Welcome to $\operatorname{Csc} 438 / 2404$!

Instructor: Toniann Pitassi (Toni)
TA: Noah Fleming
webpage: www. cs.toronto.edu/~toni/courses/ 438-2019/438 .html
\qquad

Content

- Research
- Publications
- Talks
- Teaching
- Students and Postdocs
- Visitor Info

Toniann Pitassi

 toni at cs dot toronto dot edu
Toniann Pitassi's Webpage

Toniann Pitassi
Professor,
Bell Canada Chair in
Information Systems
Department of Computer
Science
University of Toronto
Email: toni at cs dot toronto dot
edu
Phone: (416) 978-3695
Fax: (416) 978-1931
Address:
Sandford Fleming Building
10 King's College Road, Room
2305A
Toronto, Ontario
CANADA
M5S 3G4

Brief Bio

I received bachelors and masters degrees from Pennsylvania State University and then received a PhD from the University of Toronto in 1992. After that, I spent 2 years as a postdoc at UCSD, and then 2 years as an assistant professor (in mathematics with a joint appointment in computer science) at the University of Pittsburgh. For the next four years, I was a faculty member of the Computer Science Department at the University of Arizona. In the fall of 2001, I moved back to Toronto, where I am currently a professor in the Computer Science Department, with a joint appointment in Mathematics.

The above picture was taken in London in front of Bertrand Russell's flat. If you click on the picture to see an enlarged version, and then go to the upper right quadrant, the blue sign mentioning this landmark will be legible.

Contents

- Research
- Publications
- Talks
- Teaching
- Students and Postdocs
- Visitor Info

Toniann Pitassi toni at cs dot toronto dot edu

Teaching

CSC438F/2404F	Logic and Computability, 2019
CSC2541F	Al and Ethics: Mathematical Foundations and Algorithms
CSC2429	Proof Complexity, Mathematical Programming and Algorithms, Winter 2018
CSC165	Mathematical Expression and Reasoning for Computer Science, Winter 2018
CS2429	Proof Complexity, 2017
CSC 263	Data Structures and Analysis, Fall 2015
CSC2401	Introduction to Complexity Theory, Fall 2015
CSC 2429	Communication Complexity: Applications and New Directions, Fall 2014
CSC 2429	Approaches to the P versus NP Problem and Related Complexity Questions, Winter 2014
CSC 2429	Communication Complexity, Information Complexity and Applications, Fall 2013
CSC 2429	Foundations of Communication Complexity, Fall 2009
CSC 2402	Methods to Deal with Intractability, Fall 2009
CSC 2429	PCP and Hardness of Approximation, Fall 2007
CSC 448/2405	Formal Languages and Automata, Spring 2006
CSC 2416	Machine Learning Theory, Fall 2005
CSC 364	Computability and Complexity, Fall 2002
CSC 2429	Propositional Proof Complexity, Fall 2002
CSC 2429	Derandomization, Spring 2001

CSC 438F/2404F: Computability and Logic Fall, 2019

ANNOUNCEMENTS: (Students, please check for announcements every week.)
Posted on Aug 24: The first class is Monday Sept 9, 2019.

COURSE TIMES, CONTACT INFO
Instructor: Toniann Pitassi, email: toni@cs Office Hours: Monday 5:15-6pm, Sandford Fleming 2305A
Lectures: Monday 3-5 BA 1200
Tutorial: Friday 12-1 BA 1200
Tutor: Noah Fleming, noahfleming@cs
Noah's Office Hours: to be announced soon

- Course Information Sheet

HOMEWORK ASSIGNMENTS:

- Homework 1, Coming Soon

GRADES AND MARKING:

- Coming Soon

COURSE NOTES:

- Propositional Calculus
- Predicate Calculus
- Completeness
- Herhrand. Enualitv. Comnactness

CSC 438F/2404F - Fall 2019 Computability and Logic

Exclusions: MAT 309H1, PHL348H1
Prerequisites (ugrads): (CSC363H1/CSC463H1)/CSC365H1/CSC373H1/CSC375H1/MAT247H1
Lectures: Monday 3-5, BA 1200
Tutorial: Friday 12-1, BA 1200
Instructor: Toniann Pitassi, toni@cs.toronto.edu
Office hours: Monday 5:10-6, SF2305A
Tutor: Noah Fleming, SF 4306, noahfleming@cs.toronto.edu
Web Page: http://www.cs.toronto.edu/ toni/Courses/438-2019/438.html
Course Notes: Postscript files for course notes and all course handouts will be available on the web page.

Topics:

Syntax and semantics of the propositional and predicate calculus, completeness of Gentzen proof systems, formal theories, nonstandard models, and the Godel Incompleteness Theorems. Recursive and primitive recursive functions, Church's thesis, unsolvable problems, recursively enumerable sets.

Marking Scheme:

Class attendance/participation (2% of final grade)
4 assignments (each worth 12% of final grade)
First Term test (25% of final grade)
Second Term Test (25% of final grade)

Due Dates:

First Term Test: Monday Oct 21, 3-5pm BA 1200
Second Term Test: Thursday Dec 5, 3-5pm BA 1200
Assignment 1 due date: Friday Sept 27 12pm, before tutorial
Assignment 2 due date: Friday Oct 18 12pm, before tutorial
Assignment 3 due date: Friday Nov 112 pm , before tutorial
Assignment 4 due date: Friday Nov 29 12pm, before tutorial

Assignments are due at the beginning of class, since solutions will be discussed during the beginning of class/tutorial.

The work you submit must be your own. You may discuss problems with each other; however, you should prepare written solutions alone. Copying assignments is a serious academic offence and will be dealt with accordingly.

Supplementary References:

S Buss: Chapter I: An introduction to proof theory, in Handbook of Proof Theory, S Buss Ed., Elsevier, 1998, pp1-78. (grad)
J Bell and M Machover: A Course in Mathematical Logic. North-Holland, 1977. (grad)
H.B. Enderton, A Mathematical Introduction to Logic (undergrad)

G Boolos and R.C. Jeffrey, Computability and Logic (undergrad)
E. Mendelson, Introduction to Mathematical Logic, 3rd edition (undergrad/ grad) J.N. Crossley and others, What is Mathematical Logic? (informal, readable)
A.J.Kfoury, R.Moll, and M. Arbib, A Programming Approach to Computability (undergrad)
M.Davis, R. Sigal, and E. Weyuker, Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science (undergrad/grad)

Important
\rightarrow All lectures and tutorials are manditory. Sometimes Friday 12-1 will be a Lecture, other times a tutorial
\rightarrow all assignments due at start of lecture/tutorial Late assignments Not accepted
\rightarrow You may discuss your solutions with other students in the current course. Discussing with anyone outside course or consulting web is probibited
\rightarrow Work hard on understanding lecture notes, work hard on assignments
\rightarrow start early - cannot cram / solve in a couple of days
\rightarrow Come to office hrs!
\rightarrow Write ups must be completed independently.

COURSE INTRO
Foundations of mathematics involves the axiomatic method - write down axioms (basic truths) and prove theorems from axioms from purely logical reasoning

Example 1 Euclidean geometry (300 BC, "Elements")

The School of Athens, Rafael

Axiomatic system where all theorems are derivable from a small number of simple axioms/postulates

Postulate 5

If sum of $\alpha+\beta$ is <180 then the 2 lines (blue yellow) eventually meet (on same side as α, β angles)

Example z-group Theory (Cayley, 1854)
axiom 1: $\quad \forall x y z[x \cdot(y \cdot z)=(x \cdot y) \cdot z] \quad$ (associativity) axiom z: $\exists u$

$$
\begin{aligned}
& {[\forall x[x \cdot u=u \cdot x=u]} \\
& \forall x \exists y[x \cdot y=y \cdot x=u]\}
\end{aligned}
$$

there exists an identity element and every element has an inverse

A group is a model for the axioms $(g,-\quad)$ a function from $g_{\times} g \rightarrow g$

Examples of groups
(1) $g=\mathbb{Z}$ (the integers) $\quad=$ addition

Examples of groups
(1) $g=\mathbb{Z}$ (the integers) $\quad=$ addition
(2) Rubik's cube group

$g=$ all possible moves moves

- = composition of moves

Course Outline
We will study FIRST ORDER LOgic (PREDICATE LOGK)
I. Start with simpler PropositionAL Logic (no quantifiers)

- Language of propositional Logic ("syntax")
- Meaning
("semantics")
- Two proof systems for prop. Logic: Resolution, and PK
- We will prove soundness + COMPLETENESS for both

Course outline (cont'd)
II. FIRST ORDER (PREDICATE) LOGIC

- Language ("syntax")
- meaning ("semantics")
- Proof system LK (extends PK) SOUNDNESS
** COMPLETENESS
major corollaries of completeness

COURSE OUTLINE (confld)
III. Computability
IV. Axiomatizable Theories

Incompleteness Theorems Interplay/connections between computability + Logic

PROPOSITIONAL LOGIC

Vocabulary: $P_{1}, P_{2}, Q, \ldots \quad$ propositional variables

$$
\neg, \vee, \wedge,(,)
$$

Examples: $((P \vee Q) \vee R)$

$$
(\neg P \vee \neg Q)
$$

PROPOSITIONAL LOGIC
Inductive Definition of a Propositional Formula

1. Atoms/Propositional variables: P_{1}, P_{2}, \ldots are formulas
2. If A is a formula, then so is $\urcorner A$
3. If A, B are formulas, so is $(A \wedge B)$
4. " " " " $(A \vee B)$
$(A \supset B)$ is shorthand for $(\neg A \vee B)$
$(A \leftrightarrow B)$ is shorthand for $(\neg A \vee B) \wedge(\neg B \vee A)$
A subformula of a formula is any substring of A which itself is a formula

Unique Readability Thy says the grammar for generating formulas is Not ambiguous

Semantics
A truth assignment $\tau:$ \{atoms $\} \rightarrow \mathbb{T}, F$ Extending τ to every formula:
(1) $(\neg A)^{T}=T$ iff $A^{T}=F$
(2) $(A \wedge B)^{T}=T$ ff $A^{T}=T \wedge B^{T}=T$
(3) $(A \cup B)^{T}=T$ iff either $A^{T}=T$ or $B^{T}=T$

Example

Definitions
τ satisfies A iff $A^{\tau}=T$
τ satisfies a set Φ of formulas of
τ satisfies A for all $A \in \Phi$
ϕ is satisfiable iff $\exists \tau$ that satisfies Φ otherwise Φ is unsatisfiable
$\phi \equiv A \quad(A$ is a logical consequence of $\Phi)$ eff $\forall \tau[\tau$ satisfies $\Phi \Rightarrow \tau$ satisfies $A]$
$E A \quad(A$ is valid or A is a tautology). Af $\forall \tau[\tau$ satisfies $A]$

Examples

1. $(A \wedge B)=(A \vee B)$
2. $\vDash(A \vee \neg A)$

Some easy facts (check them)

1. If $\Phi \vDash A$ and $\Phi u\{A\} \vDash B$ then $\Phi \neq B$
2. $\Phi \vDash A$ iff $\Phi \cup\{n A\}$ is unsatisfiable
3. A is a tautology iff $1 A$ is unsatisfiable

Equivalence
A and B are equivalent (written $A \Leftrightarrow B$) if $A \not B$ and $B \neq A$

Examples

1. $(A \wedge B) \stackrel{?}{\Leftrightarrow}(B \wedge A)$
2. $(\neg A \vee B) \stackrel{?}{\Leftrightarrow}(\neg B \vee A)$

Resolution: Proof System for Prop Logic

- Resolution is basis for most automated theorem provers
- Prover that formulas are unsatisfiable (recall F is a tautology iff $\sim F$ is valid)
- Formulas have to be in a special form: CNF

$$
\left(x_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(\bar{x}_{2} \vee x_{4}\right) \wedge\left(\bar{x}_{4}\right) \wedge\left(x_{1} \vee x_{3}\right) \wedge\left(x_{1}\right)
$$

Converting a formula to CNF

- Obvious method (deMorgan) could result in an exponential blowup in size

Example $\left(x_{1} \wedge x_{2}\right) \vee\left(x_{3} \wedge x_{4}\right) \vee\left(x_{5} \wedge x_{6}\right) \vee \ldots()$

- Better method: SAT THEOREM

There is an efficient method to transform any propositional formula F into a CNF formula g such that F is satisfiable if g is satisfiable

SAT THEOREM: Proof by example \qquad
$F: \underbrace{\underbrace{(Q \wedge R) \vee \neg Q}_{P_{B}}}_{P_{A}}$ ~ New variables
$g: \quad P_{B} \Leftrightarrow(Q \wedge R) \wedge \underbrace{P_{A} \Leftrightarrow P_{B} \nVdash 1 Q} \wedge P_{A}$

$$
\left(\neg P_{B} \vee Q\right)\left(\neg P_{B} \vee R\right)\left(\neg Q \vee \neg R \cup P_{B}\right)
$$

RESOLUTION
Start with CNF formula $F=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}$ view F as a set of clauses $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$

Resolution Rule:

$$
(A \vee x),(B \vee \bar{x}) \text { derive }(A \vee B)
$$

A Resolution Refutation of F is a sequence of clauses $D_{1}, D_{2}, \ldots, D_{q}$ such that: each D_{i} is either a clause from $F_{\text {, or }}$ follows from 2 previous clauses by Resolution rule, and final clause $D_{q}=\phi$ (the empty clause)

Resolution Refutation

$$
F=(a \vee b \vee c)(a \vee \bar{c})(\bar{b})(\bar{a} \vee d)(\bar{d} \vee b)
$$

Resolution Soundness
Fact: If c_{1}, c_{2} derive c_{3} by Resolution rule, then $c_{1}, c_{2} \vDash c_{3}$

From above fact we can prove:
Resolution soundness tel EOKEM
If a CNF formula F has a RES refutation, then F is unsatisfiable

RESOLUTION COMPLETENESS THY
Every UNSatisfiable CNF formula F has a Resolution refutation

Proof idea
WC describe a canonical procedure for obtaining a RES refutation for F

The procedure exhaustively tries all truth ass's - via a decision free then we shaw that any such decision tree can be rewed as a RES refutation

DECISION TREES

$$
F=(a \vee b \vee c)(a \vee \bar{c})(\bar{b})(\bar{a} \vee d)(\bar{d} \vee b)
$$

