clutter
in the image sequence, we feed the KLT feature, tracking
algorithm difference images instead of the actual images
(as depicted clearly in Figure 2). A difference image is
created by subtracting the previously acquired image of
the road from the image acquired at the current time
instant. This can be given by

I�(t) = |I(t) − I(t − 1)| (4)

This has the advantage of blocking out the details in
the background of the tracked vehicle, while only em-
phasizing the vehicle to be tracked. This is possible due
to the fact that the closer the vehicle is to the camera,
the larger its motion will be, and the farther away the
vehicles are, the more insignificant their motions will
be. Thus, when subtracting the previous image from the
current image, only the large motions of the vehicle in
front of the bus will be emphasized in the difference im-
age, whereas the vehicles that are far away from the bus
get canceled out of the difference image. To facilitate
this, we make use of small camera fields of view, thus
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Fig. 3. Good features represented as bright white feature points are tracked over the sequence of 20 difference image frames.
(a) The original bus view sequence, (b) the tracked features in the difference image sequence.

only capturing a small area of the image in front of the
bus, where the possibility of capturing only a single ve-
hicle is higher. Even if the camera captures more than
one vehicle in front of the bus, the difference image will
still emphasize the motion of the closer vehicle to the
bus-mounted camera. Figure 3a shows three selected im-
age frames of a longer sequence acquired by a camera
mounted on a Toronto Transit Commission (TTC) bus
in Toronto. Figure 3b shows the corresponding differ-
ence images with the three bright white points on the
license plate of the 4 × 4 vehicle corresponding to the
good features that the tracker algorithm was able to se-
lect and successfully track between image frames. The
images clearly show that key features are correctly de-
tected and tracked over time. The displacement of these
tracked features between image frames can give the rela-
tive speed of the tracked vehicle, knowing that the video
camera is recording at 30 frames per second. The speed
of the tracked vehicle is estimated based on the speed of
the bus, which is optimally obtained through a Kalman
filter-based integrated low-cost GPS/Dead Reckoning
(DR)/Signpost (SP) system as depicted in Figure 4, with

�d indicating the traveled distance between two time
epochs, which is measured by the bus’ odometer.

4 STEREO VISION

An image acquired from a pair of horizontally mounted
left and right cameras viewing the same scene from
slightly displaced view points is commonly known as a
stereo image pair. Stereo vision is concerned with the
extraction of scene depth information by matching cor-
responding points in the left and right images of a stereo
image pair. The horizontal difference between the two
matched points is known as the disparity. The depth
from the camera to the matched point is proportional to
the reciprocal of the disparity (Chen and Bovik, 1995).
The task of determining the correspondence between
points in the two views is known as the correspondence
problem and is considered difficult. In general, it is a
2D search through the entire image space (Jenkin and
Tsotsos, 1994). Knowledge of the camera geometry can
be used to limit the search to be 1D along the epipolar
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Fig. 4. Flow chart of the integrated GPS/dead reckoning/signpost for bus location.

line, which is the intersection of the left and right im-
age planes with the epipolar plane (the plane through a
point in the scene and the nodal points of the two cam-
eras) (Horn, 1986).

4.1 Our approach to disparity estimation

Classical approaches to determine stereo disparity try
to deal with the correspondence problem with two basic
algorithms: area-based (Lucas and Kanade, 1981; Horn,
1986) and feature-based approaches (Marr and Poggio,
1979; Horn, 1986). Other methods extract local Fourier
phases of left and right images and the phase difference
at each location is used to estimate disparity (Sanger,
1988; Langley et al., 1990; Fleet et al., 1991). Several
approaches take into consideration available biological
and neurophysiologic data about the human visual sys-
tem (Marr and Poggio, 1979; Sanger, 1988; Jones and
Malik, 1992). There is biological evidence that the pat-
tern of light projected on the human retina is sampled
and spatially filtered. Very early in the cortical visual pro-
cessing, receptive fields become oriented and are well
approximated by linear spatial filters, with impulse re-
sponse functions that are similar to partial derivatives of
a Gaussian function (Young, 1986).

The technique that we develop for estimating stereo
disparity draws ideas from this early visual processing
in the human cortex. We implement the receptive fields
as steerable spatial filters that process the input stereo
image pair. The steerable filter responses at an image
location form a “feature vector” that is used for solving
the correspondence problem. The outputs of a steerable
filter convolved with an image at multiple orientations
provide very rich information about a local neighbor-
hood around each pixel. Thus, matching image patches
from the left and right images of a stereo pair becomes
simpler and the probability of a correct match increases
as the length of the feature vector increases.

Oriented filters are important for many computer vi-
sion and image-processing tasks, such as texture analysis,
image enhancement, and motion analysis. One approach
to finding the response of a filter at many orientations is
to apply many versions of the same filter, each differing
from one another by a small rotation in angle. A more
efficient approach is to apply a few filters corresponding
to a few angles and interpolate between the responses.
With the correct filter set and the correct interpolation
rule, it is possible to determine the response of a filter
of arbitrary orientation without explicitly applying that
filter.

“Steerable filter” is a term used to describe a class
of spatial filters in which a filter of arbitrary orientation
is synthesized as a linear combination of a set of basis
filters. Steerable filters, first developed by Freeman and
Adelson (1991), have recently been used for estimation
of scene motion (Huang and Chen, 1995) and for object
recognition (Ballard and Wixson, 1993) and stereopsis
(Jones and Malik, 1992). As an example, consider the
2D circularly symmetric Gaussian function

G(x, y) = e−(x2+y2) (5)

The first x derivative of this Gaussian is

G0◦
1 = ∂

∂x
G(x, y) = −2xe−(x2+y2) (6)

and the same function rotated 90◦ is

G90◦
1 = ∂

∂y
G(x, y) = −2ye−(x2+y2) (7)

Thus, the derivative in an arbitrary direction θ can be
synthesized by taking a linear combination of the basis
filters G0◦

1 and G90◦
1 as follows:

Gθ
1 = cos(θ)G0◦

1 + sin(θ)G90◦
1 (8)

The cos(θ) and sin(θ) terms are the corresponding in-
terpolation functions for those basis filters. Because
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Fig. 5. System diagram for the first level of the steerable pyramid. L0 and L1 are low-pass filters, and Bi are oriented basis filters.
Successive levels of the pyramid are computed by applying the Bi and L1 filtering and subsampling operations recursively. The

four basis filters (Bi) are oriented at 0◦, 45◦, 90◦, and 135◦ from left to right.

convolution is a linear operation, it is possible to syn-
thesize an image filtered at an arbitrary orientation by
taking linear combinations of the images filtered with
G0◦

1 and G90◦
1 :

Gθ
1 ∗ I(x, y) = cos(θ)G0o

1 ∗ I(x, y) + sin(θ)G90o

1 ∗ I(x, y)

(9)

This gives an illustration of steerability, which is a
very useful property, because the response of a steerable
filter at an arbitrary orientation can be obtained from
a small number of precomputed basis responses using
the corresponding interpolation functions. Simoncelli
and Freeman have recently introduced a multiscale,
multiorientation steerable filter image decomposition
framework called the Steerable Pyramid (Simoncelli and
Freeman, 1995), which we use as a front-end for our
stereo algorithm. It has the advantage of producing fea-
ture descriptions that are both translation invariant and
rotation invariant.

4.2 Disparity-estimation algorithm

Our disparity-estimation algorithm starts by decom-
posing the left and right images into steerable pyra-
mid representations using the framework developed by
Simoncelli and Freeman (1995). The input images are ini-
tially low-pass filtered using a low-pass filter (L0) with a
radially symmetric frequency response. Each successive
level of the pyramid is constructed from the previous
level’s low-pass band by subsampling it, then convolving
it with a bank of oriented basis filters (Bi) and a low-pass
filter (L1). Other orientations at each level are synthe-
sized by taking linear combinations of the basis-filtered
images. The number of basis filters that are needed for
steering the filter is n + 1 for the nth order filter. We use
third-order filters, thus requiring four basis filters ori-

ented at 0◦, 45◦, 90◦, and 135◦ (Freeman and Adelson,
1991). Figure 5 shows these four spatial basis filters (Bi)
which form a steerable basis set; any orientation of this
filter can be written as a linear combination of the basis
filters. Figure 5 also shows the two low-pass filters (L0

and L1) used to construct the pyramid (Simoncelli and
Freeman, 1995). The extreme right of Figure 5 shows an
example of a three-level steerable pyramid for a single
orientation for the right image of a stereo image pair.

Feature vectors f R(x, y, l) and f L(x, y, l) are then
constructed from the right and left pyramid responses
for each pixel at each level of the pyramid by combin-
ing the responses of the multiorientation steerable filters
at each pixel into a vector that provides a very rich de-
scription of the intensities at that pixel in the image. To
further enrich the description of each pixel, we make
use of the (R, G, B) color signals from our color images
by including them in the feature vector. This simple ad-
dition improves our matching process considerably, by
restricting the matching process to areas of similar color
composition, which can be considered as a sort of color-
feature constraint.

An initial disparity map is estimated at each individ-
ual level by matching left and right feature vectors by
minimizing the mean square error (MSE) between left
and right feature vectors. The MSE measure is computed
over all the elements in the vector as follows:

Em = 1
S

∑

i∈s

[
f i

R(x, y, l) − f i
L(x + dx, y + dy, l)

]2 (10)

where S is the size of the feature vector. The MSE mea-
sure Em is computed for a limited range of horizontal and
vertical disparities dx(l) ∈ Dx(l) and dy(l) ∈ Dy(l) within
a window of size Dx(l) × Dy(l) (typically, Dx(0) = 20
and Dy(0) = 10). The [dx(l), dy(l)] value that minimizes
the MSE within this window is taken as the best initial
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Fig. 6. Minivan sequence taken onboard a TTC bus in Toronto, showing a portion of a single right and left stereo image pair, and
its initial disparity map estimate. The darker the gray shades in the disparity map the closer the object is to the bus-mounted

camera. The full-frame disparity map is median filtered with a window size of 13 × 13 pixels to fill in the misclassified disparity
estimates, thus, clearly showing in black the dominant minivan in the foreground.

disparity estimate at pixel (x, y, l) at pyramid level l. A
boundary condition of zero disparity at image borders
is applied. Also, a zero disparity condition is applied to
locations where no match is possible such as across con-
stant intensity areas. The disparity range used lies within
[–D(l)/2, D(l)/2]. The disparity range differs from level
to level and is given as

Dx(l) = Dx(0)
2l

and Dy(l) = Dy(0)
2l

(11)

Note that there is no need to equally weigh the di-
mension of the (R, G, B) color signals to correspond to
the rest of the feature vector element dimension (i.e.,
the dimensions of the steerable filter responses) because
in Equation (10), the MSE compares corresponding el-
ements of the same dimension together. Thus, for ex-
ample, the element that corresponds to red in the right
feature vector f red

R is compared to the red element in the
left feature vector f red

L . Similarly, the steerable filter ele-
ments from the right vector are compared to correspond-
ing elements from the left. Therefore, the dimensions of
the corresponding elements of the feature vector must
be the same for proper matching.

A coarse-to-fine-flow-through strategy is then taken
based on the assumption that for level l disparity esti-
mates |d(l)| > |D(l)/4| are more accurately estimated
at the coarser level l + 1. Thus, at coarse levels large
disparities are estimated presumably more accurately,
and these flow through to the finer levels, whereas small
disparities that are estimated from the finer levels are
assumed accurate because they cannot be estimated at
coarser levels due to the loss of high-frequency structure
from the original coarse-level images.

Each disparity estimate [dx(l), dy(l)] at each level is
median filtered at an appropriate scale (window size used
increases from coarse levels to fine levels—mainly 3 × 3
and 5 × 5 for 128 × 128 images) before flow through is
performed. The full frame level is then median filtered
with a window size of up to 13 × 13 to give the final dis-
parity estimate. The median filtering step is required to
correct for outlier disparity estimates that deviate from

the correct expected estimate (a form of smoothness con-
straint on the estimates). Figure 6 clearly shows the dis-
parity map estimated for a single pair of stereo images
taken on board a Toronto Transit Commission (TTC)
bus.

In future work, we will make use of the stereo bus-
mounted camera by employing this stereo algorithm to
estimate the relative distance between the bus-mounted
cameras (the observer) and the tracked vehicles visible
in the image. This will allow the tracking module to re-
ject objects that are too close or too distant, thus giving
a more accurate estimate of the relative speed of the
tracked vehicle. Tracking features on objects that are
too close to the observer can be prone to errors due
to the difficulty of accurately estimating large displace-
ments typical of close objects. The estimated disparities
will also be used to allow the tracker to focus on track-
ing feature points that have similar disparity estimates
(low-variance disparities) and where there are no dispar-
ity discontinuities (high-variance disparities) in between
them indicating that they belong to the same vehicle.

5 CONCLUSIONS

This article presents the results of phase I of an ongoing
research program aimed at the development of a mo-
bile, bus-mounted machine vision technology for transit
and traffic monitoring in urban corridors for ITS appli-
cations. The development of the core vision modules is
detailed in this article including visual field stabilization
using optical flow, target tracking, vehicle speed esti-
mation, stereo analysis and disparity estimation. Clear
distinction has been made between the new approach
and existing video-based static surveillance techniques.
Unlike existing technologies, the present research fo-
cuses on integrated development of a wide-area mobile-
surveillance system where the tracker (the vision system
on the bus), the target (traffic in the camera view), and
the processing tools (computer, systems, and algorithms)
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are all in a mobile environment. This approach broadens
the horizons and potential benefits of video-based traffic
network surveillance, while posing new challenges and
interesting problems to researchers and practitioners.
The core of the approach is based on a new paradigm for
computer vision research that is called “animat vision”
developed by the lead author. The essence of the concept
is to implement active vision systems allowing virtual
animal robots (or animats) to understand perceptually
the realistic virtual worlds in which they are situated so
that they may effectively interact with other animats sit-
uated within these worlds. Analogously, a stereo-eyed
bus can interact with surrounding traffic in a congested
urban network and infer the nature and status of its
environment.

In the next phase of this research, the developed vi-
sion modules will be integrated into a fairly sophisticated
dynamic machine vision system that will be mounted on
GPS-equipped transit buses, calibrated, and extensively
validated in the City of Toronto. It will also be used to fur-
ther develop a number of applications, including direct
measurement of traffic variables such as speeds, volumes
and densities as well as higher level applications such as
the detection of traffic-impeding incidents, transit fleet
progress monitoring, dynamic bus arrival time estima-
tion and priority assignment at intersections, to name a
few examples.
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