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Abstract

The ability to quickly and accurately identify covariate shift at test time is a critical and often

overlooked component of safe machine learning systems deployed in high-risk domains. While meth-

ods exist for detecting when predictions should not be made on out-of-distribution test examples,

identifying distributional level differences between training and test time can help determine when

a model should be removed from the deployment setting and retrained. In this thesis, we explore

modern and foundational methods for identifying and characterizing distributional shift in high di-

mensional data, in particular where such data is treated as the covariates to a learning model —

this type of distribution shift is known formally as covariate shift. We go on to provide a new

definition for harmful covariate shift (HCS) that goes beyond ideas from standard learning theory

to give a richer insight on when covariate shift may hurt the performance of classification models.

Motivated from our definition, we propose a method, the Detectron, to detect HCS based on the

discordance between an ensemble of constrained disagreement classifiers (CDCs) trained to agree on

training data and disagree on test data. We derive a loss function for training CDCs and show that

their disagreement rate and predictive entropy represent powerful discriminative statistics for HCS.

Empirically, we demonstrate that the CDC learning algorithm produces model with behaviour that

aligns well with our desideratum. Finally we showcase the ability of the Detectron to detect HCS

with statistical certainty on a variety of high-dimensional datasets. Across numerous domains and

modalities, we show state-of-the-art performance compared to existing methods, particularly when

the number of observed test samples is small.

We release our code as open source software under a GNU General Public License v3.0.

Detectron
https://github.com/tomginsberg/deeptst
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Chapter 1 Introduction: Covariate Shift

Machine learning models operate on the assumption, albeit incorrectly that they will be deployed on

data distributed identically to what they were trained on. The violation of this assumption is known

as distribution shift and can often result in significant degradation of performance [Recht et al.,

2019; Hendrycks and Dietterich, 2019; Bickel et al., 2009; Rabanser et al., 2019; Otles et al., 2021;

Ovadia et al., 2019]. There are several cases where a mismatch between training and deployment data

results in very real consequences on human beings. In healthcare, machine learning models have been

deployed for predicting the likelihood of sepsis. Yet, as [Habib et al., 2021] show, such models can be

miscalibrated for large groups of individuals, directly affecting the quality of care they experience.

The deployment of classifiers in the criminal justice system [Hao, 2019], hiring and recruitment

pipelines [Dastin, 2018] and self-driving cars [Smiley, 2022] have all seen humans affected by the

failures of learning models. The need for methods that quickly detect, characterize and respond

to distribution shift is, therefore, a fundamental problem in trustworthy machine learning. For

practitioners, regulatory agencies and individuals to have faith in deployed predictive models without

the need for laborious manual audits, we need methods for the identification of distribution shift

that are sample-efficient (identifying shifts from a small number of samples), informed (identifying

shifts relevant to the domain and learning algorithm), model-agnostic (identifying shifts regardless

of the functional class of the predictive model) and statistically sound (identifying true shifts while

avoiding false positives with high-confidence).

In our work, we study a special case of distribution shift, commonly known as covariate shift,

which considers shifts only in the distribution of input data X to a learning model which aims to

predict a target variable Y . In many standard machine learning settings we assume that the model

is trained to learn the conditional distribution p(Y |X) using samples from the joint distribution

p(X,Y ), but is deployed in a new environment where the distribution over covariates no longer

matches. Unfortunately, results from standard learning theory only provide relatively loose bounds

on the performance of learning models under covariate shift, meaning that even slight shifts can

have disastrous outcomes for models in high risk domains.

We build off recent progress in understanding model performance under covariate shift using

the PQ-learning framework [Goldwasser et al., 2020], a framework for selective classifiers that may

either predict on or abstain for a given sample. PQ learning introduces a strong set of performance

guarantees for such selective classifiers under arbitrary covariate shifts, we summarize the main

12



CHAPTER 1. INTRODUCTION 13

results of PQ learning in section 2.5. Our work uses and extends PQ-learning to develop a practical,

model-based hypothesis test, named the Detectron, to identify potentially harmful covariate shifts

given any existing classification model already in deployment. See Figure 1.1 for a high level overview

of our method.

Our work makes the following key contributions:

• We show how to construct an ensemble of classifiers that maximize out-of-domain disagreement

while behaving consistently in the training domain. We propose the disagreement cross entropy

for models learned via continuous gradient-based methods (e.g., neural networks), as well as a

generalization for those learned via discrete optimization (e.g., random forest).

• We show that the rejection rate and the entropy of the learning ensemble can be used to define

a model-aware hypothesis test for covariate shift, the Detectron, that in idealized settings

can provably detect covariate shift.

• On high-dimensional image and tabular data, using both neural networks and gradient boosted

decision trees, our method outperforms state-of-the-art techniques for detecting covariate shift,

particularly when given access to as few as ten test examples.
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Figure 1.1: Detectron (PQ Learning for Covariate Shift Detection): Starting with a base classifier
trained on labeled samples from distribution P we train new Constrained Disagreement Classifiers (CDCs)
on a small set of observed unlabeled samples from a new distribution Q. CDCs aim to maximize classification
disagreement on Q while constrained to agree with the base classifier on P. The rate ϕ that CDCs disagree,
as well as their entropy, on test data is a powerful and sample efficient statistic for identifying covariate shift
P ̸= Q.



Chapter 2 Background: Covariate Shift

Covariate shift is the tendency for a covariate distribution at test time ptest(x) to differ from that

seen during training ptrain(x) while the underlying prediction concept y remains fixed [Sugiyama

and Kawanabe, 2012]

ptrain(x) ̸= ptest(x) while ptrain(y|x) = ptest(y|x)

The problem of detecting variate shift is important at a fundamental level in machine learning.

From a classical learning theory perspective, predictive ML algorithms that operate on unseen data

can only claim reasonable performance guarantees when such data is exchangeable with the labeled

samples which they were trained and tested on [Haussler, 1990]. The violation of this assumption in

general is known as distribution shift. However, in a typical deployment setting where only covariates

are observed one cannot detect changes in p(y) or p(y|x) leaving covariate shift as the only remaining

phenomenon identifiable from data. The related problems of label shift (shift in p(y)) and concept

shift (shift in p(y|x)) pose an additional problems for maintaining the robustness of deployed ML

systems, but are not the topic of this work. To understand contemporary methods for detecting

covariate shift in the high dimensional data that is typical of the covariates found in real-world ML

systems we must first take a segway back to the underlying concepts in probability and statistics.

2.1 Two Sample Statistical Testing

If the reader is familiar with the subject of two sample testing they may continue to section 2.2.

The problem of detecting when two distributions P and Q over X are different given only finite

samples P = {X1, . . . Xn}
iid∼ P and Q = {X̃1, . . . X̃m}

iid∼ Q is one of the most fundamental

problems in statistics. The general problems seeks to rule out a null hypothesis H0 : P = Q in favor

of an alternative Ha : P ̸= Q at a given significance level α. The significance level is equivalent to

the false positive rate or probability of making a type I error, which fixes a threshold for the test such

that when P = Q, H0 is ruled out with probability no more than α. The power of a statistical test,

often denoted as 1−β where β is the probability of making a type II error, is the probability that the

test correctly rules out H0 for a given target distribution Q while still maintaining a significance level

of α. While less standard in statistics literature, it is natural to measure the area under the receiver

operating characteristics (AUROC) as area under curve 1−β as a function of α for α ∈ [0, 1]. For a

14
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more rigours mathematical underpinning of two sample testing see section 2.1 in Schrab et al.. In

the following subsections we highlight several important approaches to two sample testing that will

be used in much of the later methodologies.

Kolmogorov–Smirnov test

An elegant and robust two sample test that requires no assumptions on the distributions P and Q

besides X = R is the Kolmogorov–Smirnov test (KS test) [Kolmogorov, 1933]. The KS test leverages

the result of the Glivenko–Cantelli theorem [Glivenko, 1933] to construct a test statistic defined by

the largest absolute difference between the two empirical cumulative distribution functions across

all observed values. As the Glivenko–Cantelli theorem is simple yet fundamental to understanding

the KS test we present it in full below:

Theorem 1 (Glivenko–Cantelli [Glivenko, 1933]). Assume that X1, X2, . . . are independent and

identically-distributed random variables in R with common cumulative distribution function F (x).

The empirical distribution function for X1, . . . , Xn is defined by

Fn(x) =
1

n

n∑
i=1

I[Xi,∞)(x) =
1

n
|{1 ≤ i ≤ n | Xi ≤ x}| (2.1)

where IC is the indicator function of the set C. For every (fixed) x, Fn(x) is a sequence of random

variables which converge to F (x) almost surely by the strong law of large numbers.

∥Fn − F∥∞ = sup
x∈R
|Fn(x)− F (x)| −→ 0 almost surely (2.2)

To perform a KS two sample test, one computes the exact probability under the null hypothesis

P = Q of obtaining a rarer value compared to the observation of the test statistic

DP,Q ≜ sup
x∈R
|FP(x)− FQ(x)|

Where FS is the empirical CDF for a set of samples S. Computing the probability of observing

a rarer test statistic is non-trivial and in general maps to the problem of counting the number of

distinct paths that pass outside the specified diagonal on a |P| × |Q| rectangular grid [Drew et al.,

2000]. However, for large P and Q asymptotic approximations exist that can greatly reduce the

computational complexity. A shortcoming of the KS test is that it sacrifices statistical power in

order to be more flexible to handle arbitrary differences between distributions.
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Binomial test

While the KS test present a general approach to univariate two sample testing, we can often use

partial knowledge over the distribution that generates our samples to design of a more powerful test;

the binomial test is one such example. The test considers a binomially distributed random variable

X with unknown rate q i.e., X ∼ Binomial(n, q) for which we observe a single sample x (hence

X = {0, . . . , n}). Since the binomial distribution is defined as a sum of i.i.d. Bernoulli random

variables with the same rate, x may equivalently be interpreted as a set of n samples of which x are

1 and n−x are 0. We wish to either confirm or rule out that x was sampled from a baseline binomial

distribution with known rate p. We do this by computing the probability of observing an event at

least as rare as X = x under the null hypothesis that p = q. This quantity can be computed exactly

using the symmetry of the binomial distribution.

P
X∼Bin(n,p)(X as least as rare as x) = 2× P

X∼Bin(n,p)(X ≥ x)

= 2

n∑
k=x

P[X = k]

= 2

n∑
k=x

(1− p)n−kpk
(
n

k

)
= 2

Bp(x, n− x+ 1)

B(x, n− x+ 1)

Where Bz(α, β) is the incomplete Beta function and B(α, β) is the beta function. By the convenient

construction of the test one can query the likelihood specifically for one-sided alternatives; something

that is more practical when there is specific knowledge related to the alternative hypothesis. For

example, one can test if a coin is unfairly biased towards heads given an observation of 60/100 heads,

in this case the one-sided binomial test admits a p-value of ≈ 0.028 suggesting that we can rule out

at the 5% level that the coin is fair in favor of it being biased towards heads.

Do to the simple structure of the binomial test one can derive a simple summation formula for

computing the exact statistical power as a function of n, p, q and the significance level α. This

quantity corresponds to the probability of observing a p-value of less than or equal to α when
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running a binomial test on sample from a random variable X ∼ Bin(n, q) against a baseline rate p.

P
Y∼Bin(n,q)

(
P
X∼Bin(n,p)(X ≥ Y ) ≤ α

2

)
= P

Y∼Bin(n,q)

(
n∑

k=k

(
n

k

)
(1− p)n−kpk ≤ α

2

)

= E
Y∼Bin(n,q)

(
I

[
n∑

k=k

(
n

k

)
(1− p)n−kpk ≤ α

2

])

=

n∑
y=0

(
n

y

)
I

 n∑
k=y

(
n

k

)
(1− p)n−kpk ≤ α

2

 qy(1− q)n−y

We use I[·] as a binary indicator. We verify this formula using a simple Monte Carlo simulation

with p = .5, q = .6, n = 100 and α = 0.05. The statistical power and standard error estimated

over 10, 000 draws gives 0.461 ± 0.005 whereas the above summation yields a value of 0.4621. One

important note is that under this simple construction the binomial test is not a two sample test,

but merely a single sample test. However, in a setting where one has access to many more sample

in P compared to that in Q (which will be the primary setting of the upcoming methodology),

one can reasonably estimate the baseline success rate p from P and use the binomial test as is. In

other settings where the assumption of |P| ≫ |Q| does not hold, one may resort to Barnard’s exact

test [Erguler, 2016] or the often more powerful alternative Fisher’s exact test [Fisher, 1922].

Integral Probability Metrics & Maximum Mean Discrepancy

A general method to define a measure between probability distributions is via an integral probability

metric or IPM [Müller, 1997]. An IPM is defined as the supremum over a set of functions F on the

absolute difference between the expectations under P and Q.

IPMF (P∥Q) = sup
f∈F
|Ex∼P [f(x)]− Ex∼Q [f(x)] |

When F is chosen as the set of all functions with bounded ∞−norm F = {f : ∥f∥∞ ≤ 1} the

associated IPM results in the well known total variation distance [Sriperumbudur et al., 2009].

The Maximum Mean Discrepancy (MMD) is formalized as an IPM given F to be the n Repro-

ducing Kernel Hilbert Space Hk with a kernel k : X × X → R [Schrab et al., 2021].

MMD(P,Q;Hk) = sup
f∈Hk:∥f∥Hk

≤1

|EX∼P [f(X)]− EY∼Q[f(Y )]|

When we chose a characteristic kernel such that MMD(P,Q;Hk) = 0 ⇐⇒ P = Q Gretton et al.
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construct a quadratic time MMD estimator using samples P and Q of sizes n and m respectively:

M̂MD
2
(P,Q;Hk) =

1

n(n− 1)

∑
1≤i ̸=i′≤n

k (Pi,Pi′) +
1

m(m− 1)

∑
1≤j ̸=j′≤m

k (Qj ,Qj′)

− 2

mn

n∑
i=1

m∑
j=1

k (Pi,Qj)

(2.3)

Existing work for detecting high dimensional distribution shift using MMD estimators focus on the

design of kernels. Rabanser et al. considers the squared exponential kernel k(x, y) = exp
(
σ−1∥x− y∥2

)
,

while Liu et al. explore of use of deep neural networks for building more statistically powerful kernels.

While MMD presents an estimator for measuring the difference in distributions, it does not

directly lead to a rigorous two sample test with a bounded significance level, to achieve this we will

need to turn to the methodology of permutation testing presented in the next subsection.

Permutation Testing

Permutation testing [Fisher, 1935] is a method to guarantee the significance level of any test by

first estimating a quantile of the distribution of a test statistic when the null hypothesis H0 is true

(P = Q). For some tests like KS and Binomial this quantile can be computed analytically or using

an exact algorithm, but in the general case it cannot, motivating the need for alternative methods.

Suppose we have a test statistic function T : Xn × Xm → R. In the context of two sample

testing T maps a set P and Q to a real value which we assume to be some heuristic measure of the

distributional difference between P and Q based on the finite sample observations. To construct a

one-sided two sample test with T we must first determine a significance threshold τ such that when

P = Q we have a probability of at least 1− α that T (P,Q) < τ (or T (P,Q) > τ depending on the

direction of the test). To estimate τ we take advantage of the exchangeability of samples under H0.

If indeed P = Q then it should not matter which group of the total n +m samples we call P and

which we call Q, so the strategy is to combine, permute and redivide P and Q and feed them into

T many times, computing τ as the 1− α quantile of all observations of the test statistic. If the test

performed on the original partitions exceeds τ (e.g., T (P,Q) ≥ τ) we can rule out H0 with an exact

significance level α. We note that as we are estimating τ from finite data, it itself incurs statistical

estimation error which in turn adjusts the true significance level of a test [Tibshirani et al., 2019].

This is a minor detail which is ignored by several modern approaches for two sample testing that

employ permutation tests [Liu et al., 2020; Zhao et al., 2022].
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2.2 Approaches for High Dimensional Data

Dimensionality Reduction Approaches

Many methods for detecting shift in high-dimensional data simply apply dimensionality reduction

(DR) techniques followed by standard two sample tests [Rabanser et al., 2019]. Rabanser et al. per-

form an evaluation on several DR techniques including, PCA, random feature projections, trained

and untrained auto-encoders and the output features of a classification model. On each DR method

they test the performance of univariate KS-tests on each dimension of the reduced data distribu-

tion aggregated using Bonfferoni correction as well as MMD using the squared exponential kernel.

Rabanser et al.’s main takeaway is that using the softmax outputs of a pretrained classifier as low

dimensional representations for performing KS-tests, a method known as black box shift detection

(BBSD) [Lipton et al., 2018], is effective at confidently identifying several synthetic covariate shifts

in imaging data (e.g., crops, rotations) given approximately 200 i.i.d samples. However, applying

statistical tests to non-invertible representations of data can never guarantee to capture arbitrary

covariate shifts, as there may always exist multiple distributions that collapse to the same test

statistic [Zhang et al., 2021]. For instance if considering PCA as the DR of choice an adversary

could construct a new data distribution Q where samples are drawn by transforming samples from

P randomly within the null space of the orthogonal projection.

Learning Theoretic Approaches

Ben-David et al. [2006] introduces the earliest theoretic framework for identifying and bounding

the effect of covariate shift based on discriminative learning with finite samples. In the foundation

work “Detecting Change in Data Streams”, Kifer et al. introduce the concept of A-distance as a

generalization of the total variation to an arbitrary collection of measurable events A.

dA (P,Q) ≜ 2 sup
A∈A
|PrD[A]− PrD′ [A]| (2.4)

The authors show how various choices of A can induce certain desired properties, for example when

P and Q are distribution over the real line and A is the collection of all intervals (−∞, ·) the A-

distance becomes equivalent to the Kolmogorov-Smirnov statistic. Kifer et al. go on to prove tight

bounds on various instantiations of the A-distance for detecting shifts in an online setting.

Ben-David et al. develop a learning theoretic extension of Kifer et al. to show that when they

chose a class of events whose characteristic functions are functions from a set of binary classifiers F ,
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the A distance in connection with VC theory [Vapnik, 1995] allows for finite sample generalization

bounds on the performance of arbitrary decision models from F under covariate shift. Ben-David

et al. go on to show that the A distance defined for a binary function class F is equal to

dF (P,Q) ≜ 2

(
1− 2min

f∈F
err(f)

)
(2.5)

where minf∈F err(f) is the minimum error that a domain classifier from F can achieve on the task

of distinguishing samples from P and Q (i.e., if P = Q the best domain classifier will have error of

0.5 and dF (P,Q) = 0 and if P and Q can be perfectly discriminated by some f ∈ F the dF (P,Q) is

maximized and equal to 2). This conclusion motivates the classifier two sample test (CTST) [Lopez-

Paz and Oquab, 2017] to detect shift by first training a domain classifier d : X → {0, 1} on a set

of samples from P and Q then running a binomial test to reject the null hypothesis that d achieves

an accuracy of 0.5 on unseen data. Ben-David et al. inspired many ideas for unsupervised domain

adaption including the popular method domain adversarial domain adaptation (DANN) [Ganin et al.,

2016] which aims to learn robust representations of data for classification by explicitly regularizing

for a small dF on the representation space.

Learning Model Based Approaches

More recent approaches for covariate shift detection including, deep kernel MMD [Liu et al., 2020]

and H-Divergence [Zhao et al., 2022] focus on training learning models with objectives optimized

specifically for statistical testing in a way that goes beyond CTSTs.

Liu et al. show how to train a deep feature extractor ϕω : X → Rd to optimize the power of

an MMD test using a simple kernel. The proposed learnable kernel kω is a linear combination of a

kernel κ that operates on the featurizer data and another kernel q that operates on the raw data:

kω(x, y) = (1− ϵ)κ (ϕω(x), ϕω(y)) + ϵq(x, y) (2.6)

the choice of kernels k and q as well as the value for ϵ ∈ [0, 1] are considered as hyperparameters.

In practice the authors use squared exponential kernels with a lengthscale of 0.1 and ϵ = 10−10.

The parameters ω of the deep kernel are learned to optimize the MMD objective in Equation 2.3

on splits of source and test data and test significance is computed using a permutation test on the

unseen splits.
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Zhao et al. introduce a new family of distributional divergences (H-Divergences) that builds off

the concept of H-entropy [DeGroot, 1962]

Hℓ ≜ inf
a∈A

EX∼P [ℓ(X, a)]

The H-entropy is defined on a distribution P as the optimal expected action with respect to loss

function ℓ and set of possible actions A. For example, if ℓ if the reconstruction loss of an autoencoder

fθ and A is the set of all possible parameter configurations θ, Hℓ corresponds to the expected

reconstruction loss of fθ⋆ where θ⋆ is the optimal choice of parameters. Zhao et al. present a general

definition of the H-Divergence using a function whose arguments are restricted to be Hℓ

(
p+q
2

)
−Hℓ(p)

and Hℓ

(
p+q
2

)
−Hℓ(q). The authors propose using an empirical estimate of the H-divergence directly

as a test statistic for performing a two sample test with significance bounded through permutation.

While deep kernels and H-divergence operate in a purely unlabeled/unsupervised setting, in our

work we construct a method to directly use the structure of a supervised classification problem to

improve the statistical power for detecting shifts.

2.3 Out of Distribution Detection

Out of distribution (OOD) detection focuses on identifying when a specific data point x′ admits

low likelihood under the original training distributions (ptrain(x
′) ≈ 0)—a useful tool to have at

inference time. Ren et al. [2019]; Morningstar et al. [2021] represent a broad class of work that uses

density estimation to pose the identification of covariate shift as anomaly detection. However, in

finite samples, density estimation for high-dimensional data can be difficult which in turn affects

the accuracy of anomaly detection [Zhang et al., 2021]. Still the discipline of OOD detection has

seen several recent successes, including ODIN [Liang et al., 2018], Deep Mahalanobis Detectors [Lee

et al., 2018] and, Gram Matrices [Sastry and Oore, 2020] which all directly use the predictive model

(e.g., information from the intermediate representations of neural networks) to create a real valued

score function ϕ : X → R which attempts to map data points to a real number near zero if the

datapoint is in the training distribution and far from zero if the datapoint is out of distribution.

Such methods are largely based on heuristics on the manifold of neural networks offering little to no

theoretical guarantees on detecting subtle types of covariate shifts encountered in real-world settings.

Furthermore, the majority of methods in this space have been designed exclusively for deep neural

networks, an uncommon modelling choice particularly for tabular data [Borisov et al., 2021].
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Despite these shortcomings, OOD methods can be readily applied for the problem of covariate

shift detection under the same principle that governs Integral Probability Metrics (IPMs) [Müller,

1997]; namely that if two distributions are identical, any function should have the same expectation

under both distributions. Hence testing for a difference in expected OOD scores between a source

and target dataset is a valid hypothesis test for covariate. However, as OOD scores are designed

to only look at a single sample level, instead of treating a set of samples as a whole one would not

expect such a test to yield high statistical power for near distribution shifts.

2.4 Uncertainty Estimation

Related to OOD, uncertainty estimation concerns developing models that identify sources of uncer-

tainty in their predictions [Lakshminarayanan et al., 2017; Ovadia et al., 2019]. A non exhaustive

list of approaches to model uncertainty using predictive models are Gaussian Processes [Williams

and Rasmussen, 1995], measuring the predictive variance or entropy of Deep Ensembles [Laksh-

minarayanan et al., 2017] or Monte Carlo Dropout [Gal and Ghahramani, 2015], Bayesian Neural

Networks [Goan and Fookes, 2020], and Evidential Learning [Amini et al., 2020; Sensoy et al., 2018].

Naturally, uncertainty should be large when samples are OOD implying that one could consider

testing for covariate shift using the same principle as identified for OOD scores. However, [Ovadia

et al., 2019] perform a large-scale empirical comparison of uncertainty estimation methods and find

that while deep ensembles generally provide the best results, the quality of uncertainty estimations,

regardless of method, consistently degrades with increasing covariate shift.

2.5 Selective Classification and PQ Learning

Selective classification concerns building classifiers that may either predict on or reject on test

samples [Geifman and El-Yaniv, 2019]. Recent work by [Goldwasser et al., 2020] develops a for-

mal framework known as PQ learning which extends probably approximately correct (PAC) learn-

ing [Haussler, 1990] to arbitrary test distributions by allowing for selective classification. While

PAC learning concerns the development of a classifier with a bounded finite-sample error rate on

its training distribution, PQ learning seeks a selective classifier with jointly bounded finite-sample

error and rejection rates on arbitrary test distributions. The Rejectron algorithms proposed therein

builds an ensemble of models that produce different outputs relative to a perfect baseline on a set

of unlabeled test samples. We provide a summary of the original Rejectron algorithm in the sup-
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plementary material (see section A.1). PQ-learning represents a major theoretical leap for learning

guarantees under covariate shift; however, the majority of the underlying ideas have not been im-

plemented/tested experimentally using real-world data. We show how to build a PQ learner by

generalizing the Rejectron algorithm, overcoming several limitations and assumptions made by the

original work including extending beyond simple binary classification to general multiclass/multil-

abel tasks and reducing the number of samples required for learning at each iteration. We go on to

show how a PQ learner can be used to characterize covariate shifts in real-world data.



Chapter 3 Methodology: The Detectron

3.1 Problem Setup

Let f : X → RN be a classifier from a function class F that maps from space of covariates X to a

discrete probability distribution over classes Y = {1, . . . , N} i.e.,

f(x) = [f(x)1, f(x)2, . . . , f(x)N ]⊤ s.t. f(x)i ≥ 0 ∀ i ∈ Y and ∥f(x)∥1 = 1

We denote the prediction of a model f(x) as f̂(x) := argmaxi∈{1,...,N} f(x) which corresponds to the

class with the maximum predicted probability. We assume f was trained on a dataset of labeled

samples P = {(xi, yi)}ni=1 where each xi is drawn identically from a distribution P over X, and

each label yi ∈ Y corresponds to the ground truth label for the classification problem of interest. In

deployment, f is made to predict on new unlabeled samples Q = {x̃i}mi=1 (x̃i from a distribution

Q over X. Our high level goal is to determine whether f may be trusted to do so accurately. More

specifically, the problem we address is how to automatically detect, with high statistical power, from

only a small set of samples Q, if the new covariate distribution Q has shifted from P in such a

way that is easily distinguishable with respect to a set of classifiers that fit the training set. To

give further intuition, if we can create multiple models that perform reliably and consistently on the

training set P, but disagree on Q, not only is exchangeability between P and Q violated, but no

claims can be made as to what the correct predictions on Q should be.

Our problem will differ from a standard two sample testng scenario in several critical ways (1) we

may assume access to many more samples from P compared to Q; motivated by the setting where

we wish to detect shift quickly, and hence from as few samples as possible (2) we have access to a

robust classifier f that performs reasonably well (e.g. could realistically be deployment) on held out

samples from P as well as the learning algorithm L used to train it. (3) We seek to only detect shifts

that could reduce classification robustness of f — we refer to this shift characterization harmful

covariate shift and elaborate on it in the next section.

3.2 Harmful Covariate Shift

A shift in the data distribution is not always harmful. In many practical problems, a practitioner

may use domain knowledge to embed invariances with the explicit goal of ensuring the predictive

24
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performance of a classifier does not, by construction, change under certain shifts. This may be

done directly via translation invariance in convolutional neural networks, permutation invariance in

DeepSets [Zaheer et al., 2017] or indirectly via data augmentation or domain adaptation. Other

model invariances are often learned naturally due to the structure of a given dataset and associated

decision problem.

Figure 3.1: Blacking out the corners in MNIST is an

example of a non harmful covariate shift with respect

to a simple CNN that achieves near 100% accuracy

on both sets. A likely explanation for why this shift is

not harmful is because MNIST images contain content

primarily in the center, leading to classifiers implicitly

learning an invariance to the corners of the image.

For example, we train a simple CNN using

the LeNet architecture on the MNIST dataset

as P and test it on a modified version where

a 5 × 5 pixel region at each corner of image is

blacked out Q (see Figure 3.1). We find that

when tested on a set of 10, 000 unseen examples

the accuracy (± standard error) on the origi-

nal images is 98.48 ± 0.12% and 98.09 ± 0.14%

on those with blacked out corners (i.e., nearly

identical). A plausible explanation for this ob-

servation is that the content useful for explaining MNIST is found near the center of the image,

which encourages a robust classifier to learn invariance to the content of the image near the corners.

However, in terms of pure statistics one could not argue that there is no covariate shift between P

and Q. To support this claim we run the simplest possible two sample test where we take the mean

intensity of each image in P and Q using only a sample size of |P| = |Q| = 10 and run a Kolmogorov

Smirnov Test [Hodges, 1958] over 1, 000 permutations to calculate a test power of 0.981 ± 0.004 at

the strongest significance level α = 0.

The MNIST example motivates the point that practical heuristics, and problem structure can

lead to models generalizing to a more broad range of distributions than can be characterized by

just the training set. And furthermore, that when two sample tests are decoupled with respect to

the heuristics and structures of the domain, they lose their informative abilities. To formalize this

notion we define the informal idea of the generalization set R as the set of distributions, beyond

simply the training distribution, that a model generalizes to. R is an abstract object which may

in general depend on the model architecture/function class F , learning algorithm L and training

dataset P. While R is difficult if not impossible to characterize exactly, we seek a practical method

for detecting shift that is explicitly tied to R.

Our approach is based on PQ learning, intuition from learning theory and observations in learning

dynamics under distribution shift. A one sentence summary is: if we can find a set of classifiers
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{g1, . . . , gℵ} ⊆ F that achieve the same generalization set as f but behave inconsistently with respect

to f on samples from a distribution Q, then Q must not be a member R. Since it is not possible

to know R for a given classifier we introduce a more practical definition of harmful covariate shift

based on the learning algorithm and source dataset — whose complex interaction is what induces

R.

Definition 1 ( Harmful Covariate Shift (HCS) ). Let F be a family of decision functions that are

learnable via a learning algorithm L from a set of samples drawn from a source distribution P. We

say a covariate shift from distributions P → Q over X is (ℓ, α, L,P)-harmful, if there exists a finite

subset of two or more models f ⊆ F that achieve a source domain loss EP [ℓ(f(x), y)] ≤ α for all

f ∈ f and are more likely to disagree with each other on an unseen sample from Q compared to P.

∃ f ⊆ F, s.t. ∀f ∈ f Ex∼P [ℓ(f(x), y)] ≤ α and

Px∼Q(∃ fi, fj ∈ f s.t. f̂i(x) ̸= f̂j(x)) > Px∼P(∃ fi, fj ∈ f s.t. f̂i(x) ̸= f̂j(x))

(3.1)

In plainer words, we define harmful covariate shift based on the existence of multiple good models

on P whose respective invariances define the generalization set, but that tend to disagree on Q with

greater probability compared to P.

3.3 Constrained Disagreement Classifiers

Our strategy for detecting HCS will be to create an ensemble of constrained disagreement classifiers

{g1, . . . , gℵ}, classifiers created by the same learning algorithm as f that are constrained to predict

consistently (i.e., predict the same as f) on P but as differently as possible on Q. If Q is within

R then such an ensemble will fail to predict differently, as the invariances induced by L and P

by definition do not allow a high degree of uncertainty within R. However, when we can find an

ensemble that exhibits inconsistent behaviour on Q, there must be covariate shift that explicitly lies

outside R. To make the idea of constrained disagreement classifiers tangible we propose a simple

definition which we will translate into a learning algorithm in the following sections.

Definition 2. [Constrained Disagreement Classifier (CDC)] A constrained disagreement classifier

g(f,P,Q), or simply g or gQ if f , P and Q are clear with context, is a classifier with the following

properties:

1. g belongs to the same model class as f and is updated with the same learning algorithm when

it observes samples from P;
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2. g achieves similar training and held out performance on P with respect to f ;

3. g disagrees maximally with f on elements of dataset Q while not violating 1 and 2.

Our definition of a CDC aims to explicitly capture the concept of a classifier that learns the same

generalization region as f while behaving as inconsistently as possible on Q.

3.4 Domain Classification and Model Capacity

In our background on covariate shift (section 2.2) we discussed the mathematical concept of A

distance from [Kifer et al., 2004; Ben-David et al., 2006] and how it translates to the classifier two

sample test [Lopez-Paz and Oquab, 2017]. Naively, the idea of training classifiers to disagree on

out of domain data is identical to the simpler concept of domain classification when given models

with sufficiently a large learning capacity e.g., deep neural networks. However, vanilla domain

classification does not leverage the structure and invariance of the specific problem, which will in

general result in a less informative test as we have motivated previously (section 3.2). In Figure 3.2

we explore in a visual toy example how the capacity of CDCs influences the sensitivity for detecting

certain distribution shift.

Figure 3.2: Investigating the relation between CDC model complexity and the ability to identify
covariate shift: We consider a toy example where the ground truth labels are generated using a quadratic
decision boundary, shown as a black dashed line. The blue points correspond to training samples, and the
orange and green points correspond to two different covariate shifts, one closer to the training distribution
and the other further. (Left) When we choose an underspecified model family (e.g., linear classifiers), there
exists no CDC that reports different explanations for the orange and green points. However, if expert
knowledge led us to believe that a linear classifier is the true model family, we would consequently not be
worried about covariate shift. (Center) When we choose a quadratic function family, there exists enough
variation within the space of models that explain the training set to offer different explanations on the
distance shift (orange) but not on the near shift (green). An analogy to a more complex learning problem
would be that the green region represents a set of datapoints shifted from the source, yet still within the
generalization/invariance set of the learning algorithms. (Right) When we learn from an overly expressive
function family (polynomials of degree 3+), the space of models that explain the training set can offer
different explanations of even near covariate shifts (green points).

Beyond the concept of shift harmfulness, we will see in our methods and empirical study that

unlike domain classifiers, CDCs can easily leverage a pretrained model to result in significantly larger

statistical power when detecting shift.
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3.5 Connection to PQ Learning

As our work builds on PQ learning, we provide a summary of the original framework and clearly state

the distinctions in our methodology. In PQ learning we seek a selective classifier h|S that achieves

a bounded tradeoff between its in distribution rejection rate rejh(x) and its out of distribution error

errh(x̃) with respect to a ground truth decision function d. Formally, a selective classifier predicts

according to a base classifier h if the input x is inside some set S and otherwise rejects/abstains

from predicting.

h|S (x) :=


h(x) x ∈ S

reject x ̸∈ S

(3.2)

The error and rejection rate are defined for a selective classifier h|S with respect to a distribution

P as:

rejh(S) := Px∼P [x ̸∈ S] errh(S) := Px∼P [h(x) ̸= y ∧ x ∈ S] (3.3)

Where y = d(x) is the ground truth label for x. The empirical rejection and error rates for a set of

samples x = {xi}ni=1 and corresponding labels y = {yi}ni=1 are similarly defined as:

rejh(x) :=
1

n

n∑
i=1

δxi ̸∈S errh(x) :=
1∑n

i=1 xi ∈ S

n∑
i=1

(δxi ̸=yi × δxi∈S) (3.4)

Using this construction Goldwasser et al. define PQ learning with the following learning theoretic

bound.

Definition 3 (PQ learning [Goldwasser et al., 2020]). Learner L (ϵ, δ, n)-PQ-learns F if for any

distributions P,Q over X and any ground truth function d ∈ F , its output h := L(P, d(P),Q)

satisfies

Px∼Pn, x̃∼Qn [rejh(x) + errh(x̃) ≤ ϵ] ≥ 1− δ (3.5)

L PQ-learns F if L runs in polynomial time and if there is a polynomial p such that L (ϵ, δ, n)−PQ

learns F for every ϵ, δ > 0, n ≥ p(1/ϵ, 1/δ).

Goldwasser et al. propose the Rejectron algorithm for PQ learning in a noiseless binary classi-

fication setting with zero training error and access to a perfect empirical risk minimization (ERM)

oracle. Rejectron sequentially searches for new classifiers that achieve zero training error while

attempting to predict the opposite label on subsets of the unlabeled set Q. We highlight several

pitfalls that prevent a practical realization of Rejectron (1) the classification problem must be binary
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(2) the optimization objective at each step requires an ERM query with Ω(|P|2) samples and (3)

most significantly there is no process to control overfitting of large capacity models. By tackling the

above issues we derive a practical PQ learning algorithm and propose a powerful hypothesis test to

leverage the PQ learner to identify harmful covariate shift.

3.6 Learning to Disagree

To train a classifier to disagree in the binary setting, it suffices to flip the labels. However, in the

multi-class classification, it is unclear what a good objective function is. We formulate an explicit

loss function that can be minimized via gradient descent to learn a CDC. For classification problems,

letting g(x) be the predictive distribution over N classes, f̂(x) ∈ {1, . . . N} the label predicted by f

and I[·] a binary indicator, we define the disagreement-cross-entropy (DCE) as:

ℓ̃DCE(g(x), f̂(x)) =
1

1−N

N∑
c=1

I[f̂(x) ̸= c] log(g(x)c) (3.6)

Equation 3.6 corresponds to taking the cross entropy of g(x) with the uniform distribution over all

classes except f(xi). Since the primary criteria is that g(x) disagrees with f(x), ℓ̃DCE is designed to

minimize the probability of g’s prediction for the output of f ’s while maximizing its overall entropy.

Our definition of ℓ̃DCE is significantly more stable to optimize compared to simply maximizing the

regular cross entropy as it has a bounded global minimum. See further details in section A.3.

Our goal is to agree on P and disagree on Q. Consequently, we learn with the loss in Equation 3.7.

ℓ denotes the standard cross entropy loss and ℓ̃DCE is the disagreement cross entropy. λ is a scalar

parameter that controls the trade off between agreement and disagreement.

LCDC(P,Q) =
1

|P|+ |Q|


∑

(x,y)∈P

ℓ(g(x), y)

︸ ︷︷ ︸
predict labels on source data

+ λ
∑
x̃∈Q

ℓ̃DCE(g(x̃), f(x̃))︸ ︷︷ ︸
disagree with f on target data

 (3.7)

When learning CDCs in practice, LCDC should be combined with any additional regularization

and data augmentation used in the original training process of f to ensure that we retain the true

generalization region of f . Furthermore, training and validation metrics must be closely monitored

on unseen samples from P to ensure that g achieves similar generalization performance on P.
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3.6.1 Choosing λ

We show that we can choose the scalar parameter λ in Equation 3.7 to set learning P as the primary

learning objective and only when it cannot be improved, we allow g to learn how to disagree on Q,

thus relaxing the original constrained optimization objective to a tractable weighted objective. The

reasoning is a simple counting argument. Suppose agreeing on each sample in P incurs a reward of 1

and disagreeing with each sample in Q a reward of λ. To encourage agreement on P as the primary

objective, we set λ such that the extra reward obtained by going from zero to all disagreements on

Q is less than that achieved with only one extra agreement on P, this gives λ|Q| < 1. Practically,

we chose λ = 1/(|Q|+ 1) and find that no tuning is required.

3.6.2 Generalizing Beyond Cross Entropy

When training models with arbitrary discrete or generally non-differentiable with respect their objec-

tive (e.g., random forest), we must find a more general solution for creating CDCs. Such a solution

should (1) reduce to the DCE when the model is, in fact, continuous and trained using the standard

cross-entropy, and (2) reduces to label flipping when N = 2 (binary classification). Our simple so-

lution is to replicate every sample in Q exactly N − 1 times and create a unique label for each from

the set S := {1, . . . , N}\{t} where t is the disagreement target. We also give each sample a weight

of 1/(N − 1). In the case of N = 2, this corresponds to no replication and simply assigning the

opposite label. In the case where the model learns by cross-entropy, this generalization corresponds

to the DCE in Equation 3.6; we provide a simple proof below.

Proof. Starting with the definition of the cross entropy

CE(f(x), y) = −
N∑
c=1

I[c = y] log(f(x)c) (3.8)

Now we consider the sum of the cross entropy for each label in S:

∑
y∈S

CE(f(x), y) = −
∑
y∈S

N∑
c=1

I[c = y] log(f(x)c) (3.9)

= −
N∑
c=1

I[c ∈ S] log(f(x)c) (3.10)

= (N − 1)ℓ̃DCE(f(x), y) (3.11)

Hence when giving each sample a weight of 1/(N − 1) we recover the exact from of DCE.
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3.6.3 Ensembling

To learn richer disagreement rules, we create an ensemble of CDCs where the kth model is trained

only to disagree on the subset of Q that has yet to be disagreed on by models 1 through k − 1.

The final disagreement rate ϕQ is the fraction of unlabelled samples where any CDC provides an

alternate decision from f . In what follows we use this rate to detect shift.

3.7 Detecting Shift with Constrained Disagreement

A natural way to apply the concept of constrained disagreement to the identification of covariate

shift is to partition Q into two sets, using the first to train a CDC ensemble and the second to

compute an unbiased estimate of its held out disagreement rate ϕQ. We would statistically compare

this disagreement rate using a 2 × 2 exact hypothesis test (e.g., Fisher’s or Barnard’s) against a

baseline estimate for the disagreement rate on P computed using unseen data. The following shows

that this results in a provably correct method to detect shift with high probability using only finite

samples.

Theorem 2 (Disagreement implies covariate shift). Let f be a classifier trained on dataset P

drawn from P and their corresponding labels. Let g be a classifier that is observed to agree (classify

identically) with f on P and disagree on a dataset Q drawn fromQ. If the rate which g disagrees with

f on n unseen samples from Q is greater than that from n unseen samples from P with probability

greater than p⋆ := 1
2

(
1− 4−n

(
2n
n

))
there must be covariate shift.

Sketch of Proof. We show that under the null hypothesis where P = Q the tightest upper bound

on the probability that g is more likely to disagree on Q compared to P is p⋆. The contrapositive

argument then states if we deem the probability to be greater than p⋆ there must be a covariate

shift. This result motivates a hypothesis testing approach to determine how probable it is that g

is truly more likely to disagree on Q given only a set of finite observations. The full proof can be

found in section A.2.

Remark. While Theorem 2 takes a frequentist’s approach to identifying covariate shift, we show

in section A.2 (Theorem 2) that there is a Bayesian formulation which can provide a closed-form and

informative lower bound on the probability of covariate shift given an observation of finite sample

disagreement rates on P and Q.

Our theory, while simple, has a limitation that prevents its direct application. Any approach

that requires unseen samples from Q is ill-suited for the low data regime, as it requires splitting Q
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leaving an even smaller set for computing the disagreement rate. Estimators from small samples

result in high variance and ultimately low statistical power. Furthermore for small samples sizes

the ability to find the classifier g that meets of predicate of Theorem 2 becomes incredibly difficult.

Since our objective is to detect covariate shift from as few test samples as possible, splitting Q

and computing disagreement on unseen data will not result in a powerful test. To tackle this issue

practically, we take a transductive approach based on intuition from learning theory and observed

dynamics of CDC learning. We claim that training learning models to disagree on samples from

Q while generalizing to R is a far easier task when Q is not in R. Easiness in this setting is

captured by the fact that standard learning algorithms tend to converge significantly quicker to the

CDC objective when P ̸= Q. We can therefore use the relative increase in disagreement between

CDCs during training on Q and P to capture a quantity that is more informative than the unbiased

statistic without reducing samples from Q that we can use.

3.8 The Detectron Test

3.8.1 Detectron Disagreement

Our proposed method is to train two CDC ensembles of size ℵ denoted by gQ := {g1Q, . . . gℵQ} and

gP⋆ := {g1P⋆ , . . . gℵP⋆}. First, gQ is trained to disagree with f on Q, while constrained to agree on

the original training set P. Next, enforcing the null hypothesis, we train gP⋆ to disagree on set of

unseen samples P⋆ drawn from P where m := |P⋆| = |Q|. To maximize sample efficiency, we take

a transductive approach to detecting shift by analyzing the outputs of gQ and gP on the sets Q and

P⋆ themselves by calculating their empirical disagreement during training.

We define the empirical disagreement between a base classifier f , an ensemble of classifiers

g := {g1, . . . , gℵ}, and an unlabeled dataset D := {xi}ni=1 as the proportion of samples in D where

any g ∈ g predicts differently from f :

ϕD(f,g) :=
1

|D|
∑
x∈D

(
1− I

[∧
g∈g

f̂(x) = ĝ(x)

])
(3.12)

The fraction of samples that gP⋆ disagrees on with respect to f on P⋆ is denoted using shorthands

ϕP⋆ := ϕP⋆(f,gP⋆), and similarly for gQ as ϕQ. Note that ϕP⋆ and ϕQ are random variables

that obey intractable distributions governed by the dynamics of the CDC learning algorithm and

disagreement sets P⋆ and Q. The observed low variance and large divergence between the distribu-

tions of ϕP⋆ and ϕQ under covariate shift forms the backbone the Detectron test. Under the null
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hypothesis H0, if Q is not a harmful shift from P, then ϕQ will not grow more rapidly than ϕP⋆

H0 : E[ϕQ] ≤ E[ϕ⋆
P], Ha : E[ϕQ] > E[ϕ⋆

P] (3.13)

The converse of harmful shift is expressed as the one-sided alternative Ha, meaning disagreeing on

Q is easier than P⋆. See Figure 3.3 for a visual depiction of CDC training dynamics when applied

to the near distribution shift benchmark CIFAR 10/10.1 [Recht et al., 2019].
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e Figure 3.3: CDC Training Dynamics:

In blue we train CDCs to disagree on a
set of 100 samples from CIFAR 10.1 [Recht
et al., 2019] (Q) – a near OOD test set for
CIFAR 10 – while in black we force CDCs to
disagree on the original CIFAR 10 test set
(P⋆). Even after a small number of train-
ing batches the empirical disagreement rate
grows significantly larger CIFAR 10.1 com-
pared to CIFAR 10. The observation that
CIFAR 10.1 results in more predictive vari-
ance under the CDC algorithm suggest that
this covariate shift is harmful

We refer to the test in Equation 3.13 as Detectron Disagreement (Det-D). To compute the test

result at a significance level α we first estimate the null distribution of ϕP for a fixed sample size

m by training K calibration rounds of gP with different random sets P⋆ of size m. The test result

is significant if the observed disagreement rate ϕQ is greater than the (1 − α) quantile of the null

distribution. This process is explained visually in Figure 3.4.

3.8.2 Detectron Entropy

We consider an additional variant, Detectron Entropy (Det-E), which computes the mean prediction

entropy of the CDC instead of relying solely on disagreement rates. The intuition for Det-E draws

from the fact that when CDCs satisfy their objective (i.e., in the case of harmful shift) they learn

to predict with high entropy on Q and low entropy on P⋆, resulting in a natural way to distinguish

between distributions. The CDC entropy is computed for a sample x from the mean probabilities

over each N classes of the base classifier f and set of CDCs g.

CDCentropy(x) = −
N∑
c=1

p̂c log(p̂c) where p̂c :=
1

|g|+ 1

(
f(x)c +

∑
g∈g

g(x)c

)
(3.14)

We use a KS test to compute a p-value for covariate shift directly on the entropy distributions

computed for Q and P⋆ and guarantee significance using the same strategy as Det-D (This process



CHAPTER 3. METHODOLOGY: THE DETECTRON 34

12 14 16 18 20 22 24 26
0.00

0.05

0.10

0.15
P
ro
ba
bi
lit
y

20 25 30 35
0.00
0.02
0.04
0.06
0.08
0.10
0.12

95% of calibration runs reject ≤ τ samples

τ τ

83% of test runs reject > τ samples

Num. Rejected Samples (N × φP) Num. Rejected Samples (N × φQ)

Figure 3.4: The Detectron Disagreement Test: (taken from our experiment where P = CIFAR 10
and Q = CIFAR 10.1 and sample size m = 50) We start by training an ensemble of CDCs (we use an
ensemble size of 5) to disagree on a set of m unseen samples P⋆ from the original training distribution while
constrained to perform consistently with a base model on the original training and validation sets used to
train the base model on CIFAR 10. We perform 100 of these calibration runs using different random seeds
and samples for P⋆ to estimate a threshold τ such that 95% of the runs disagree on fewer than τ samples —
thereby fixing the significance level of the test to 5%. To estimate the test power, we train CDCs using the
exact same configuration as the calibration runs except we replace P⋆ with a random set of m samples
Q from Q (CIFAR 10.1). By averaging the number of runs that disagree on more than τ samples from Q
we can compute the power (or true positive rate) of the test as 83%—a state-of-the-art result for this task.

is explained visually in Figure 3.5). The intuition for Detectron (Entropy) draws from the fact that

when CDCs satisfy their objective (i.e., in the case of harmful shift) they learn to predict with high

entropy on Q and low entropy on P⋆, resulting in a natural way to distinguish between distributions.
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Figure 3.5: The Detectron Entropy Test: Following the same experimental setup as Figure 3.4, we
start (left) by computing a KS test between the empirical distributions entropy values for each calibration
run P⋆ with the flattened set of entropy values from all other calibration runs. Then (center) we compute
a KS test from each test run Q with a random set of all but one calibration runs. Finally (right), we find a
threshold τ on the distribution of p-values obtained from step 1 as the lower α quantile to guarantee a false
positive rate of α. The power of the test is computed as the fraction of p-values computed from the test
runs on Q that are below τ .
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3.8.3 Detectron Algorithm

Concluding our methodology, we present a formal algorithmic description of the Detectron Dis-

agreement test below in algorithm 1. The function ConstrainedDisagreement(loss, train, val, test,

model) refers to fine-tuning the base classifier f to minimize the CDC loss in Equation 3.7. The

details/hyperparameters of this step are discussed in subsection A.4.2.

We release our code as open source software under a GNU General Public License v3.0.

Detectron
https://github.com/tomginsberg/deeptst

Algorithm 1: The Detectron algorithm for detecting harmful covariate shift
Input: P: labeled dataset, Q: unlabeled dataset, ℓ: loss function,
K: calibration rounds = 100, ℵ: ensemble size = 5, α: significance level = 0.05
Output: test result for harmful covariate shift at significance level α
Ptrain, Pval, P⋆ ← Partition(P)

m ← |Q|; ΦP⋆ ← [ ]
f ← L(Ptrain, Pval) // Load or train a base classifier on P

repeat
p⋆ ← RandomSample(P⋆,m)
// Train an ensemble of CDCs on P⋆

while |p⋆| > 0 and iterations ≤ ℵ do
g ← ConstrainedDisagreement(ℓ,Ptrain,Pval,p

⋆, f) // Optimize Equation 3.7

p⋆ ← {x | x ∈ p⋆ and f(x) = g(x)} // Filter out disagreed on data
ϕ⋆
P ← 1− |p⋆|/m // Update disagreement rate

end
Append ϕP to ΦP

until K iterations elapse
// Train an ensemble of CDCs on Q

while Q > 0 and iterations ≤ ℵ do
g ← ConstrainedDisagreement(ℓ,Ptrain,Pval,Q, f)

Q ← {x | x ∈ Q and f(x) = g(x)}
ϕQ ← 1− |Q|/m

end
return ϕQ > [(1− α) quantile of Φ⋆

P]

https://github.com/tomginsberg/deeptst
https://github.com/tomginsberg/deeptst


Chapter 4 Applications and Experiments

4.1 Datasets

Our experiments are carried out on natural distribution shifts across multiple domains, modalities,

and model types. We use the CIFAR-10.1 dataset [Recht et al., 2019] where shift comes from

subtle changes in the dataset creation processes, the Camelyon17 dataset [Veeling et al., 2018] for

metastases detection in histopathological slides from multiple hospitals, as well as the UCI heart

disease dataset [Janosi et al., 1988] which contains tabular features collected across international

health systems and indicators of heart disease.

A summary of the three datasets used as well as the description of shifts and their impacts on

base model performance is provided in Table 4.1 below.

Domain/Task Dataset Shift Metric (Unshifted) (Shifted)

Natural Images
Object classification

CIFAR-10/10.1

[Recht et al., 2019]

Data Collection
Process

Accuracy 0.87 (Resent18) 0.77 (Resent18)

Histopathological Images
Metastases Detection

Camelyon-17

[Veeling et al., 2018]

Different

Hospitals
Accuracy 0.93 (Resent18) 0.81 (Resent18)

Tabular Medical Data
Angiographic Status

UCI Heart Disease

[Janosi et al., 1988]

Different

Countries
AUROC

0.88 (xgboost)

0.85 (MLP)

0.70 (xgboost)

0.42 (MLP)

Table 4.1: Datasets: We investigate three different forms of covariate shift in two unique data modalities.
To verify that these shifts are indeed harmful to the models, we report performance in both the shifted and
unshifted domains. Examples and further descriptions of unshifted/shifted splits of each dataset are given
in section A.5.

4.2 Learning Constrained Disagreement

Before discussing the results of the Detectron test, we begin by investigating the CDC learning

objective (Equation 3.7) in isolation to verify that it meets our desired criteria in 2. We training

ensembles of 10 CDCs using the disagreement cross entropy (DCE) with CIFAR-10 as P and CIFAR-

10.1 as Q for 100 random runs at a sample size of 50. We use an ImageNet pretrained residual

network fine-tuned on CIFAR 10 as our basemodel f ; see section A.4 for full training details. CDCs
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are initialized from f and use the same training algorithm/loss function when updated on samples

from P (property 1 in Def. 2). The results in Figure 4.1 empirically validates minimizing the DCE as

a CDC learning objective. The first observation is that when an unseen set is drawn from a shifted

distribution Q, the empirical disagreement rate ϕQ grows significantly larger than the baseline

disagreement rate ϕP (property 3). Next, we see that CDCs preserve accuracy on unseen data

from the training distribution, regardless of the dataset they are trained to disagree on (property

2). Finally, an additional observation shows that as the ensemble size increases (and disagreed

upon points are removed) we see that the selective classification accuracy on the agreed upon points

increases. Furthermore, the concave behaviour of the selective classification curve indicates that the

that CDCs quickly disagree on many data samples that would have been misclassified by f , while

in later iterations fewer of such samples are identified (see Figure 4.2 for a direct comparison of

accuracy vs rejection rate of CDCs).
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Figure 4.1: Ensemble Size vs Properties of Constrained disagreement classifiers on CIFAR-
10/10.1: (Left) We see that for all ensemble sizes, there is lower disagreement on unshifted data (CIFAR-
10) compared to disagreement on shifted data (CIFAR-10.1). (Center) Constrained disagreement does not
compromise in-distribution performance as computed on unseen data. (Right) As the ensemble grows the
selective classification accuracy computed on the set of test examples that all models agree on increases
both on in-distribution and out-of-distribution data. Confidence intervals are computed as ± one standard
deviation across experiments.
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Figure 4.2: Selective Classification Be-
haviour of CDCS: Comparing the accu-
racy versus rejection rate of selective classi-
fication on ID (CIFAR 10) and shifted (CI-
FAR 10.1) sets we see that the CDC algo-
rithm constructs highly linear selective clas-
sifiers. The rejection rate required to reach
perfect accuracy on ID data is significantly
lower than that required on shifted data.
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4.3 Shift Detection Approach

We evaluate the Detectron in a standard two-sample testing scenario similar to prior work [Zhao

et al., 2022]. Given two datasets P = {(xi, yi)}ni=1 (xi drawn from P) and Q = {x̃i}mi=1 (x̃i drawn

from Q) and classifier f , we seek to rule out the null hypothesis (P = Q) at the 5% significance

level. To guarantee fixed significance we employ a permutation test by first sampling from the

distribution of test statistics derived by the Detectron where the null hypothesis P = Q holds (i.e.,

Q is drawn P). Next, we compute a threshold over the empirical test statistic distribution that sets

the false positive rate to 5% (see Figure 3.4). This step can be performed before deployment as it

only requires access to P. To mimic deployment settings where we wish to identify covariate shift

quickly, we assume access to far more samples from P compared to Q. For each dataset, we begin

by training a base classifier on the unshifted dataset. We evaluate the detection of covariate shift

on 100 randomly selected test sets of n = 10, 20 and 50 samples from Q. In all cases, we train a

maximum ensemble size of 5 (parameter ℵ in algorithm 1). To prevent CDCs from catastrophically

overfitting (see subsection A.3.2) in the case of small test set sizes, we perform early stopping if

in-distribution validation performance drops by over 5% from the measured performance of the base

classifier. Hyperparameters and training details for all models can be found in section A.4.

4.3.1 Evaluation

We report the True Positive Rate at 5% Significance Level (TPR@5) aggregated over 100 randomly

selected sets Q. This signifies how often our method correctly identifies covariate shift (P ̸= Q)

while only incorrectly identifying shift 5% of the time. This is also referred to as the statistical

power of a test where the significance level or probability of making a type I error is 5%.

4.3.2 Baselines

We compare the Detectron against several methods for OOD detection, uncertainty estimation and

covariate shift detection. Deep Ensembles Ovadia et al. [2019] using both (1) disagreement and (2)

entropy scoring methods as a direct ablation to the CDC approach (3) Black Box Shift Detection

(BBSD) [Lipton et al., 2018]. (4) Relative Mahalanobis Distance (RMD) [Ren et al., 2021]. (5)

Classifier Two Sample Test (CTST) [Lopez-Paz and Oquab, 2017]. (6) Deep Kernel MMD (MMD-

D) [Liu et al., 2020]. (7) H Divergence (H-Div) [Zhao et al., 2022]. For more information on baselines

see Appendix subsection A.4.3.
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4.4 Shift Detection Experiments

We present statistical power (TPR@5) results for sample sizes of 10, 20 and 50 using the Detectron

(algorithm 1) on all datasets are shown in Table 4.2. We report the mean and standard error of

TPR@5 computed on 100 samples for each trial.

CIFAR 10.1 Camelyon 17 UCI Heart Disease

|Q| 10 20 50 10 20 50 10 20 50

BBSD .07± .03 .05± .02 .12± .03 .16± .04 .38± .05 .87± .03 .13± .03 .22± .04 .46± .05

Rel. Mahalanobis .05± .02 .03± .03 .04± .02 .16± .04 .40± .05 .89 ± .03 .11± .03 .36± .05 .66± .05

Deep Ensemble

(Dis)
.23± .04 .40± .05 .74 ± .04 .10± .03 .11± .03 .13± .03 .02± .01 .00± .00 .32± .05

Deep Ensemble

(Entropy)
.33 ± .05 .52 ± .05 .68± .05 .14± .03 .26± .04 .82± .04 .13± .03 .32± .05 .64± .05

CTST .03± .02 .04± .02 .04± .02 .11± .03 .59± .05 .59± .05 .15 ± .04 .51 ± .05 .98 ± .01

MMD-D .24± .04 .10± .03 .05± .02 .42 ± .05 .62 ± .05 .69± .05 .09± .03 .12± .03 .27± .04

H-Div .02± .01 .05± .02 .04± .02 .03± .02 .07± .03 .23± .04 .15 ± .04 .26± .04 .37± .05

Detectron
(Dis) .37± .05 .54± .05 .83± .04 .97± .02 1.0± .00 .96± .02 .24± 0.04 .57± 0.05 .82± 0.04

Detectron
(Entropy) .35± .05 .56± .05 .92± .03 .97± .02 1.0± .00 1.0± .00 .45± .05 .88± 0.03 1.0± .00

Table 4.2: Results (true positive rate at the 5% significance level) for detection of harmful
covariate shift on CIFAR-10.1, Camelyon 17 and UCI Heart Disease benchmarks. The best result for
each column is bolded, results that are within 2% of the best are underlined and the best baseline method
is italicized.
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4.4.1 Increasing the Sample Size

To expand on Table 4.2 we show an extended analysis of the performance of the Detectron on the

UCI Heart Disease dataset. Using a sample size ranging from 10 to 100 we compute the TPR@5

averaged over 100 trials and plot the results in Figure 4.3. As the Detectron is model agnostic we

use gradient boosted trees (XGBoost [Chen and Guestrin, 2016]) for Detectron and CTST methods

while the remaining baselines which require neural network models use a 2 layer MLP that achieves

similar in-distribution performance.

Figure 4.3: True positive rate at the 5% significance level for the Detectron and baseline methods for
detection of covariate shift on the UCI heart disease dataset. The Detectron (Entropy) is shown to uniformly
outperform baselines. Confidence intervals are excluded for visual clarity but are found in Table 4.2.



Chapter 5 Discussion

Overall Performance

We observe in the bottom rows of Table 4.2 that Detectron methods outperform all baselines across

all three tasks. This confirms our intuition that designing distribution tests based specifically on

available data and the outputs of learning algorithms is a promising avenue for improving existing

methods in the high dimensional/low data regime.

Sample Efficiency

For more severe shifts (Camelyon and UCI), we see in Table 4.2 the most significant improvements

over baselines in the lowest sample regime (10 data points). The fine-grained result in Figure 4.3

shows that CTST catches up to Detectron at 40 samples while deep ensemble, BBSD, and Maha-

lanobis catch up at 100.

Disagreement vs Entropy

For the experiments on imaging datasets with deep neural networks Detectron (Disagreement) often

performs nearly as well as Detectron (Entropy), while Detectron (Entropy) is strictly superior for

the UCI dataset. While we recommend entropy as the method to maximize test power, disagreement

is a more interpretable statistic as it is correlates well with the portion of misclassified samples (see

(right) Figure 4.1).

Comparison to Baselines

Amongst the baselines, there is no clear best method. Although on average, ensemble entropy is

superior on CIFAR, MMD-D on Camelyon, and CTST on UCI. Our method may be thought of

as a combination of ensembles, CTST, and H-Divergence. As ensembles, we leverage the variation

in outputs between a set of classifiers; as CTST, we learn in a domain adversarial setting; and as

H-Divergence, we compute a test statistic based on data that a model was trained on. Lastly, while

MMD-D and H-Divergence were shown to be the previous state-of-the-art, their performance was

validated only on larger sample sizes (≥ 200).

On Tabular Data
The Detectron shows promise for deployment on tabular datasets (bottom right of Table 4.2 and

Figure 4.3), where (1) the computational cost of training models is low, (2) the model agnostic
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nature of the Detectron is beneficial as random forests often outperform neural networks in tabular

data [Borisov et al., 2021], and (3) based on our discussions with medical professionals, the ability

to detect covariate shift from small test sizes is of particular interest in the healthcare domain where

population shift is a constant problem burden for maintaining the reliability of deployed models.

On Computational Cost
Our method is more computationally expensive than some existing methods for detecting shifts such

as BBSD and Mahalanobis Scores, but is similar complexity to other approaches such as Ensembles,

MMD-D and H-Divergence which may require training multiple deep models. However, as the

Detectron leverages a pretrained model already in deployment, we find in practice that only a small

number of training rounds are required to create each CDC. For instance, on CIFAR 10/10.1 a CDC

ensemble of 5 models using a ResNet 18 architecture can train in under ≈ 2m using an unoptimized

PyTorch implementation on 1 GPU. Furthermore, looking at the runtime behavior in Figure 5.1 we

see that while allowing for more computation time increases the fidelity of the Detectron, only a small

number of training batches may be required to achieve a desirable level of statistical significance.

In scenarios where the deployed classifier is deemed high-risk (e.g. healthcare, justice system,

education) where each data point is a decision that affects a human being, we believe the additional

computational expense is justified for an accurate and sensitive assessment of whether the classifier

needs updating. Having established the utility, accelerating the Detectron as well as building a

deeper understanding of the runtime performance tradeoffs, is fertile ground for future work.
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Figure 5.1: Runtime Characteristics: We train 100 random runs of CDCs on 100 samples from CIFAR
10 and 10.1 and compute the disagreement satistic as the difference ψ := E[ϕQ − ϕP]. While we see that
while ψ peaks near 50 training batches, only 10 batches are required for the Detectron disagreement test to
reach an area under the TPR vs FPR curve (AUROC) of nearly 1 (i.e., perfect discrimination). Training
CDCs for too long eventually lowers ψ as E[ϕQ] ≈ E[ϕP] ≈ 1 meaning CDCs eventually overfit to disagreeing
on all of their data.



Chapter 6 Conclusion, Limitations and

Future Work

6.1 Conclusion

Our work presents a practical application of PQ learning towards creating a method capable of

detecting covariate shifts given a pre-existing classifier. On both neural networks and random

forests, we showcase the efficacy of our method in being sensitive enough to detect covariate shift

using a small number of unlabelled examples across several real-world datasets. We remark on

several characteristics of our algorithm that represent potential directions for future work:

On Generalization and Model Complexity

The definition of the Detectron specifies the use of the same function class for identifying shift

as is used in the original prediction problem. The Detectron may fail to detect harmful shifts in

cases where the base model is learned from an underspecified function class. Appendix A.3.2 provides

additional context, examples and ways to mitigate this limitation. The precise relationships between

model complexity, generalization error, and test power are interesting directions for future work.

Beyond Classification

Our work here focuses on the case of classification, however, we believe there is a viable extension of

our work to regression models where constrained predictors are explicitly learned to maximize test

error according to the existing metric, such as mean squared error. We leave this exploration for

future work.

Beyond Covariate Shifts

While covariate shift is the only type of shift that can be discovered from unlabeled data, building

learning-based methods to identify label and concept shift is another direction for future work.
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6.2 Ethics Statement

The speed of the adoption of ML into risk scenarios raises a critical need for methods that ensure

trustworthiness and reliability. However, over-reliance on such methods brings about critical ethical

considerations. As we have seen, Detectron is highly sensitive to picking out discriminative features

of data distributions, and, as such, its usage may prevent practitioners from deploying models in

new environments. As a result, the individuals in those environments may become subject to unfair

treatment. For instance, if Detectron determines a model trained on hospital A safe to deploy in

hospitals B and C, but not in D, the individuals in population D may experience a lower level of care.

In a real example, Detectron, when tested on a model trained on a subset of light-skinned celebrities

(CelebA dataset–Liu et al. [2015]), quickly raises the alarm when given images of those that are

not light-skinned. While Detectron can help mitigate potential disasters encountered by deploying

models in hazardous domains, it should not be an excuse for practitioners to avoid collecting richer

and more diverse datasets as a primary strategy to ensure model reliability.
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Appendix A Appendix

A.1 PQ Learning & Rejectron

We provide a summary of the original Rejectron algorithm for PQ learning [Goldwasser et al., 2020]

as it is the primary motivation for our work. Rejectron (algorithm 2) takes as input a labeled

training set of n samples x (iid over P), an unlabeled test set of n samples x̃ (iid over Q), an error

ϵ and a weight Λ. The output is a selective classifier, that predicts according to a base classifier h

if the input x is inside some set S and otherwise rejects (abstains from predicting).

h|S (x) :=


h(x) x ∈ S

reject x ̸∈ S

(A.1)

Under several assumptions and a special value ϵ⋆, this selective classifier is guaranteed with high

probability to have error less then 2ϵ⋆ on x̃ and a rejection rate below ϵ⋆ on x (see Theorem 5.7

in Goldwasser et al.).

Algorithm 2: Rejectron [Goldwasser et al., 2020]
Input: train x ∈ Xn, labels y ∈ Y n, test x̃ ∈ Xn, error ϵ ∈ [0, 1], weight Λ = n+ 1
Output: selective classifier h|S
h← ERM(x,y) # assume black box oracle ERM to minimize errors
for t = 1, 2, 3, . . . do

1. St := {x ∈ X : h(x) = c1(x) = . . . = ct−1(x)} # So S1 = X

2. Choose ct ∈ C to maximize st(c) := errx̃
(
h|St

, c
)
− Λ · errx(h, c) over c ∈ C

3. If st (ct) ≤ ϵ, then stop and return h|St

Rejectron starts by querying an empirical risk minimization (ERM) oracle that uses a 0–1 risk

score over a concept class C for a model h that perfectly learns the training dataset. A primary

assumption for Rejectron to output a perfect model as well as for it to eventually find a selective

classifier that meets the ϵ⋆ bound is that the true decision function (i.e., the function that creates

the training labels) is also a member of C. The authors refer to this setting as realizable.

On the first iteration of the algorithm, Rejectron finds another model c1 ∈ C that jointly max-

imizes the error with respect to h on x̃ while minimizing it on x. The authors show that they can

efficiently solve this optimization problem using a single ERM query on a dataset of n2 +n samples

(see Lemma 5.1 in Goldwasser et al.).

In every subsequent step t > 1 a set St is created where all models h through to ct−1 agree. An-

52
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other model ct ∈ C is found that maximizes the same objective as above but only on the intersection

of x̃ and St. Upon termination a selective classifier h|St
is output.

A.2 Proofs

Below are the full proofs for Theorem 1 and 2 from section 3.7.

Theorem 1 (Disagreement implies covariate shift). Let f be a classifier trained on dataset P

drawn from P and their corresponding labels. Let g be a classifier that is observed to agree (classify

identically) with f on P and disagree on a dataset Q drawn fromQ. If the rate which g disagrees with

f on n unseen samples from Q is greater than that from n unseen samples from P with probability

greater than p⋆ := 1
2

(
1− 4−n

(
2n
n

))
there must be covariate shift.

Proof. Let RP = ∅P1 + . . .+∅Pn where each ∅Pi is an i.i.d Bernoulli random variable that describes the

probability of g disagreeing with f on an unseen sample from P. Additionally, let RQ = ∅Q1 +. . .+∅Qn

be defined similarly for Q. If P and Q are equal then ∅Pi and ∅Qi are equal by definition and the

probability of observing RQ > RP is tightly bounded by Equation A.2. This is the tightest upper

bound that is not a function of E[∅Pi ], the proof can be found in Lemma 1.

P = Q =⇒ P (RQ > RP ) ≤
1

2

(
1− 4−n

(
2n

n

))
=

1

2
−O

(
1√
n

)
(A.2)

The more helpful contrapositive statement says that if it is sufficiently likely that RQ > RP ,

then covariate distributions P and Q must not be equal.

P (RQ > RP ) >
1

2

(
1− 4−n

(
2n

n

))
=⇒ P ̸= Q (A.3)

This result naturally lends itself to identifying P ̸= Q by rejecting an exact statistical hypothesis

that RQ = RP in favor of the alternative RQ > RP .

Lemma 1. Let X and Y be iid binomial random variables with distribution Bin(n, p) then for all

n ∈ Z ≥ 0:

P (X > Y ) ≤ 1

2

(
1− 4−n

(
2n

n

))
<

1

2
(A.4)

Furthermore, eq. (A.4) is the tightest possible bound that does not depend on p.

Proof. Let Z be the distribution X − Y , while Z itself is intractable to write down for arbitrary n,
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the characteristic function takes a convenient form

ϕZ(t; p) = E
[
eit(x−y)

]
= E

[
eitx
]
E
[
e−ity

]
(A.5)

=
(
1 + p

(
−1 + eit

))n (
1 + p

(
−1 + e−it

))n (A.6)

=
(
−p2e−it − p2eit + 2p2 + pe−it + peit − 2p+ 1

)n (A.7)

= (1− 2p+ p cos(t)− ip sin(t) + p cos(t) + ip sin(t) (A.8)

+ 2p2 − p2 cos(t) + ip2 sin(t)− p2 cos(t)− ip2 sin(t))n

=
(
p2(2− 2 cos(t)) + p(2 cos(t)− 2) + 1

)n (A.9)

Since X and Y are identically distributed P (Z > 0) = P (Z < 0) and so

P (Z > 0) =
1

2
(1− P (Z = 0)) (A.10)

Equation (A.10) suggests that a tight upper bound of the form P (Z = 0) ≥ α implies a tight lower

bound in the form P (Z > 0) ≤ (1 − α)/2. To bound P (Z = 0) we first write it as an integral

expression using the characteristic inversion formula for discrete random variables [Ushakov, 2011]

P (Z = 0) =
1

2π

∫ π

−π

ϕZ(t; p)dt (A.11)

Since ϕZ(t; p) has the form (a(t)p2 + b(t)p+ 1)n where a and b are real valued functions and a(t) ≥

0 ∀t ∈ R (i.e an integer power of a quadratic equation with positive leading coefficient), then for

any choice of t, ϕZ(t; p) will be globally minimized if and only if p → p⋆ = −b(t)/ (2a(t)). For the

particular form of ϕZ(t; p), p⋆ is simply 1/2

p⋆ = − b(t)

2a(t)
= − 2 cos(t)− 2

2(2− 2 cos(t))
=

1

2
(A.12)

This result is intuitive as the variance of a binomial distribution Bin(n, p) is maximized for any fixed

choice of n when p = 1/2. We should note that Equation A.12 appears problematic when cos(t) = 1,

but in this case ϕ(t; p) becomes constant, hence p cannot influence the upper bound. We can now
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write the upper bound for P (Z = 0)

P (Z = 0) =
1

2π

∫ π

−π

ϕZ(t; p)dt (A.13)

≥ 1

2π

∫ π

−π

ϕZ

(
t;
1

2

)
dt (A.14)

=
1

2π

∫ π

−π

2−n(cos(t) + 1)ndt (A.15)

= 4−n

(
2n

n

)
(A.16)

The final expression in eq. (A.16) can be found using the change of variables z = eit and Cauchy’s

residue theorem [Needham, 2000]

I =
1

2π

∫ π

−π

2−n(cos(t) + 1)ndt (A.17)

= − i

2π

∮
|z|=1

2−n 1

z

(
1 +

1 + z2

2z

)n

dz (using t→ −i log z) (A.18)

= − i

2π

∮
|z|=1

4−nz−n−1(z + 1)2ndz (simplifying) (A.19)

= Res
(
4−nz−n−1(z + 1)2n, 0

)
(applying Cauchy’s Theorem) (A.20)

=
1

4nn!
lim
z→0

(
dn

dzn
(z + 1)2n

)
(A.21)

=
1

4nn!
2n(2n− 1)(2n− 2) . . . (n+ 1) (A.22)

= 4−n

(
2n

n

)
(A.23)

Combining eq. (A.10) with the bound from eq. (A.16) we arrive at the conjectured upperbound

P (X > Y ) = P (Z > 0) =
1

2
(1− P (Z = 0)) (A.24)

≤ 1

2

(
1− 4−n

(
2n

n

))
by eq. (A.16) (A.25)

(A.26)

Finally we may use Sterling’s approximation to show that 4−n
(
2n
n

)
∈ O

(
1√
n

)
and hence converges

to 0 as n→∞ leaving a limiting tight upper bound of 1/2.

Theorem 2 (Probability of Disagreement: A Bayesian Perspective). Let f be a classifier trained

on dataset P drawn from the distribution P over X and their corresponding labels. Let g be a

classifier observed to agree with f on P but disagree on a dataset Q drawn from a distribution Q
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over X. We denote the true probabilities that g will disagree with f on a sample from P and Q as

p and q, respectively. Under a uniform prior U(0, 1) for p and q, if we observe that g disagrees with

f on m out of M iid samples from Q while disagreeing with n out of N iid samples from P, then

the posterior probability that g is truly more likely to disagree with f on Q compared to P:

P[q > p] =1− (M + 1)!(N + 1)!(m+ n+ 1)!

(m+ 1)!n!(M −m)!(m+N + 2)!
× (A.27)

3F2(m+ 1,m−M,m+ n+ 2;m+ 2,m+N + 3; 1)

Where pFq is the generalized hyper-geometric function, implemented in several standard mathemat-

ical libraries.

Proof. For simplicity we consider the function dis : X → {0, 1} that outputs 0 if f(x) = g(x) else 1.

We define the true disagreement rates p and q as

p := Ex∼P [dis(x)] and q := Ex∼Q[dis(x)] (A.28)

Without any a-priori knowledge of dis we define the random variables p and q under uniform prior

(i.e p, q
i.i.d∼ U(0, 1)) to encode our belief over the true values p and q. Now we draw N samples as

x
i.i.d∼ PN and M as x̃

i.i.d∼ QM and compute the number of times dis(x) equals 1 on each set.

n :=
∑
x∈x

dis(x) and m :=
∑
x∈x̃

dis(x) (A.29)

By definition in Equation A.28 we know that n and m are draws from binomial distributions:

N ∼ Bin(N, p) and M ∼ Bin(M, q) respectively. We can then compute the posterior probability

density functions of p and q conditioned on the observations N = n and M = m using exact
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Bayesian inference.

fp|n(x) := P[p = x|N = n] (A.30)

= P[N = n|p = x]P[p = x]︸ ︷︷ ︸
=1

(∫ 1

0

P[N = n|p = x]dx

)−1

(A.31)

=

(
N

n

)
xn(1− x)N−n

(∫ 1

0

(
N

n

)
xn(1− x)N−ndx

)−1

(A.32)

= xn(1− x)N−n

Bx(n+ 1,−n+N + 1)︸ ︷︷ ︸
incomplete beta function

|x=1
x=0


−1

(A.33)

= xn(1− x)N−n

n!(N − n)!

(N + 1)N !︸ ︷︷ ︸
x=1

− 0︸︷︷︸
x=0


−1

(A.34)

=

(
N

n

)
xn(1− x)N−n(N + 1) (A.35)

The integration in Equation A.32 is solved using the definition of the incomplete beta function.

Without loss of generality we may also find fq|m

fq|m(x) = (M + 1)

(
M

m

)
xm(1− x)M−m (A.36)

Given these closed form posterior distributions for p and q we may compute the probability that the

true value of q is greater then p

P[q > p|N = n,M = m] =

∫
y>x

fq|m(y)fp|n(x)dydx (A.37)

=

∫ 1

0

∫ 1

x

fq|m(y)fp|n(x)dydx (A.38)

=

(
M

m

)(
N

n

)
(1 +M)(1 +N)

∫ 1

0

(1− x)−n+Nxn

∫ 1

x

(1− y)−m+Mymdydx (A.39)

This integral, while daunting, can easily be solved in closed form using the free online Wolfram

Mathematica cloud. The solution is exactly Equation A.27.

P[q > p|N = n,M = m] = 1− (M + 1)!(N + 1)!(m+ n+ 1)!

(m+ 1)!n!(M −m)!(m+N + 2)!
× (A.40)

3F2(m+ 1,m−M,m+ n+ 2;m+ 2,m+N + 3; 1)
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Figure A.1: Belief that the probability q that two classifiers disagree on samples from Q is greater
then the probability p that they disagree on P given an observation of m disagreements out of
M samples from Q and n of N disagreements on P. We plot this probability for M = 20 and
N = 10000. We observe that even for a small test set size, M = 20, we can strongly believe that
there is a true difference when m/M is only slightly larger then n/N .

To gain intuition, a graphical representation of Equation A.40 is provided in Figure A.1. From a

practical standpoint, if a practitioner trains two classifiers f and g that appear to disagree more

often on a new dataset than a baseline rate computed on an in-domain test set, they can decide to

act on that observation. (e.g., collected more training data) at a particular belief threshold (e.g.,

probability greater than 80%). Furthermore, there is a natural link between Equation A.40 and

covariate shift as exact knowledge of q > p by definition implies not only covariate shift P ̸= Q,

but a type that is harmful by our original definition. Therefore, knowing the probability that q > p

is a useful measure of how likely, without any additional assumptions, that we are experiencing a

harmful covariate shift.

A.3 Constrained Disagreement Loss Details

We elaborate on the technical details of the objective functions required for training constrained

disagreement classifiers.

A.3.1 Disagreement Cross Entropy

Intuition. In our methodology, we propose the disagreement cross entropy (DCE) as a simple loss

function that encourages a classifier to disagree with a target label while otherwise outputting a

high entropy prediction. DCE is equivalent to simply flipping the target label and computing the

regular cross-entropy in the binary classification case.

Consider a model that outputs a distribution {p1, p2, 1 − p1 − p2} over 3 classes, suppose we
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would like to train it to not output high probability for class 3 i.e., minimize p3 = 1− p1 − p2. An

intuitive approach would be to maximize the standard cross entropy loss − log(1− p1− p2) that one

would equivalently minimize if trying to output high probability for class 3. We show in Figure A.2

that this objective is unstable whereas the DCE − 1
2 (log(p1)+ log(p2)) is convex, and has a bounded

minimum corresponding to p1 = p2 = 1/2. In practice if one wishes a loss function with a minimum

of zero it suffices to subtract log(N − 1) from Equation 3.6. A visual description of the DCE is

provided in Figure A.2.

Negative Cross Entropy Disagreement Cross Entropy Regular Cross Entropy

Figure A.2: Consider a classifier outputs a distribution {p1, p2, 1 − p1 − p2} over 3 classes. We compare
the optimization landscape induced by either (left) minimizing the negative cross entropy for the target
p3 = 1−p1−p2 (e.g trying not to predict class 3) (center) minimizing our disagreement cross entropy (DCE)
for the same target and (right) minimizing the regular cross entropy (e.g trying to predict class 3). We
observe that naively minimizing the negative cross entropy results in an unbounded minimum, while the
DCE is significantly more stable and scales similarly to the regular cross entropy. Gradients are overlaid to
help better visualize the 3D geometry.

Validity of the DCE Measure

We introduce a dentition of a a valid disagreement loss function and show that the DCE loss satisfies

it.

Definition 4 (A Valid Disagreement Loss Function). Let P be the set of all probability vectors of

length N whose maximum index is a fixed target label y ∈ {1, . . . , N} . Similarly, let Q be the set

of all probability vectors whose maximum index is not uniquely equal to y. For instance, in the

three-dimensional case with y = 3

P = {(p1, p2, 1− p1 − p2) s.t. | max(p1, p2) < 1− p1 − p2}

Q = {(p1, p2, 1− p1 − p2) s.t. | max(p1, p2) ≥ 1− p1 − p2}

and 0 ≤ p1, p2 ≤ 1 ∧ p1 + p2 ≤ 1



APPENDIX A. APPENDIX 60

A score S(p; y) is proper for disagreement if

∀ p ∈ P min
q∈Q

S(q; y) ≤ S(p; y) (A.41)

which is to say that for every probability vector in P there exists a probability vector in Q that

achieves a score at least as low.

Theorem 3 (Validity of DCE). The Disagreement Cross Entropy Loss is a valid disagreement loss

function.

Proof. We show that the minimum DCE for a probability vector q ∈ Q is log(N − 1) while the

minimum DCE for p ∈ P is log(N). First note that by definition of the DCE in Equation 3.6 the

unique probability vector v that globally minimizes it with respect to a target class y is the vector

with elements 1/(N − 1) for all indices vi where i ̸= y and vy = 0. v is a member of Q because it

does not have a unique maximum at position y. Computing the DCE of v with respect to the target

y gives:

DCE(v, y) = 1

1−N

N∑
i=1

log(vi)I[i ̸= y]

=
1

1−N
log

(
1

N − 1

)
× (N − 1)

= log(N − 1)

Next note that since py does not contribute to minimizing the DCE which is in the form
∑

p∈p\py
log(p)

the minimal solution must minimize the term py. However to enforce p ∈ P we must have that

∀ i ∈ {1, . . . , N} \ y, py > pi. Hence, minimizing py while making sure p ∈ P enforces py > 1/N

for some ϵ > 0 and all other pi < 1/N since if py ≤ 1/N we could also chose some pi ≥ 1/N and

produce a vector p ∈ Q. Without loss of generality choosing py = 1/N + ε for some small ε > 0 we

must chose all other pi = 1/N − ϵi s.t. all ϵi > 0 and
∑

i∈{1,...,N}\y ϵi = ε. This gives a DCE of:

DCE(p, y) = 1

1−N

N∑
i=1

log(pi)I[i ̸= y] =
1

1−N

∑
i∈{1,...,N}\y

log

(
1

N
− ϵi

)

where lim
ε→0

1

1−N

∑
i∈{1,...,N}\y

log

(
1

N
− ϵi

)
= log(N)

For all vectors p ∈ P we cannot achieve a DCE of less than log(N) but the minimum DCE in Q

is log(N − 1) which is less than log(N), hence proving that the DCE is a valid scoring rule for
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disagreement.

Implementation

We provide a simple PyTorch style implementation for batched computation of the CDC objective

in Equation 3.7 given batch of logits and targets. We assume logits is a floating point vector of

(batch_size× N) logit values, targets is a integer vector (batch_size) of target classes, mask is a

0-1 mask of (batch_size) that is 1 at index i if logits[i] is P and 0 otherwise.

import torch, import torch.nn.functional as F

def cdc_loss(logits, targets, mask, weight=1/(size of test set + 1)):

# select data in p

logits_p, targets_p = logits[mask], targets[mask]

# select data in Q

logits_q, targets_q = logits[1-mask], targets[1-mask]

# cross entropy on P with targets

loss_p = F.cross_entropy(logits_p, targets_p, reduction=None)

# DCE on Q

zero_hot = 1 - F.one_hot(targets_q, num_classes=N)

loss_q = (logits_q * zero_hot).sum(dim=1) / (1 - N)

+ torch.logsumexp(logits_q)

# Weighted mean

return torch.cat([loss_p, weight * loss_q]).mean()

A.3.2 Disagreement with Overparameterized Models

Many existing tests for covariate shift that rely on overparameterized models do not perform well

in the small sample regime due to catastrophic overfitting. In this section, we explain how this

phenomenon, if ignored, can also be catastrophic for the Detectron but is easily fixable with a

simple early stopping technique. We recall the main hypothesis on which the Detectron is built:

Given a base classifier f ∈ F that is well fit to a training dataset P, it is easier to learn

another classifier g ∈ F that disagrees with f on unlabeled data Q, but agrees with f on

P when the distribution of Q is far from that of P.
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Figure A.3: CDC Training Dynamics for Over-

parameterized Models: Using the same experimen-

tal setup as the runtime study in Figure 5.1 we record

the associated CDC disagreement rate on both un-

seen in distribution data P⋆ (CIFAR 10) and a known

covariate shift Q (CIFAR 10.1). When we trained

such an overparameterized model for too long the dis-

agreement rate approaches 1 on both in and out-of-

distribution datasets leading to a maximally uninfor-

mative test; it is, therefore, crucial to perform early

stopping at or before the out-of-distribution disagree-

ment rate reaches 1.

Restated with the ideas introduced in this

work, the above translates to the CDC objec-

tive being more easily satisfied when there is

a harmful shift. This hypothesis is exemplified

in Figure A.3 to the right, where we see that

the CDC disagreement rate grows significantly

more rapidly when Q is chosen to be out-of-

distribution (blue curve) versus in distribution

(black curve). However, as the models are over-

parameterized, the disagreement rate eventually

reaches 1 independently of whether we use the

true OOD data Q or the ID data P⋆. Since our

test is computed based on the disagreement rate

ϕQ falling above 1 − α quantile of the calibra-

tion distribution of ϕP the test will be highly

uninformative if ϕQ = ϕQ = 1.

Note that it is critical to use the exact same

training algorithm on both the given test set Q

and the in-distribution calibration set P⋆ to en-

sure the statistical soundness of the Detectron,

so one can tune the CDC learning algorithm on

either Q or P⋆ to achieve a desired result then apply the exact same algorithm to the other set

and test for statistical differences. In our experiments with overparameterized models, we picked

a relatively low number of training iterations to use (see subsection A.4.2 for details) practically

eliminating the issue of overfitting. However, in general, one should fix a training budget for CDCs

so that they are far from reaching an ID disagreement rate of ϕP = 1. Knowing the exact level of

ϕP to stop at will depend on the dataset and learning algorithm used but as a general guideline we

suggest ≈ 0.5 to allow for a large gap between ID and OOD disagreement rates while giving enough

of a compute budget to achieve non-trivial results.
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A.4 Experimental Details

A.4.1 Base Classifiers

For each dataset used in our experiments, we begin by training a base classifier on the source domain

portion of the dataset to use in subsequent experiments and baselines. For a brief description of the

datasets used and base classifiers, see ?? and for a more detailed description of each dataset as well

as what we have considered precisely as the source and shifted domains, see subsection A.5.2.

CIFAR 10. We use a standard Resnet18 model pre-trained on ImageNet [Deng et al., 2009] made

available in the torchvision library [Marcel and Rodriguez, 2010] although we reinitialize the last

network layer to have an output size of 10. We use stochastic gradient descent (SGD) with a base

learning rate of 0.1, L2 regularization of 5 × 10−4, momentum of 0.9, a batch size of 128 and a

cosine annealing learning rate schedule with a maximum 200 iterations stepped once per epoch

for a total of 200 epochs. We use the standard CIFAR-10 training split normalized by its mean

(µ = [0.4914, 0.4822, 0.4465]) and standard deviation (σ = [0.2023, 0.1994, 0.2010]). Every epoch,

we randomly crop each image to a size of 32× 32 after applying a 0 padding of four pixels to each

spatial dimension, and we apply a horizontal flip with probability 0.5. This model achieves a test

performance of 87%. While this score is far from state-of-the-art on CIFAR-10, our goal is not to

construct a perfect model. We wish to create a reasonably good model as an example of a model

that could realistically be deployed in real-world settings. When training deep ensembles, we only

vary the random seed in the range [0, . . . , 4].

Camelyon 17. We follow a similar approach to CIFAR 10. However, we use two output features

(for binary classification of cancerous or benign pathology), a batch size of 512, the ADAM opti-

mizer [Kingma and Ba, 2015] with a base learning rate of 0.001, L2 regularization of 10−5 and a

total of 5 training epochs for which we select the model with the best validation accuracy. This

model achieves a test accuracy of 0.93. When training deep ensembles, we only vary the random

seed in the range [0, . . . , 4].

UCI Heart Disease. We train both neural networks and gradient boosted trees using the XGboost

library [Chen and Guestrin, 2016]. For the neural network model, we use a simple MLP with an input

dimension of 9, 3 hidden layers of size 16 with ReLU activation followed by a 30% dropout layer and

a linear layer to 2 outputs (heart disease present or not). We use 358 samples for training and 120

for validation. We train for a maximum of 1000 epochs and select the model with the highest AUC

on the validation set, performing early stopping if the validation AUC has not increased in over 100
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epochs. This model achieves a test AUC computed on 119 samples of 0.85. As with CIFAR 10 and

Camelyon 17, we only vary the random seed in the range [0, . . . , 9] when training deep ensembles.

Note that we chose a larger ensemble size here as models are fairly cheap to train. Another important

trick when using small Q sizes is to sample all of Q in each batch filling the best with a random set

of samples from P. Our procedure artificially inflates the size of Q so the hyperparameter λ must

account for this by picking up an extra multiplicative factor equal to (batches per epoch)−1.

When training gradient boosted trees using XGboost we employ standard library parameters (η =

0.1, eval_metric=auc, max_depth= 6, subsample= 0.8, colsample_bytree=0.8, min_child_weight=

1, objective=binary:logistic, num_round= 10). This model while taking less then 5s to train achieves

a test AUC of 0.88.

A.4.2 Constrained Disagreement Classifiers

We expand on the experimental details for learning constrained disagreement classifiers. When

training a CDC g(f,P,Q) we start by creating a new dataset that combines all elements of the labeled

set P and the unlabeled set Q with pseudo labels inferred by the base classifier f . We store a single

bit for each sample in the combined dataset to indicate if a sample was originally drawn from P or

Q. When training CDCs with neural networks, we use the DCE loss (Equation 3.7) under similar

semantics as the pseudo-code implementation provided above. When training discrete models, we

resort to our generalized approach in subsection 3.6.2. To reduce training time we initialize g using

the exact same architecture/weights as f and apply the exact same optimization algorithm/learning

rate used to train f (see subsection A.4.1). For CIFAR 10, we train each CDC for a maximum of

10 epochs performing early stopping if the model drops in in-distribution validation performance by

over 5%.

We enforce the early stopping criteria to help prevent CDCs from overfitting to the disagreement

loss when the target dataset has not come from a harmfully shifted domain. The intuition is the

following: under the null, if a target dataset Q comes from the same distribution as a training

dataset P, then learning to disagree with f on Q while constrained to agree on all of P can only be

solved by overfitting to predict with high entropy on the specific examples in Q, versus learning a

distinct pattern that distinguishes the distributions. Forcing a model to predict with high entropy

on a subset of in-distribution datapoints can only hurt its associated in-distribution generalization,

a phenomenon which we can directly assess by measuring validation performance.

The details for training CDCs on Camelyon 17 are the same as those described for CIFAR 10,
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however due to the large training set size (302436 samples) we simply select a random subset of

size 50, 000 as P at each epoch – a number we experimentally deemed as sufficient to achieve low

in-distribution generalization error. When training CDCs on the UCI Heart Disease dataset, we use

XGBoost [Chen and Guestrin, 2016] with the same hyperparameters described in subsection A.4.1.

For the runtime experiment presented in Figure 5.1 we train each CDC for only one batch, where

each batch contains a set of 100 samples Q and is filled up to a batch size of 512 with random

samples from Ptrain. After every batch we eliminate all samples where the CDC disagrees with the

base predictions. We continue this for a maximum of 150 batches, but perform early stopping if 10

batches pass without at least one sample getting disagreed on.

A.4.3 Description of Baseline Methods

We compare the Detectron against several methods for OOD detection, uncertainty estimation and

covariate shift detection found in recent literature.

1. Deep Ensembles shown by Ovadia et al. [2019] to provide the most accurate estimates of

predictive confidence under covariate shift. To compare directly with Detectron we test both

the disagreements rates and the entropy distributions of the ensemble. For disagreement, we

use a binomial test against a success probability estimated from the iid validation data P⋆,

and for entropy we use a KS-test between the ensemble entropy as computed by Equation 3.14

(but using a regular ensemble instead of a CDC ensemble) on Q vs P⋆.

2. Black Box Shift Detection (BBSD) [Lipton et al., 2018] is overall best method across numerous

synthetic benchmarks for covariate shift detection evaluated by Rabanser et al.. We follow the

same evaluation and perform a univariate KS test on each dimension of the softmax output

of the base classifier between Q and a held out set from the training distribution. Bonferroni

correction is used to compute a single p-value as the minimum value divided by the number of

tests. We guarantee significance using the same permutation approach described in section 3.8.

3. Relative Mahalanobis Distance (RMD) [Ren et al., 2021] (a method designed specifically for

identifying near OOD samples) using the penultimate layer of a pretrained model. We test for

covariate shift by performing a KS test directly on the distribution of RMD confidence scores

derived on Q and P⋆.

4. Classifier two sample test (CTST) [Lopez-Paz and Oquab, 2017]. Using the same architecture

as and initialization as the base classifier we reconfigure the output layer, and we train a
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domain classifier on half the test data with source data labeled as 0 and test data as 1. We

then test this models accuracy on the other half of the test data and compare its performance

to random chance using a binomial test. While this method is technically sound it is not

suitable for the low data regime where learning a domain classifier on half the test data is

unlikely to generalize beyond random performance on the other half.

5. Deep Kernel MMD [Liu et al., 2020]. We use the authors original source code available at

https://github.com/fengliu90/DK-for-TST to perform the deep kernel MMD test.

6. H-Divergence [Zhao et al., 2022]. Most similar to our approach, this work proposes a two

sample test based on the output of a learning model after training on either source or target

data. Specifically, the authors fit a model to both the source dataset P, the target dataset

Q and a uniform mixture (P + Q)/2. Under the null hypothesis P = Q the loss in each

case is equal in expectation. However, when P ̸= Q, the generalized entropy of the mixture

distribution may be be larger. In practice the authors fit three VAE [Kingma and Welling,

2014] models and compute the test statistic ℓ((P + Q)/2) − min(ℓ(Q), ℓ(P)), where ℓ is the

VAE loss computed as a sum of the binary cross entropy reconstruction loss and the KL

divergence regularizer. We perform 100 runs where the null hypothesis (e.g. sample Q from

P) and one where it does not. Significance is determined in the standard way be observing if

the true test statistic exceeds the 95th percentile of the test statistic distribution under the null

hypothesis. Unfortunately this method, while state of the art on several benchmarks including

the MNIST vs Fake MNIST two sample test, demonstrated low utility on more complex tasks

with smaller sample sizes. After a discussion with the authors, we attempted to improve the

results by first pre-training the VAE to produce valid samples and reconstructions under the

source distribution and computing the H-Divergence statistic after fine-tuning. Despite this

effort, we still was low statistical significance with small sample sizes likely due to the noisy

nature of training VAE’s in the low data regime. We use the authors original source code

available here https://github.com/a7b23/H-Divergence.

A.5 Datasets

A.5.1 Sources and Licensees

• CIFAR-10 (MIT License Copyright (c) 2013 Valay Shah)

https://github.com/fengliu90/DK-for-TST
https://github.com/a7b23/H-Divergence
https://peltarion.com/knowledge-center/documentation/terms/dataset-licenses/cifar-10
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• Camelyon-17 (CC0 1.0 Universal Public Domain Dedication)

• UCI Heart Disease (Creative Commons Attribution 4.0 International)

A.5.2 Prepossessing, Shift Descriptions and Model Performance

We provide full details on the three datasets used in our experiments, including any preprocessing

steps and what splits we considered as source domain P and target domain Q.

CIFAR 10/10.1. We use the well known CIFAR 10 dataset [Krizhevsky et al., 2014] as the source

domain for training base classifiers (subsection A.4.1) and the new CIFAR 10 test set CIFAR 10.1

containing 2000 class balanced images [Recht et al., 2019] as a source of harmful distribution shift.

Although the images in CIFAR 10.1 appear to be visually very similar to CIFAR 10 most classifiers

trained on CIFAR 10 drop significantly in performance (3% to 15% [Recht et al., 2019]) when tested

on CIFAR 10.1.

CIFAR 10.1 CIFAR 10 (Original)

Figure A.4: Cifar 10 vs Cifar 10.1. (Image borrowed from the technical report ”Do CIFAR-10
Classifiers Generalize to CIFAR-10?” [Recht et al., 2018])

Camelyon 17. As described by the original authors [Veeling et al., 2018] the Camelyon benchmark

is a new and challenging image classification dataset consisting of 327,680 color images (96 × 96)

extracted from histopathologic scans of lymph node sections. Each image is annotated with a

binary label indicating the presence of metastatic tissue in the center 32 × 32 pixel region. In our

experiments, we use the WILDS [Koh et al., 2021] framework to facilitate download, preprocessing,

as well as source/target splits for Camelyon. As shown in Figure A.5, the source domain is chosen as

data from hospitals 1, 2, 3. In contrast, the test domain is collected from hospital 5, which visually

shows significantly higher contrast due to different data acquisition equipment/methods.

https://camelyon17.grand-challenge.org/Data/
https://archive.ics.uci.edu/ml/datasets/Heart+Disease
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Train
Hosp 1-3

Hosp 4

Hosp 5

Figure A.5: Samples images from the Camelyon 17 dataset [Veeling et al., 2018]. Using the standard
set by the WILDS framework [Koh et al., 2021] we use hospitals 1–3 as the source domain for training
and validating models, and hospital 5 as the target domain for assessing distribution shift.

UCI Heart Disease. The UCI Heart Disease (UCI-HD) dataset [Janosi et al., 1988] consists of

76 attributes collected from four unique patient databases in Cleveland, Hungary, Switzerland, and

the VA Long Beach. We select nine features out of the commonly used 14 to minimize the portion

of missing values. These features are {age, sex, chest pain type, resting blood pressure, serum

cholesterol, fasting blood sugar, resting electrocardiographic results, maximum heart rate achieved,

exercise-induced angina}. The prediction task is to determine the diagnosis of heart disease (also

known as angiographic disease status), which is given in a range from 0–4, where 0 indicates healthy

and 1–4 indicates a severity level based on the narrowing of major blood vessels. Following prior

work [Chaki et al., 2015] we only consider the simplified binary classification task for differentiating

patients with a normal angiographic status (label of 0) from those with abnormal status (label

> 0). We select the source domain as the Cleveland and Hungary databases and the target domain

as the Switzerland and VA Long Beach databases. A graphical overview of the marginal feature

distributions for the source and target domain is shown in Figure A.6.

To allow for out-of-the-box training of deep neural networks on the UCI HD dataset, we use

the missing value synthesis functional in Wolfram Mathematica [Inc.]. The algorithm uses density

estimation and mode finding on conditioned distributions to synthesize missing values. See the lan-

guage guide page titled Synthesize Missing Values in Numeric Data for a more detailed description.

To aid in future research, we provide a copy of our processed dataset in here.

https://www.wolfram.com/language/12/high-level-machine-learning/synthesize-missing-values-in-numeric-data.html?product=language
https://github.com/tomginsberg/detectron/blob/main/data/uci_heart_torch.pt
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Figure A.6: Marginal distributions for each of the nine variables chosen from the UCI Heart Disease
dataset for our experiments. The source domain (yellow) is chosen from the Cleveland and Hungary
patient databases, while the shifted target domain (blue) is selected from the Swiss and Long Beach
databases. Although the distributions are visually similar, a simple neural network classifier that
achieves an AUC of 0.85 on the source domain drops to 0.42 on the target domain.
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