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Abstract

Autonomous robotic systems and self driving cars rely

on accurate perception of their surroundings as the safety

of the passengers and pedestrians is the top priority. Se-

mantic segmentation is one of the essential components of

road scene perception that provides semantic information

of the surrounding environment. Recently, several methods

have been introduced for 3D LiDAR semantic segmentation.

While they can lead to improved performance, they are ei-

ther afflicted by high computational complexity, therefore

are inefficient, or they lack fine details of smaller object in-

stances. To alleviate these problems, we propose (AF)2-

S3Net, an end-to-end encoder-decoder CNN network for 3D

LiDAR semantic segmentation. We present a novel multi-

branch attentive feature fusion module in the encoder and

a unique adaptive feature selection module with feature

map re-weighting in the decoder. Our (AF)2-S3Net fuses

the voxel-based learning and point-based learning meth-

ods into a unified framework to effectively process the po-

tentially large 3D scene. Our experimental results show

that the proposed method outperforms the state-of-the-art

approaches on the large-scale nuScenes-lidarseg and Se-

manticKITTI benchmark, ranking 1
st on both competitive

public leaderboard competitions upon publication.

1. Introduction

Understanding of the surrounding environment has been

one of the most fundamental tasks in autonomous robotic

systems. With the challenges introduced with recent tech-

nologies such as self-driving cars, a detailed and accurate

understanding of the road scene has become a main part

of any outdoor autonomous robotic system in the past few

years. To achieve an acceptable level of road scene un-

derstanding, many frameworks benefit from image seman-

tic segmentation, where specific pixel-wise classes are pre-
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dicted from input images, giving a clear perspective of the

scene.
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Ours
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Ground Truth

Figure 1: Comparison of our proposed method with Sal-

saNext [11] and MinkNet42 [10] on SemanticKITTI bench-

mark [3].

Although image semantic segmentation is an important

step in realizing self driving cars, the limitations of a vision

sensor such as the inability to record data in poor lighting

conditions, variable sensor sensitivity, lack of depth infor-

mation and limited field-of-view (FOV) makes it difficult

for vision sensors to be the sole primary source for scene un-

derstanding and semantic segmentation. In contrast, Light

Detection and Ranging (LiDAR) sensors can record accu-

rate depth information regardless of the lighting conditions

with high density and frame rate, making it a reliable source

of information for critical tasks such as self driving.

LiDAR sensor generates point cloud by scanning the

environment and calculating time-of-flight for the emitted

laser beams. In doing so, LiDARs can collect valuable in-

formation, such as range (e.g., in Cartesian coordinates) and

intensity (a measure of reflection from the surface of the ob-

jects). Recent advancement in LiDAR technology makes it

possible to generate high quality, low noise and dense scans
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from desired environments, making the task of scene un-

derstanding a possibility using LiDARs. Although rich in

information, LiDAR data often comes in an unstructured

format and partially sparse at far ranges. These characteris-

tics make the task of scene understating challenging using

LiDAR as primary sensor. Nevertheless, research in scene

understanding and in specific, semantic segmentation using

LiDARs, has seen an increase in the past few years with the

availability of datasets such as semanticKITTI [3].

The unstructured nature and partial sparsity of LiDAR

data brings challenges to semantic segmentation. However,

a great effort has been put by researchers to address these

obstacles and many successful methods have been proposed

in the literature (see Section 2). From real-time methods

which use projection techniques to benefit from the avail-

able 2D computer vision techniques, to fully 3D approaches

which target higher accuracy, there exist a range of meth-

ods to build on. To better process LiDAR point cloud in

3D and to overcome limitations such as non-uniform point

densities and loss of granular information in voxelization

step, we propose (AF)2-S3Net, a next generation method

based on S3Net [9] and S3CNet [8] which is built upon

Minkowski Engine [10], to suit varying levels of sparsity

in LiDAR point clouds, achieving state-of-the-art accuracy

in semantic segmentation methods on SemanticKITTI [3].

Fig. 1 demonstrates qualitative results of our approach com-

pared to SalsaNext [11] and MinkNet42 [10]. We summa-

rize our contributions as,

• An end-to-end encoder-decoder 3D sparse CNN that

achieves state-of-the-art accuracy in semanticKITTI

benchmark [3] and nuScenes-lidarseg competition [5];

• A multi-branch attentive feature fusion module in the

encoder to learn both global contexts and local details;

• An adaptive feature selection module with feature map

re-weighting in the decoder to actively emphasize the

contextual information from a feature fusion module

to improve the generalizability;

• A comprehensive analysis on semantic segmenta-

tion and classification performance of our model

as opposed to existing methods on three bench-

marks, semanticKITTI [3], nuScenes-lidarseg [5], and

ModelNet40 [38] through ablation studies, qualitative

and quantitative results.

2. Related Work

2.1. 2D Semantic Segmentation

SqueezeSeg [36] is one of the first works on LiDAR

semantic segmentation using range-image, where LiDAR

point cloud projected on a 2D plane using spherical trans-

formation. SqueezeSeg [36] network is based on an

encoder-decoder using Fully Connected Neural Network

(FCNN) and a Conditional Random Fields (CRF) as a Re-

current Neural Network (RNN) layer. In order to reduce

number of the parameters in the network, SqueezeSeg in-

corporates “fireModules” from [17]. In a subsequent work,

SqueezeSegV2 [37] introduced Context Aggregation Mod-

ule (CAM), a refined loss function and batch normalization

to further improve the model. SqueezeSegV3 [39] stands

on the shoulder of [36, 17], adopting a Spatially-Adaptive

Convolution (SAC) to use different filters in different loca-

tions in relation to the input image. Inspired by YOLOv3

[30], RangeNet++ [25] uses a DarkNet backbone to process

a range-image. In addition to a novel CNN, RangeNet++

[25] proposes an efficient way of predicting labels for the

full point cloud using a fast implementation of K-nearest

neighbour (KNN).

Benefiting from a new 2D projection, PolarNet [42]

takes on a different approach using a polar Birds-Eye-View

(BEV) instead of the standard 2D grid-based BEV projec-

tions. Moreover, PolarNet encapsulates the information

regarding each polar gird using PointNet, rather than us-

ing hand crafted features, resulting in a data-driven fea-

ture extraction, a nearest-neighbor-free method and a bal-

anced grid distribution. Finally, in a more successful at-

tempt, methods such as SalsaNext [11] and Lite-HDSeg

[29], make a series of improvements to the backbone in-

troduced in SalsaNet [1] such as, a new global contextual

block, an improved encoder-decoder and Lovász-Softmax

loss [4] to achieve state-of-the-art results in 2D LiDAR se-

mantic segmentation using range-image input.

2.2. 3D Semantic Segmentation

The category of large scale 3D perception methods

kicked off by early works such as [6, 24, 27, 34, 44]

in which a voxel representation was adopted to capital-

ize vanilla 3D convolutions. In attempt to process un-

structured point cloud directly, PointNet [26] proposed a

Multi-Layer Perception (MLP) to extract features from in-

put points without any voxelization. PointNet++ [28] which

is an extension to the nominal work PointNet [26], intro-

duced sampling at different scales to extract relevant fea-

tures, both local and global. Although effective for smaller

point clouds, Methods rely on PointNet [26] and its varia-

tions are slow in processing large-scale data.

Down-sampling is at the core of the method proposed

in RandLA-Net [16]. As down-sampling removes features

randomly, a local feature aggregation module is also intro-

duced to progressively increase the receptive field for each

3D point. The two techniques used jointly to achieve both

efficiency and accuracy in large-scale point cloud seman-

tic segmentation. In a different approach, Cylinder3D [43]

uses cylindrical grids to partition the raw point cloud. To

extract features, authors in [43] introduced two new CNN

blocks: an asymmetric residual block to ensure features re-
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lated to cuboid objects are being preserved and Dimension-

decomposition based Context Modeling in which multiple

low-rank contexts are merged to model a high-ranked tensor

suitable for 3D point cloud data.

Authors in KPConv [33] introduced a new point convo-

lution without any intermediate steps taken in processing

point clouds. In essence, KPConv is a convolution operation

which takes points in the neighborhood as input and pro-

cesses them with spatially located weights. Furthermore, a

deformable version of this convolution operator was also in-

troduced that learns local shifts to make them adapt to point

cloud geometry. Finally, MinkowskiNet [10] introduces a

novel 4D sparse convolution for spatio-temporal 3D point

cloud data along with an open-source library to support

auto-differentiation for sparse tensors. Overall, where we

consider the accuracy and efficiency, voxel-based methods

such as MinkowskiNet [10] stands above others, achieving

state-of-the-art results within all sub-categories of 3D se-

mantic segmentation.

2.3. Hybrid Methods

Hybrid methods, where a mixture of voxel-based,

projection-based and/or point-wise operations are used to

process the point cloud, has been less investigated in the

past, but with availability of more memory efficient designs,

are becoming more successful in producing competitive re-

sults. For example, FusionNet [40] uses a voxel-based MLP,

called voxel-based mini-PointNet which directly aggregates

features from all the points in the neighborhood voxels to

the target voxel. This allows FusionNet [40] to search

neighborhoods with low complexity, processing large scale

point cloud with acceptable performance. In another ap-

proach, 3D-MiniNet [2] proposes a learning-based projec-

tion module to extract local and global information from the

3D data and then feeds it to a 2D FCNN in order to gener-

ate semantic segmentation predictions. In a slightly differ-

ent approach, MVLidarNet [7] benefits form range-image

LiDAR semantic segmentation to refine object instances in

bird’s-eye-view perspective, showcasing the applicability of

LiDAR semantic segmentation in real-world applications.

Finally, SPVNAS [32] builds upon the Minkowski En-

gine [10] and designs a hybrid approach of using 4D sparse

convolution and point-wise operations to achieve state-of-

the-art results in LiDAR semantic segmentation. To do this,

authors in SPVNAS [32] use a Neural Architecture Search

(NAS) [22] to efficiently design a Deep Neural Network

(DNN), based on their novel Sparse Point-Voxel Convolu-

tion (SPVConv) operation.

3. Proposed Approach

The sparsity of outdoor-scene point clouds makes it diffi-

cult to extract spatial information compared to indoor-scene

point clouds with fixed number of points or based on the

dense image-based dataset. Therefore, it is difficult to lever-

age the indoor-scene or image-based segmentation methods

to achieve good performance on a large-scale driving scene

covering more than 100m with non-uniform point densi-

ties. Majority of the LiDAR segmentation methods attempt

to either transform 3D LiDAR point cloud into 2D image

using spherical projection (i.e., perspective, bird-eye-view)

or directly process the raw point clouds. The former ap-

proach abandons valuable 3D geometric structures and suf-

fers from information loss due to projection process. The

latter approach requires heavy computations and not feasi-

ble to be deployed in constrained systems with limited re-

sources. Recently, sparse 3D convolution became popular

due to its success on outdoor LiDAR semantic segmentation

task. However, few methods only have proposed advanced

feature extractors to replicate the success of 2D convolu-

tions in Computer Vision models [10, 32].

To overcome this, we propose (AF)2-S3Net for Li-

DAR semantic segmentation in which a baseline model of

MinkNet42 [10] is transformed into an end-to-end encoder-

decoder with attention blocks and achieves state-of-the-art

results. In this Section we first present the proposed net-

work architecture along with its novel components, namely

AF2M and AFSM. Then, the network optimization is intro-

duced followed by the training details.

3.1. Problem Statement

Lets consider a semantic segmentation task in which a

LiDAR point cloud frame is given with a set of unordered

points (P,L) = ({pi, li}) with pi ∈ R
din and i = 1, ..., N ,

where N denotes the number of points in an input point

cloud scan. Each point pi contains din input features, i.e.,

Cartesian coordinates (x, y, z), intensity of returning laser

beam (i), colors (R,G,B), etc. Here, li ∈ R represents the

ground truth labels corresponding to each point pi. How-

ever, in object classification task, a single class label L is

assigned to an individual scene containing P points.

Our goal is to learn a function Fcls(.,Φ) parameterized

by Φ that assigns a single class label L for all the points in

the point cloud or in other words, Fseg(.,Φ), that assigns a

per point label ĉi to each point pi. To this end, we propose

(AF)2-S3Net to minimize the difference between the pre-

dicted label(s), L̂ and ĉi, and the ground truth class label(s),

L and li, for the tasks of classification and segmentation,

respectively.

3.2. Network Architecture

The block diagram of the proposed method, (AF)2-

S3Net, is illustrated in Fig. 2. (AF)2-S3Net consists of

a residual network based backbone and two novel mod-

ules, namely Attentive Feature Fusion module (AF2M) and

Adaptive Feature Selection Module (AFSM). The model

takes in a 3D LiDAR point cloud and transforms it into

12549



Conv

(4x4x4)

[64, 32]

Conv

(3x3x3)

[4, 64]

Conv

(5x5x5)

[64, 32]

Conv

(8x8x8)

[32, 32]

[𝑁𝑁,𝑑𝑑𝑖𝑖𝑖𝑖]

[N, 32]

[N, 32]

[N, 32]

� Conv

(2x2x2)

[32, 32]𝑓𝑓𝑒𝑒𝑖𝑖𝑒𝑒

𝑐𝑐𝑎𝑎𝑎𝑎𝑓𝑓𝑒𝑒𝑖𝑖𝑒𝑒(∗,∗,∗)=𝑠𝑠𝑜𝑜𝑓𝑓𝑎𝑎𝑜𝑜𝑎𝑎𝑜𝑜𝑑𝑑𝑖𝑖𝑜𝑜 = 1
=

, ,

Broadcast

×

×

×
𝑜𝑜1
𝑜𝑜2
𝑜𝑜3

α

β

γ

𝑜𝑜1𝑜𝑜2𝑜𝑜3

×

𝑐𝑐𝑎𝑎𝑎𝑎: Concatenation

: Multiplication : Sum�

Conv

(4x4x4)

[4, 64]

Conv

(12x12x12)

[4, 32]

Conv

(2x2x2)

[32, 32]

Conv

(2x2x2)

[32, 32]

Conv

(2x2x2)

[32, 32]

𝑓𝑓𝑑𝑑𝑒𝑒𝑒𝑒
�

�

𝑜𝑜′1
𝑜𝑜′2
𝑜𝑜′3

[3, 96]

×
θ

�
(1- θ)

TrConv

(3x3x3)

[64, 96]

Conv

(3x3x3)

[32, 20]

Conv

(3x3x3)

[128, 256]

TrConv

(3x3x3)

[256, 128]

Conv 

(3x3x3)

[32, 64]

Conv

(3x3x3)

[64, 128]

Adaptive Feature 

Selection 

TrConv

(3x3x3)

[128, 64]

TrConv

(3x3x3)

[192, 32]

[𝑁𝑁,𝑑𝑑𝑖𝑖𝑖𝑖] [𝑁𝑁,𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜]
: Concatenation

Attentive Feature 

Fusion

Input 3D Point Cloud Output 3D Point Cloud

3D Coordinates Point Features

Attentive Feature Fusion Adaptive Feature Selection

:Conv (2x2x2)[32, 1]

:Conv (2x2x2)[3, 32] 𝑐𝑐𝑎𝑎𝑎𝑎: Concatenation

Point label

Sparse Linear

Excitation

Sparse Global 

Pooling 

Squeeze[N, 96][N, 32]

[N, 32]

[N, 32]

c

c

F

ℎ1ℎ2ℎ3
ℎπ � 𝑐𝑐𝑎𝑎𝑎𝑎𝑓𝑓𝑑𝑑𝑒𝑒𝑒𝑒(∗,∗,∗)= 𝑜𝑜′1, 𝑜𝑜′2, 𝑜𝑜′3𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒π𝑆𝑆

J

J

𝑜𝑜2 𝑜𝑜3𝑜𝑜1

Figure 2: Overview of (AF)2-S3Net. The top left block is Attentive Feature Fusion Module (AF2M) that aggregates Lo-

cal and global context using a weighted combination of mutually exclusive learnable masks, α, β, and γ. The top right

block illustrates how Adaptive Feature Selection Module (AFSM) uses shared parameters to learn inter relationship between

channels across multi-scale feature maps from AF2M. (best viewed on display)

sparse tensors containing coordinates and features corre-

sponding to each point. Then, the input sparse tensor is

processed by (AF)2-S3Net which is built upon 3D sparse

convolution operations which suits sparse point clouds and

effectively predicts a class label for each point given a Li-

DAR scan.

A sparse tensor can be expressed as Ps = [C,F ], where

C ∈ R
N×M represents the input coordinate matrix with

M coordinates and F ∈ R
N×K denotes its correspond-

ing feature matrix with K feature dimensions [10]. In this

work, we consider 3D coordinates of points (x, y, z), as our

sparse tensor coordinate C, and per point normal features

(nx, ny, nz) along with intensity of returning laser beam (i)
as our sparse tensor feature F . Exploiting normal features

helps the model to learn additional directional information,

hence, the model performance can be improved by differen-

tiating the fine details of the objects. The detailed descrip-

tion of the network architecture is provided below.

Attentive Feature Fusion Module (AF2M): To bet-

ter extract the global contexts, AF2M embodies a hybrid

approach, covering small, medium and large kernel sizes,

which focuses on point-based (PointNet-style feature ex-

tractor), medium-scale voxel-based and large-scale voxel-

based features, respectively. The block diagram of AF2M

is depicted in Fig. 2 (top-left). Principally, the proposed

AF2M fuses the features x̄ = [x1, x2, x3] at the correspond-

ing branches using g(·) which is defined as,

g(x1, x2, x3) , αx1 + βx2 + γx3 +∆ (1)

where α, β and γ are the corresponding coefficients that

scale the feature columns for each point in the sparse tensor,

and are processed by function fenc(·) as shown in Fig. 2.

Moreover, the attention residuals, ∆, is introduced to stabi-

lize the attention layers hi(·), ∀i ∈ {1, 2, 3}, by adding the

residual damping factor. This damping factor is the output

of residual convolution layer π. Further, function π can be

formulated as

π , sigmoid(bn(conv(fenc(·)))) (2)

Finally, the output of AF2M is generated by F(g(·)), where

F is used to align the sparse tensor scale space with the

next convolution block. As illustrated in Fig. 2 (top-left),

for each hi, ∀i ∈ {1, 2, 3}, the corresponding gradient of

weight whi can be computed as:

whi = whi −
∂J

∂g

∂g

∂fenc

∂fenc

∂hi
−
∂J

∂g

∂g

∂π

∂π

∂hi
(3)

where J is the output of F . Considering g(·) is a linear

function of concatenated features x̄ and ∆, we can rewrite

Eq. 3 as follows:

whi = whi −
∂J

∂g
x̄
∂fenc

∂hi
−
∂J

∂g

∂π

∂hi
(4)

where ∂fenc
∂hi

= Sj(δij − Sj) is the Jacobian of softmax

function S(x̄) : R
N → R

N and maps ith input feature

column to jth output feature column, and δ is Kronecker

delta function where δi=j = 1 and δi 6=j = 0. As shown in

Eq. 5,
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Sj(δij − Sj) =







−S2
1 S1(1− S2) . . .

...
. . .

SN (1− S1) . . . −S2
N






(5)

when the softmax output S is close to 0, the term ∂fenc
∂hi

approaches to zero which prompts no gradient, and when S

is close to 1, the gradient is close to identity matrix. As a

result, when S → 1, all values in α or β or γ get very high

confidence and the update of whi becomes:

whi = whi −
∂J

∂g

∂π

∂hi
+
∂J

∂g
x̄I (6)

and in the case of S → 0, the update gradient will only

depends on π. Fig. 3 further illustrates the capability of the

proposed AF2M and highlights the effect of each branch

visually.
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Figure 3: Illustration of Attentive Feature Fusion and spa-

tial geometry of point cloud. The three labels αx1, βx2, and

γx3 represent the branches in AF2M encoder block. The

first branch, αx1, learns to capture and emphasize the fine

details for smaller instances such as person, pole and traffic-

sign across the driving scenes with varying point densi-

ties. The shallower branches, βx2 and γx3, learn different

attention-maps that focus on global contexts embodied in

larger instances such as vegetation, sidewalk and road sur-

face. (best viewed on display)

Adaptive Feature Selection Module (AFSM): The

block diagram of AFSM is shown in Fig. 2 (top-right).

In AFSM decoder block, the feature maps from multiple

branches in AF2M, x1, x2, and x3, are further processed

by residual convolution units. The resulted output, x
′

1, x
′

2,

and x
′

3, are concatenated, shown as fdec, and are passed

into a shared squeeze re-weighting network [15] in which

different feature maps are voted. This module acts like an

adaptive dropout that intentionally filters out several feature

maps that are not contributing to the final results. Instead

of directly passing through the weighted feature maps as

output, we employed a damping factor θ = 0.35, to regu-

larize the weighting effect. It is worth noting that the skip

connection connecting the attentive feature fusion module

branches to the last decoder block, ensures that the error

gradient propagates back to the encoder branches for better

learning stability.

3.3. Network Optimization

We leveraged a linear combination of geo-aware

anisotrophic [20], Exponential-log loss [35] and Lovász

loss [4] to optimize our network. In particular, geo-aware

anisotrophic loss is beneficial to recover the fine details in

a LiDAR scene. Moreover, Exponential-log loss [35] loss

is used to further improve the segmentation performance by

focusing on both small and large structures given a highly

unbalanced dataset.

The geo-aware anisotrophic loss can be computed by,

Lgeo(y, ŷ) = −
1

N

∑

i,j,k

C
∑

c=1

MLGA

ψ
yijk,c log ŷijk,c (7)

where y and ŷ are the ground truth label and predicted la-

bel. Parameter N is the local tensor neighborhood and

in our experiment, we empirically set it as 5 (a 10 voxels

size cube). Parameter C is the semantic classes, MLGA =
∑Ψ

ψ=1
(cp ⊕ cqψ ), defined in [20]. We normalized local ge-

ometric anisotropy within the sliding window Ψ of the cur-

rent voxel cell p and its neighbor voxel grid qψ ∈ Ψ.

Therefore, the total loss used to train the proposed net-

work is given by,

Ltot(y, ŷ) = w1Lexp(y, ŷ) + w2Lgeo(y, ŷ) + w3Llov(y, ŷ)
(8)

where w1, w2, and w3 denote the weights of Exponential-

log loss [35], geo-aware anisotrophic, and Lovász loss, re-

spectively. They are set as 1, 1.5 and 1.5 in our experiments.

4. Experimental Results

We base our experimental results on three dif-

ferent dataset, namely, SemanticKITTI, nuScenes and

ModelNet40 to show the applicability of the proposed

methods in different scenes and domains. As for the Se-

manticKITTI and ModelNet40, (AF)2-S3Net is compared

to the previous state-of-the-art, but due to a recently an-

nounce challenge for nuScenes-lidarseg dataset [5], we pro-

vide our own evaluation results against the baseline model.

To evaluate the performance of the proposed method

and compare with others, we leverage mean Intersection
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Figure 4: Compared to SalsaNext and MinkNet42, our method has a lower error (shown in red) recognizing region surface

and smaller objects on nuScenes validation set, thanks to the proposed attention modules.

over Union (mIoU) as our evaluation metric. mIoU

is the most popular metric for evaluating semantic point

cloud segmentation and can be formalized as mIoU =
1

n

∑n
c=1

TPc
TPc+FPc+FNc

, where TPc is the number of true

positive points for class c, FPc is the number of false posi-

tives, and FNc is the number of false negatives.

As for the training parameters, we trained our model

with SGD optimizer with momentum of 0.9 and learning

rate of 0.001, weight decay of 0.0005 for 50 epochs. The

experiments are conducted using 8 Nvidia V100 GPUs.

4.1. Quantitative Evaluation

In this Section, we provide quantitative evaluation of

(AF)2-S3Net on two outdoor large-scale public dataset:

SemanticKITTI [3] and nuScenes-lidarseg dataset [5] for

semantic segmentation task and on ModelNet40 [38] for

classification task.

SemanticKITTI Dataset: we conduct our experiments

on SemanticKITTI [3] dataset, the largest dataset for au-

tonomous vehicle LiDAR segmentation. This dataset is

based on the KITTI dataset introduced in [13], containing

41000 total frames which captured in 21 sequences. We

list our experiments with all other published works in Ta-

ble 1. As shown in Table 1, our method achieves state-of-

the-art performance in SemanticKITTI test set (single scan)

in terms of mean IoU. With our proposed method, (AF)2-

S3Net, we see a 2.7% improvement from the second best

method [32] and 15.4% improvement from baseline model

(MinkNet42 [10]). Our method dominates greatly in clas-

sifying small objects such as bicycle, person and motorcy-

cle, making it a reliable solution to understating complex

scenes. It is worth noting that (AF)2-S3Net only uses the

voxelized data as input, whereas the competing methods

like SPVNAS [32] use both voxelized data and point-wise

features.
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SemanticKITTI 53.9 54.3 59.5 63.1 65.3 67.0 68.9 69.7

nuScenes − 69.4 − − 77.3 77.4 77.9 78.3

Table 2: Segmentation mIoU (%): nuScenes-lidarseg vs.

SemanticKITTI test results

nuScenes Dataset: to prove the generalizability of our

proposed method, we trained our network with nuScenes-

lidarseg dataset [5], one of the recently available large-

scale datasets that provides point level labels of LiDAR

point clouds. It consists of 1000 driving scenes from var-

ious locations in Boston and Singapore, providing a rich

set of labeled data to advance self driving car technol-

ogy. Among these 1000 scenes, 850 of them is reserved

for training and validation, and the remaining 150 scenes

for testing. The labels are, to some extent, similar to the

SemanticKITTI dataset [3], making it a new challenge to

propose methods that can handle both datasets well, given

the different sensor setups and environment they record the

dataset. In Table 2, we compared our proposed method

with all available and published nuScenes-lidarseg test re-

sults (nuScenes-lidarseg) in addition to SemanticKITTI for

better comparison. The proposed method outperforms all

other methods, showing reliable performance in segmenta-

tion results of various object types. Considering the large

difference between nuScenes and SemanticKITTI in terms

of sensors, environment and label categories, we can con-

firm that (AF)2-S3Netcan generalize well among different

datasets.

ModelNet40: to expand and evaluate the encoder mod-

ule capabilities of the proposed method in different ap-
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S-BKI [12] 51.3 83.8 30.6 43.0 26.0 19.6 8.5 3.4 0.0 92.6 65.3 77.4 30.1 89.7 63.7 83.4 64.3 67.4 58.6 67.1
RangeNet++ [25] 52.2 91.4 25.7 34.4 25.7 23.0 38.3 38.8 4.8 91.8 65.0 75.2 27.8 87.4 58.6 80.5 55.1 64.6 47.9 55.9
LatticeNet [31] 52.9 92.9 16.6 22.2 26.6 21.4 35.6 43.0 46.0 90.0 59.4 74.1 22.0 88.2 58.8 81.7 63.6 63.1 51.9 48.4
RandLA-Net [16] 53.9 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7
PolarNet [42] 54.3 93.8 40.3 30.1 22.9 28.5 43.2 40.2 5.6 90.8 61.7 74.4 21.7 90.0 61.3 84.0 65.5 67.8 51.8 57.5
MinkNet42 [10] 54.3 94.3 23.1 26.2 26.1 36.7 43.1 36.4 7.9 91.1 63.8 69.7 29.3 92.7 57.1 83.7 68.4 64.7 57.3 60.1
3D-MiniNet [2] 55.8 90.5 42.3 42.1 28.5 29.4 47.8 44.1 14.5 91.6 64.2 74.5 25.4 89.4 60.8 82.8 60.8 66.7 48.0 56.6
SqueezeSegV3 [39] 55.9 92.5 38.7 36.5 29.6 33.0 45.6 46.2 20.1 91.7 63.4 74.8 26.4 89.0 59.4 82.0 58.7 65.4 49.6 58.9
Kpconv [33] 58.8 96.0 30.2 42.5 33.4 44.3 61.5 61.6 11.8 88.8 61.3 72.7 31.6 90.5 64.2 84.8 69.2 69.1 56.4 47.4
SalsaNext [11] 59.5 91.9 48.3 38.6 38.9 31.9 60.2 59.0 19.4 91.7 63.7 75.8 29.1 90.2 64.2 81.8 63.6 66.5 54.3 62.1
FusionNet [40] 61.3 95.3 47.5 37.7 41.8 34.5 59.5 56.8 11.9 91.8 68.8 77.1 30.8 92.5 69.4 84.5 69.8 68.5 60.4 66.5
KPRNet [18] 63.1 95.5 54.1 47.9 23.6 42.6 65.9 65.0 16.5 93.2 73.9 80.6 30.2 91.7 68.4 85.7 69.8 71.2 58.7 64.1
SPVNAS [32] 67.0 97.2 50.6 50.4 56.6 58.0 67.4 67.1 50.3 90.2 67.6 75.4 21.8 91.6 66.9 86.1 73.4 71.0 64.3 67.3

(AF)2-S3Net [Ours] 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0

Table 1: Segmentation IoU (%) results on the SemanticKITTI [3] test dataset.

plications, ModelNet40, a 3D object classification dataset

[38] is adopted for evaluation. ModelNet40 contains

12, 311 meshed CAD models from 40 different object cat-

egories. From all the samples, 9, 843 models are used

for training and 2, 468 models for testing. To evaluate

our method against existing state-of-the-art, we compare

(AF)2-S3Net with techniques in which a single input (e.g.,

single view, sampled point cloud, voxel) has been used to

train and evaluate the models. To make (AF)2-S3Net com-

patible for the task of classification, the decoder part of the

network is removed and the output of the encoder is di-

rectly reshaped to the number of the classes in ModelNet40
dataset. Moreover, the model is trained only using cross-

entropy loss. Table 3 presents the overall classification ac-

curacy results for our proposed method and previous state-

of-the-art. With the introduction of AF2M in our network,

we achieved similar performance to the point-based meth-

ods which leverage fine-grain local features.

4.2. Qualitative Evaluation

In this section, we visualize the attention maps in AF2M

by projecting the scaled feature maps back to original point

cloud. Moreover, to better present the the improvements

that has been made against the baseline model MinkNet42
[10] and SalsaNext [11], we provide the error maps which

highlights the superior performance of our method.

As shown in Fig. 5, our method is capable of capturing

fine details in a scene. To demonstrate this, we train (AF)2-

S3Net on SemanticKITTI as explained above and visualize

a test frame. In Fig. 5 we highlight the points with top 5%

feature norm from each scaled feature maps of αx1, βx2
and γx3 with cyan, orange and green colors, respectively.

It can be observed that our model learns to put its attention

on small instances (i.e., person, pole, bicycle, etc.) as well

Figure 5: Reference image (top), Prediction (bottom-right),

attention map (bottom-left) on SemanticKITTI test set.

Color codes are: road | side-walk | parking | car |
bicyclist | pole | vegetation | terrain | trunk | building

| other-structure | other-object.

as larger instances (i.e., car, region boundaries, etc.). Fig. 4

shows some qualitative results on SemanticKITTI (top) and

nuScenes (bottom) benchmark. It can be observed that the

proposed method surpasses the baseline (MinkNet42 [10])

and range-based SalsaNext [11] by a large margin, which

failed to capture fine details such as cars and vegetation.

4.3. Ablation Studies

To show the effectiveness of the proposed attention

mechanisms, namely, AF2M and AFSM introduced in Sec-

tion 3, along with other design choices such as loss func-

tions, this section is dedicated to a thorough ablation study

starting from our baseline model introduced in [10]. The

baseline is MinkNet42 which is a semantic segmentation

residual NN model for 3D sparse data. To start off with a

well trained baseline, we use Exponential Logarithmic Loss

[35] to train the model which results in 59.8%mIoU accu-
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Method Input Main operator Overall Accuracy (%)

Vox-Net [24] voxels 3D Operation 83.00

Mink-ResNet50 [10] voxels Sparse 3D Operation 85.30

Pointnet [26] point cloud Point-wise MLP 89.20

Pointnet++ [28] point cloud Local feature 90.70

DGCNN[41] (1 vote) point cloud Local feature 91.84

GGM-Net [19] point cloud Local feature 92.60

RS-CNN [23] point cloud Local feature 93.60

Ours (AF2M) voxels Sparse 3D Operation 93.16

Table 3: Classification accuracy results on ModelNet40 dataset [38], for input size 1024× 3.

racy for the validation set on SemanticKITTI.

Next, we add our proposed AF2M to the baseline model

to help the model extract richer features from the raw data.

This addition of AF2M improves the mIoU to 65.1%, an

increase of 5.3%. In our second study and to show the effec-

tiveness of the AFSM only, we first reduce the AF2M block

to only output {x1, x2, x3} (see Fig. 2 for reference), and

then add the AFSM to the model. Adding AFSM shows

an increase of 3.5% in mIoU from the baseline. In the

last step of improving the NN model, we combine AF2M

and AFSM together as shown in Fig. 2, which result in

mIoU of 68.6% and an increase of 8.8% from the base-

line model.

Finally, in our last two experiments, we study the effect

of our loss function by adding Lovász loss and the combi-

nation of Lovász and geo-aware anisotrophic loss, resulting

in mIoU of 70.2% and 74.2%, respectively. The ablation

studies presented, shows a series of adequate steps in the

design of (AF)2-S3Net, proving the steps taken in the de-

sign of the proposed model are effective and can be used

separately in other NN models to improve the accuracy.

Architecture A
F2M

A
FSM

L
ov

ás
z

L
ov

ás
z+

G
eo

mIoU

Baseline 59.8

Proposed

X 65.1

X 63.3

X X 68.6

X X X 70.2

X X X X 74.2

Table 4: Ablation study of the proposed method vs baseline

evaluated on SemanticKITTI [3] validation dataset (seq 08).

4.4. Distancebased Evaluation

In this section, we investigate how segmentation is af-

fected by distance of the points to the ego-vehicle. In order

to show the improvements, we follow our ablation study and

compare (AF)2-S3Net and the baseline (MinkNet42) on

the SemanticKITTI validation set (seq 8). Fig. 6 illustrates

the mIoU of (AF)2-S3Net as opposed to the baseline

and SalsaNext w.r.t. the distance to the ego-vehicle’s Li-

DAR sensors. The results of all the methods get worse by

increasing the distance due to the fact that point clouds gen-

erated by LiDAR are relatively sparse, especially at large

distances. However, the proposed method can produce bet-

ter results at all distances, making it an effective method to

be deployed on autonomous systems. It is worth noting that,

while the baseline methods attempt to alleviate the sparsity

problem of point clouds by using sparse convolutions in a

residual style network, it lacks the necessary encapsulation

of features proposed in Section 3 to robustly predict the se-

mantics.
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(AF)2-S3Net MinkNet42 SalsaNext

Figure 6: mIoU vs Distance for (AF)2-S3Net vs. baseline.

5. Conclusion

In this paper, we presented an end-to-end CNN model

to address the problem of semantic segmentation and

classification of 3D LiDAR point cloud. We proposed

(AF)2-S3Net, a 3D sparse convolution based network with

two novel attention blocks called Attentive Feature Fu-

sion Module (AF2M) and Adaptive Feature Selection Mod-

ule (AFSM), to effectively learn local and global contexts

and emphasize the fine detailed information in a given

LiDAR point cloud. Extensive experiments on several

benchmarks, SemanticKITTI, nuScenes-lidarseg, and Mod-

elNet40 demonstrated the ability to capture the local details

and the state-of-the-art performance of our proposed model.

Future work will include the extension of our method to

end-to-end 3D instance segmentation and object detection

on large-scale LiDAR point cloud.
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