
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 11, NOVEMBER 2005 1755

Robust Estimation Approach for Blind Denoising
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Abstract—This work develops a new robust statistical frame-
work for blind image denoising. Robust statistics addresses the
problem of estimation when the idealized assumptions about a
system are occasionally violated. The contaminating noise in an
image is considered as a violation of the assumption of spatial co-
herence of the image intensities and is treated as an outlier random
variable. A denoised image is estimated by fitting a spatially co-
herent stationary image model to the available noisy data using a
robust estimator-based regression method within an optimal-size
adaptive window. The robust formulation aims at eliminating the
noise outliers while preserving the edge structures in the restored
image. Several examples demonstrating the effectiveness of this
robust denoising technique are reported and a comparison with
other standard denoising filters is presented.

Index Terms—Blind denoising, Gaussian noise filtering, image
restoration, outliers, redescending estimators, robust denoising,
robust statistics.

I. INTRODUCTION

IMAGES are likely to be degraded by the sensing envi-
ronment when acquired through optical, electrooptical, or

electronic means. The degradation may be in the form of sensor
noise, blur due to camera misfocus, relative object-camera mo-
tion, random atmospheric turbulence, etc. For digitally acquired
pictures, noise can be summarized as the visible effects of an
electronic error in the final image. Noise is a function of how
well the image sensor and digital signal processing systems
inside a digital camera are prone to and can cope with or remove
these errors. Noise significantly degrades the image quality
and increases the difficulty in discriminating fine details in the
image. It also complicates further image understanding and
low-level computer vision processing, such as image segmen-
tation and edge detection. The type of high-ISO sensor noise
produced by a typical digital camera charge-coupled device
(CCD) imaging sensor can be modeled as an additive white
Gaussian distribution [1]–[3] with zero mean and a variance
(noise power) that can be estimated from the degraded image.

In general, noise can be considered as a violation of the as-
sumption of spatial coherence of the image intensities. In par-
ticular, imaging model violations such as these result in picture
measurements that can be viewed in a statistical context as out-
liers. Thus, arises the need for image denoising. This problem
can be treated as one of recovering an ideal picture in the pres-
ence of these outliers, and, hence, we appeal to the field of ro-
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bust statistics which addresses the problem of estimation when
idealized assumptions about the system will occasionally be vi-
olated [4]–[6].

In the following sections, a detailed account of a simple
method for blind image denoising using robust statistics is
introduced with experimental results showing its effectiveness
at restoring Gaussian noise degraded images.

II. IMAGE DENOISING

Statistical characteristics of images are of fundamental
importance in many areas of image processing. Incorporation
of a priori statistical knowledge of spatial correlation in an
image, in essence, can lead to considerable improvement in
many image processing algorithms. For noise filtering, the
well-known Wiener filter (after Wiener, who first proposed the
concept in 1942 [7]) for minimum mean-square error (MMSE)
estimation is derived from a measure or an estimate of the
power spectrum of the image, as well as the transfer function
of the spatial degradation phenomenon and the noise power
spectrum [8]. Unfortunately, the Wiener filter is designed
under the assumption of wide-sense stationary signal and
noise (a stochastic process is said to be stationary when its
statistical characteristics are spatially invariant [9]). Although
the stationarity assumption for additive, zero-mean, Gaussian
white noise is valid for most cases, it is not reasonable for most
realistic images. What this means in the case of the Wiener
filter is that we will experience uniform filtering throughout the
image, with no allowance for changes between busy and flat
regions, resulting in unacceptable blurring of fine detail across
edges and inadequate filtering of noise in relatively flat areas.

Noise reduction filters have been designed in the past with this
stationarity assumption. These have the effect of removing noise
at the expense of signal structure. Examples such as the fixed-
window Wiener filter and the fixed-window mean and median
filters have been the standard in noise smoothing for the past
three decades [8], [10], [11]. These filters typically smooth out
the noise, but destroy the high-frequency structure of the image
in the process. This is mainly due to the fact that these filters
deal with the fixed-window region as having sample points that
are stationary (belonging to the same statistical ensemble). For
natural scenes, any given part of the image generally differs suf-
ficiently from the other parts so that the stationarity assumption
over the entire image or even inside a fixed-window region is
not generally valid. The attention of researchers has, thus, been
focused during the past two or more decades on developing non-
linear adaptive denoising algorithms that take into account the
nonstationarity nature of most realistic images [12]–[18].These
nonlinear methods have been used as an alternative to preserve
signal structure as much as possible. Many, however, do this
at the expense of proper noise reduction, where the high-fre-
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quency areas will be insufficiently filtered, which will result
in a large amount of high-amplitude noise remaining around
edges in the image. One class of nonlinear estimation tech-
niques that are gaining popularity for the problem of image de-
noising are the robust estimation-based filters which draw their
mathematical basis from the field of robust statistics. Robust
statistics filtering has been adapted for image denoising in the
early work of Kashyap and Eom [19], who develop a robust
parameter estimation algorithm for an image model that con-
tains a mixture of Gaussian and impulsive noise. They assume
that their image model is locally stationary and, thus, divide the
image into fixed windows and apply their robust estimation al-
gorithm for each window with results that compare favorably
against standard denoising methods. Recent work involving ro-
bust statistics-based image denoising include work by Hamza
and Krim [20], Sardy et al. [21], and Ponomaryov et al. [22].
Hamza and Krim propose three filtering schemes; the mean-
median filter, the mean-relaxed median filter, and Mean-Log-
Cauchy filter, while Sardy et al. propose wavelet-based esti-
mators using a robust loss function, and Ponomaryov et al. de-
sign a filter based on redescending M-estimators combined with
median estimators to provide impulsive noise rejection. These
methods show promising experimental results at filtering heavy-
tailed and mixed noise. In contrast, our technique described in
this work is primarily concerned with denoising medium to low
severity Gaussian white noise-degraded natural images.

In related work on robust anisotropic diffusion [23], Black
et al. use robust estimation to deal with intensity discontinu-
ities in natural images and apply their robust formulation to
smooth the noisy image while assuming the only outliers in the
image are those due to the intensity discontinuities. This is in
constrast to our method which deals with the intensity discon-
tinuities using an optimal-size adaptive windowing framework,
which will be discussed in Section IV, and assumes the outliers
are only due to the noise itself, thus facilitating its removal, as
will be shown in the experimental results of Section V. Other
nonlinear anisotropic diffusion techniques [24]–[27] have been
widely studied for the application of image denoising since the
early work of Perona and Malik [28], [29] whose method we
will use as a comparison with our technique due to its availabity
in the public domain.

Another related denoising technique by Tomasi and Man-
duchi [30] is bilateral image filtering, where a noniterative edge-
preserving smoothing hybrid filter is proposed which combines
both domain and range filtering, with the range filtering com-
ponent acting as an adaptive windowing technique. Also, a con-
nection between robust anisotropic diffusion, bilateral filtering,
and adaptive windowing has been established in recent work
by Barash and Comaniciu [31], with typically similar results to
those obtained from both [23] and [30].

In the remainder of this paper, we take a close look at the
problem of recovering natural images degraded by Gaussian
white noise when the observed image model differs statistically
from a stationary model. We propose a, relatively simple but
sound, robust statistics-based denoising algorithm that will be
shown to be highly effective at restoring images degraded by
Gaussian white noise at varying degrees of severity while pre-
serving vital image structure to the highest degree.

Fig. 1. Left: Least-squares line fit is affected by the outlier data points and
produces an inaccurate fit to the majority of the data. The estimated equation
of this least-squares line is y = �0:1x� 34. Right: Robust estimation gives a
more accurate line fit, with equation y = �0:86x� 2:3.

III. ROBUST STATISTICS

The field of robust statistics [6], [5] was developed to ad-
dress the fact that the parametric models of classical statistics
are often approximations of the phenomena being modeled. In
particular, the field addresses how to handle outliers, or gross
errors, which do not conform to the assumptions [32].

More precisely, robust statistics addresses the problem of
finding the best fit of a model to a set
of data measurements, ,in cases where
the data differs statistically from the model assumptions. In
fitting a model, the goal is to find the values of that minimize
the size of the residual errors . This minimization can
be written as

(1)

where is a scale parameter, and is an estimator function.
When the errors in the measurements are Gaussian distributed,
the optimal estimator is the quadratic estimator [32] given by

(2)

which, when used in the above minimization, reduces the
problem to the standard least-squares estimation. The func-
tion is called an M-estimator because it corresponds to the
maximum-likelihood estimate. The robustness of an estimator
refers to its tolerance to outliers (i.e., insensitivity to deviations
from the assumed statistical model).

A rough, but useful, measure of robustness is the breakdown
value [33], which is the largest percentage of outlier data points
that will not cause a deviation in the solution. The least-squares
approach has a breakdown value of 0% because introducing a
single outlier in the data sample will cause a deviation in the es-
timate from the desired solution. A robust estimator, however,
may have a breakdown value of up to 50%. Fig. 1 shows an
example of fitting a line to data samples in the presence of out-
liers. It is clear that the least-squares fit in Fig. 1(left) is inclined
toward the outliers, while the robust fit in Fig. 1(right) gives a
more accurate fit to the majority of the data samples and rejects
the outliers.

A second measure of robustness is the influence function [6],
[5] which is the change in an estimate caused by insertion of
outlying data as a function of the distance of the data from the
(uncorrupted) estimate. For example, the influence function of
the least squares estimator is simply proportional to the distance
of the data point, , from the model . Fig. 2 shows a plot of
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Fig. 2. Top: Quadratic Estimator � for � = 1=
p
2. Bottom: Its influence

function  .

Fig. 3. Top: Lorentzian Robust Estimator �. Bottom: Its influence function  .

the quadratic estimator in (2) (for ) as a function of
the distance (top plot). The influence function (bottom
plot) is the derivative of the estimator and clearly shows that the
influence of outliers increases linearly.

To achieve robustness, we consider redescending estimators
[6] for which the influence function tends to zero with increasing
distance. We follow the example of Black and Rangarajan, for
reconstructing a smooth surface from noisy depth data using ro-
bust statistics, and choose the Lorentizan robust estimator for
being continuously differentiable, and for having a redescending
influence function which has a simple form [34], [23]. Fig. 3
shows a plot of both the Lorentzian robust estimator and its in-
fluence function which clearly shows its redescending behavior
for which the influence of outliers tends to zero.

IV. ROBUST DENOISING FILTER

We now apply the tools of robust statistics to develop a frame-
work for the robust estimation of the ideal image signal when
the only information we have is the corrupted observed image.
This robust formulation is based on a simple idea of rejecting
outlier pixels (noise pixels) appearing in the corrupted image

that do not belong to the ensemble of samples in an adaptive
window around the pixel of interest. In formulating our robust
denoising filter we use an observed image model with additive
noise as follows:

(3)

where is a zero-mean additive white Gaussian noise random
variable, of variance , and uncorrelated to the (unknown)
ideal image , which is assumed to be of nonzero mean, ,
and variance , and is the observed noise-corrupted image
of nonzero mean, , and variance .

For the purpose of the following analysis, we make basic as-
sumptions about our estimated image model as being of the
wide-sense stationary type, with a spatially coherent content
(i.e., no contaminating noise of any kind and smooth transi-
tions in the values of its pixels with a signal standard devia-
tion , where is a spatially invariant constant). We also
add the assumption that both the ideal image and the additive
noise frame for an -sized image, are ergodic
random variables. The implications of this latter assumption is
that although we do not have a priori knowledge of the signal
and noise statistical variance and mean, we can still capture
samples of and and determine their variance and mean,
which are, in turn, representative of their respective ensembles.
It should also be noted that although the noise variance, , is
not known a priori, it is easily estimated from a window in a flat
area of the degraded image [35].

Our approach is to compute a denoised signal estimate by
minimizing a stationarity cost function that enforces the
first assumption about our estimate (i.e., spatial coherence) and
constrains image intensities at a particular location, , to belong
to the ensemble of neighborhood samples, . Typically,
is chosen to be the 4-connected or 8-connected neighborhood
of the pixel being processed [34], [23]. Using such fixed-size
neighborhood regions restricts the analysis window to small
sizes due to the danger of a larger-sized window crossing over
image boundaries in which computed statistics will be poor
representations of the true local estimates. The shortcomings of
using small window sizes is the lack of enough samples to give
an accurate estimate of the local statistics.

An obvious alternative is to use an adaptive analysis window.
This adaptive window is to be formed such that it includes rela-
tively uniform structures in the ideal image, so that the primary
source of variance in the window is the additive noise. In devel-
oping an effective adaptive window to account for the nonsta-
tionarity of images, it is important for this analysis window to
have the maximum size possible at each pixel position without
crossing over image structure and edges. The reason is that the
more the number of spatially correlated signal samples are avail-
able in the analysis the more accurate their statistical character-
istics can be estimated [36]. Previous adaptive windowing tech-
niques are not “optimal” in this respect as they usually vary the
window size in the right-most upper quadrant only; namely the
positive axis and the positive axis, and simply duplicate
these values in the negative axis. Thus, the window grows in
size symmetrically, increasing to the maximum (user-preset) al-
lowable size in the middle of a flat region of the image
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Fig. 4. Optimal-size windowing. For each individual pixel, the window size is
allowed to grow large, even for edge pixels, but does not cross over neighboring
edges.

and decreasing to the minimum size (usually just a single pixel)
near the edges [16], [37]. This causes severe statistical errors
near edge regions.

An “optimal-size” adaptive window was recently proposed
in [38]. Instead of maintaining window symmetry, the new ap-
proach is more concerned with the window size near the edges
of image structure. This new adaptive window is structured such
that all four quadrants of the window are independently adap-
tive, and vary in size based on an estimate of the uncorrupted
signal activity in the respective window quadrant, which is de-
rived from the local signal variance estimate . The
size of all four quadrants is adapted iteratively at each pixel lo-
cation. The higher the signal activity monitored in an individual
quadrant of the the more it will shrink in size at the next iter-
ation independent of the other three, and vise versa. This con-
tinues until all four quadrants stabilize at a suitable size such that
no single quadrant crosses an edge. The resulting window is op-
timal in the sense that for each individual pixel, the window size
is allowed to grow large, even for edge pixels but does not cross
over neighboring edges. This is clear from Fig. 4. The restric-
tions on near-edge pixels having to reduce their window size to
a single pixel becomes no longer an issue.

We make use of this newly reported optimal-size adaptive
window framework in minimizing our cost function which
can be given as

(4)

where is the denoised signal model, and is a pixel
located in the adaptive local neighborhood to the current pixel
at position . It should be apparent that the error argument of

in (4) is nothing but a local estimate of the noise signal
in the adaptive region . Thus, in minimizing this cost function,
we are aiming at minimizing the noise signal in this region. The
choice of this particular cost functional is motivated by the fact
that our method deals with intensity discontinuities using the
optimal-size adaptive windowing framework, discussed above,
and assumes the outliers are only due to the noise itself, thus
facilitating its removal.

Our choice of a robust estimator depends on the
optimization scheme used to minimize the cost function. The
scheme we use, which will be described momentarily, requires
the estimator to be twice differentiable. The Lorentzian robust

estimator satisfies this criterion. We, therefore, take in
(4) to be the Lorentzian

(5)

where is the scale parameter in the robust estimator formula-
tion that controls the outlier rejection point [6]. Reducing will
cause the estimator to reject more measurements as outliers and
visa versa. Another important advantage of the Lorentzian is
that it is an optimal estimator if the error distribution is Cauchy
(which is an approximation of the Gaussian distribution) [32].
This is very significant as we are concerned with Gaussian dis-
tributed noise.

The influence function is the first derivative of
with respect to

(6)

As mentioned in Section III, this function characterizes the
bias that a particular measurement has on the solution [6]. The
second partial derivative of is

(7)

The least-squares formulation of the stationarity assumption
for the Wiener estimator is relatively straightforward to solve
since the cost function is convex. The robust formulation of our
cost function may cause it to be nonconvex. A local minimum
can, however, be obtained using a gradient-based optimization
technique. We choose the successive over-relaxation minimiza-
tion technique because of its rapid convergence and well defined
theory [32]. The iterative equations for minimizing over the
whole image are

(8)

where is the iteration step, and is a small relaxation
value that controls convergence, and is chosen empirically for
each specific image to optimize the estimate.1 The initial value

, for the current pixel estimate at , is set to the current cor-
rupted pixel value .The condition for stopping the iteration
has been chosen such that the difference between the next esti-
mate and the current estimate falls below the current
value of the outlier rejection point indicating that any outliers
have been filtered out and that the estimated pixel value belongs
to the ensemble average within the adaptive window. From our
experiments, which will be presented in Section V, the typical
convergence occurs within five to ten iterations per pixel. After
obtaining the first estimate for all the pixels in the image, the
robust filter may be repeatedly applied to reduce any residual
noise, as we will show in Section V.

The term is an upper bound on the second partial derivatives
of , and is obtained when the error in (7), which yields

(9)

1Successive over-relaxation is Newton–Raphson’s minimization technique
when � = 1 and T = (@ E=@f̂ ).
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Fig. 5. Graduated nonconvexity (GNC) for (top) Lorentzian robust estimators
with decreasing values of � and (nottom) their corresponding  plots.

The partial derivative in (8) for a single pixel at location is

(10)

The above minimization will generally converge to a local
minimum. A global minimum may be found by constructing an
initially convex approximation to the cost function. Formally,
the cost function is convex when

(11)

(i.e., positive definite) at all points in the image [39]. It can be
shown from (7) that is locally convex when the maximum
residual error

(12)

Therefore, by choosing initial values of the parameters to be
sufficiently large

(13)

where is the maximum expected outlier in the argument of
, we are effectively blurring the cost function so that

it is approximately convex. In this range of large values,
the function is approximately linear and is approximately
quadratic (clearly shown in Fig. 5 for increasing values of ).
We choose to be proportional to the local estimate of the
image standard deviation inside the adaptive neighborhood
region as

(14)

This formulation accounts for the nonstationary nature of the
image and gives an approximate estimate of the maximum ex-
pected outlier. In flat regions of the image, will be an ac-
curate estimate of the local noise standard deviation , while,
in busy areas, and is, in fact, approximately equal
to the uncorrupted local image standard deviation . Thus, the
value of is made spatially variant by changing its value based

TABLE I
COMPARATIVE RESULTS EXPRESSED AS MAXIMUM PSNR VALUES FOR THE

VARIOUS FILTERS AT VARYING NOISE LEVELS. HIGHEST PSNR VALUES

FOR EACH NOISE LEVEL ARE EMPHASIZED IN A BOLD FONT

on the local sample statistics computed inside the optimal-size
adaptive window of the pixel located at position . Here, is
a (user-defined) weighting constant that affects the amount of
smoothing and is empirically chosen to give best denoising re-
sults. Choosing a value for that is too large may increase the
value of to a point that causes the estimator to remain ap-
proximately quadratic in shape during the whole optimization
process, giving rise to the standard least-squares estimator. This
large value will cause more noise outliers to contribute to the
least-squares-type estimate and will produce inaccurate results
with excessive smoothing of high-frequency structure as in the
case of the standard Wiener filter discussed earlier. On the other
hand, reducing the value of too much will reduce outlier con-
tributions, but at the risk of creating an initially nonconvex cost
function that gets stuck at a local minimum at the start of the
optimization process.

An appropriate value for , thus, needs to be chosen such
that the initial minimization process uses enough samples from
the adaptive window with an approximately quadratic estimator.
This will reduce the initial minimization to the least-squares
approach and a local minimum is obtained. Our global min-
imum is then gradually estimated by tracking the local minima
using the GNC continuation method, described by Blake and
Zisserman in [40]. The robust formulation of our cost function
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Fig. 6. (a) Ideal Peppers image of size 256� 256, 256 gray levels. (b) Corrupted version of the Peppers image degraded by Gaussian white noise of standard
deviation � = 20, with a measured PSNR = 22:11 dB. (c) Denoised image after two passes of the robust filter with an adaptive neighborhood window size that
was allowed to grow to a maximum of N = 5�5with � = 0:4 and � = 0:3 (PSNR = 31:14 dB). (d) Bilateral filter (� = 30; � = 3) (PSNR = 29:51 dB).
(e) Anisotropic diffused image after five iterations and a conduction coefficient of 20 (PSNR = 31:00 dB). (f) BLS-GSM filter showing too much artifacts and
smoothing, but maintaining sharp edges (PSNR = 30:26 dB).

coupled with GNC helps a global minimum to be obtained by
decreasing the values of the parameter from one iteration to
the next, which serves to gradually return the cost function to its
nonconvex shape, thereby introducing back the noise outliers
in the cost function (Fig. 5). These noise pixels are, however,
dealt with by the robust formulation and are rejected as out-
liers, thus producing more accurate signal estimates compared
to least-squares filtering as will be clear from the experimental
results in the next section.

V. EXPERIMENTAL RESULTS

In this section, experimental results are presented to show
the performance of our robust denoising filter when applied to
Gaussian noise corrupted digital images, and to compare its per-
formance with other commonly used filters available in the lit-
erature.

Three nonlinear denoising approaches that have demon-
strated satisfying results at smoothing noise are the wavelet do-
main Bayes least-squares Gaussian scale mixtures (BLS-GSM)
work by Portilla et al. [41], [42], the bilateral filter of Tomasi
and Manduchi [30], and the anisotropic diffusion technique of
Perona and Malik [29]. Results from applying these techniques
will be used as a comparison to results obtained from our robust
denoising approach to show its relative performance in the
context of nonlinear Gaussian denoising.

The reason for choosing to compare our results with
anisotropic diffusion (we selected Perona and Malik’s imple-
mentation [29] due to its availability2) is due to the fact that it is
especially well adapted to the removal of zero-mean Gaussian
white noise while preserving and enhancing edges by lowering
the diffusivity of the diffusion equation near large image gradi-
ents. The reason for comparing with Tomasi and Manduchi’s
Bilateral filter is the fact that they implement a noniterative
edge-preserving smoothing hybrid filter which combines both
domain and range filtering, where the geometric spread in
the domain is chosen based on the desired amount of low-pass
filtering. A large blurs more; that is, it combines values
from more distant image locations, and the photometric spread

in the image range is set to achieve the desired amount of
combination of pixel values, where values much closer to each
other than are mixed together and values much more distant
than are not. This range filtering component acts as an
adaptive windowing technique. The reason for comparing our
technique with the BLS-GSM method of Portialla et al. is due
to the success this nonlinear technique has achieved in image
denoising with edge preservation. The Matlab implementations
of the BLS-GSM3 and bilateral filters were obtained directly
from their respective authors by e-mail.

2Source: http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/
3Source: http://decsai.ugr.es/~javier/denoise/software/index.htm
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Fig. 7. (a) Corrupted version of the Peppers image in Fig. 6(a), degraded by Gaussian white noise of standard deviation � = 30, with a PSNR = 18:59 dB. (b)
Denoised image after a single iteration of the robust filter with an adaptive neighborhood window size that was allowed to grow to a maximum of N = 9�9 pixels,
with � = 0:4 and � = 0:3. (PSNR = 26:49 dB). (c) Denoised image after 35 iterations of the robust filter with a maximum adaptive neighborhood window size
of N = 3� 3 with � = 0:4 and � = 0:3. (PSNR = 28:52 dB). (d) Bilateral filtered image (� = 50; � = 3) (PSNR = 26:94 dB). (e) Anisotropic diffused
image after 6 iterations and a conduction coefficient of 30 (PSNR = 28:24 dB). (f) BLS-GSM filter (PSNR = 28:30 dB).

In evaluating the performance of individual filters, it is impor-
tant to take into consideration both the analytical performance
of the filter as well as the visual quality of the estimated im-
ages generated by the filter. The well-known mean-square-error
(MSE) metric calculates the global error variance (power in the
difference image) between an ideal image , and its estimate ,
and has been widely used for measuring the performance of var-
ious filters [8]. The only shortcoming in an MSE metric is that
it is sensitive to minor pixel variations between the ideal and
estimated images that do not, in general, affect the perceived vi-
sual quality. A more robust measure of filter performance that
has been widely used by the signal processing community is the
peak signal-to-noise ratio given by

(15)

where is the number of gray levels in the image ( for
8-bit images), and is the residual standard deviation in the
error image given as

(16)

for -sized images. This measure is less sensitive to minor de-
viations and will be adopted for comparing the various filters.
It is important to note, however, that objective measures such

as the PSNR and MSE metrics are not necessarily correlated
to our perception of an image. This is because methods that are
least squares based are optimum in terms of MSE values without
necessarily producing the best visual results. The ultimate mea-
sure of visual fidelity will have to remain our own visual per-
ception, which is very subjective. For example, we may require
extra smoothing of the denoised image when fine details are of
little importance, in which case the PSNR values will not be op-
timum. On the other hand, we may be interested in preserving
the most minute details in the restored image, at the expense of
allowing a small amount of residual noise to remain after the
restoration process.

Taking this subjective evaluation into account, we test our
robust approach on four standard sets of natural and synthetic
images commonly used for evaluation in the literature. Table I
summarizes the results for all image sets at varying noise levels.

We start by showing simulation results of the performance
of the adaptive window robust filter using the standard Peppers
gray scale image of size 256 256 shown in Fig. 6(a), which
was degraded with Gaussian noise of variance and

dB as shown in Fig. 6(b). It is clear from
Fig. 6(c) that our robust filter produces the best results both ob-
jectively in terms of its PSNR values, and subjectively by direct
visual inspection. Fig. 7 shows the performance of our robust
filter when denoising relatively high Gaussian
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Fig. 8. (a) Original (uncorrupted) Boat image (350� 350 portion of the original 512� 512 image, 256 gray levels). (b) Corrupted version of the Boats image,
degraded by Gaussian white noise of standard deviation � = 20, with a measuredPSNR = 22:11 dB. (c) Denoised image after three iterations of the robust filter
with an adaptive neighborhood window size that was allowed to grow to a maximum of N = 5�5with � = 0:4 and � = 0:3 (PSNR = 30:28 dB). (d) Bilateral
filter (� = 30; � = 3) (PSNR = 28:87 dB). (e) Anisotropic diffused image after five iterations and a conduction coefficient of 20 (PSNR = 29:73 dB).
(f) BLS-GSM filter (PSNR = 29:38 dB).

white noise contamination of variance and
dB. It is apparent from the figures that results of filtering

using anisotropic diffusion and BLS-GSM introduce nonuni-
form gray-level artifacts to flat regions in the image that give
a textured appearance to the objects in the image, and reduce
the visual appeal of the denoised result.

We now present the results from our second experiment
which involves denoising the boat image shown in Fig. 8(a) that
was degraded with Gaussian white noise of variance .
This noisy image is shown in Fig. 8(b). In this test image, the
fine lines connecting the sails on the boat will clearly pose
some challenges for any denoising algorithm. As we tackle this
problem, we need to strike a balance between the maximum
size of the adaptive window and the number of repeated
applications of the robust filter (to remove residual noise) in
order to avoid any excessive smoothing. Increasing the adaptive
window size allows us to repeatedly apply the robust filter less
often and vise versa. The problem is complicated further as the
contaminating noise variance increases. For these experiments,
we have chosen the same robust filter parameter values that
were used for the Peppers example ( , and ).
Fig. 9 shows the performance of our robust filter when de-
noising the boat image after relatively high noise contamination
of variance and dB.

Finally, we present results of our robust technique in compar-
ison with the other three denoising methods for the Barco image

of Fig. 10(a) and the Flinstones image of Fig. 11(a), after rela-
tively severe noise degradation of variance , shown in
Figs. 10(b) and 11(b), respectively.

The above comparisons clearly show the merits of our robust
technique both objectively in terms of its higher PSNR values
(for the low-to-medium noise range from to ),
compared to the other three methods at the same noise level, and
subjectively by direct visual inspection in terms of overall noise
removal while preserving details in the denoised image.

VI. CONCLUSION

This paper has presented a simple blind denoising filter based
on the theory of robust statistics. A stationarity cost function was
“robustified” by using the Lorentzian robust estimator instead of
the nonrobust quadratic estimator and minimized using a GNC
algorithm to help obtain a global minimum when the cost func-
tion is nonconvex. A newly reported adaptive windowing frame-
work was used in the formulation of the robust filter to improve
neighborhood statistical estimates. Experimental results were
presented to show the performance of the new robust filter and
comparisons were made with three other nonlinear denoising fil-
ters. Results have shown the robust filter to be highly effective
at reducing Gaussian white noise from natural scenes while pre-
serving fine details. In future work, the problem of recovering
natural images degraded by a mixture of noise distributions
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Fig. 9. (a) Ideal Boats image of size 350� 350. (b) Corrupted version of the Boats image, degraded by Gaussian white noise of standard deviation � = 30, with
a measured PSNR = 18:59 dB. (c) Denoised image after 30 iterations of the robust filter with an adaptive neighborhood window size that was allowed to grow
to a maximum of N = 3� 3 with � = 0:4 and � = 0:3 (PSNR = 28:11 dB). (d) Bilateral filter (� = 50; � = 3) (PSNR = 26:52 dB). (e) Anisotropic
diffused image after 6 iterations and a conduction coefficient of 30 (PSNR = 27:92 dB). (f) BLS-GSM filter (PSNR = 26:91 dB).

Fig. 10. (a) Ideal Barco image of size 302� 231. (b) Corrupted version of the Barco image, degraded by Gaussian white noise of standard deviation � = 30,
with a measured PSNR = 18:59 dB. (c) Denoised image after 40 iterations of the robust filter with an adaptive neighborhood window size that was allowed to
grow to a maximum of N = 3�3with � = 0:4 and � = 0:3 (PSNR = 28:12 dB). (d) Bilateral filter (� = 60; � = 3) (PSNR = 27:21 dB). (e) Anisotropic
diffused image after 15 iterations and a conduction coefficient of 25 (PSNR = 27:98 dB). (f) BLS-GSM filter (PSNR = 26:56 dB).
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Fig. 11. (a) Ideal Flinstones image of size 256� 256. (b) Corrupted version of the Flinstones image, degraded by Gaussian white noise of standard deviation
� = 30, with a measured PSNR = 18:59 dB. (c) Denoised image after 35 iterations of the robust filter with an adaptive neighborhood window size that
wasallowed to grow to a maximum of N = 3� 3 (� = 0:4 and � = 0:3) (PSNR = 25:07 dB). (d) Bilateral filter (� = 40; � = 3) (PSNR = 23:97 dB).
(e) Anisotropic diffused image after 6 iterations and a conduction coefficient of 30 (PSNR = 24:73 dB). (f) BLS-GSM filter (PSNR = 23:70 dB).

including impulsive and signal dependent noise will be investi-
gated in the framework of the proposed robust statistics-based
denoising filter.
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