$\operatorname{cs4} 38 / 2404 \quad$ Lecture 4

- HW 2: ouT! Due Oct 18

TODAY
First Order Logic
Quick Review - Syntax, semantics LK completeness Consequences of Completeness

Lecture Notes: Completeness P. 31-38

FIRST ORDER LOYIC (Review)
Underlying language \mathcal{L} speitied by:
(1) $\forall n \in \mathbb{N}$ a set of n-arg function symbols (ie., $f, g, h,+, \cdot$) o-ary function symbols are called constants
(2) $\forall n \in \mathbb{N}$ a set of n-arg predicate symbols (i.e. $P, Q, R,<, \leq$)
Plus:

$$
\begin{aligned}
& \text { - variables: } x, y, z, \ldots a, b, c, \ldots\} \begin{array}{l}
\text { Built in } \\
\text { symbols }
\end{array} \\
& \text { - parenthesis }(,)
\end{aligned}
$$

Terms over \mathcal{Z}
(1) Every variable is a term
(2) If f is an n-arg function symbol, and $t_{1}, \ldots t_{n}$ terms, then $f t_{1} \ldots t_{n}$ is a term

Terms over \mathcal{Z}
(1) Every variable is a term
(2) If f is an n-ary function symbol, and $t_{1, \ldots} t_{n}$ terms, then $f t_{1} \ldots t_{n}$ is a term
$\frac{\text { Examples of terms }}{0 \text {-arg }}(0, s, f,+i, j)$

$$
\begin{array}{ccc}
f o s s s 0, & +x f y z, & +a b \text { ss } \\
\text { 个 } & + \\
f(0 \operatorname{sis}, 0) & x+f(y, z) & (a+b)^{*} * \text { ss }
\end{array}
$$

FIRST ORDER FORMULAS OVER \mathcal{Z}
(1) $p t_{1} . . t_{n}$ is an atomic f-formula, where P is an n-ary predicate in \mathcal{Z}, and $t_{1} . . t_{n}$ are terms over \mathcal{L}
(2) If A, B are \mathcal{L}-formulas, so are

$$
\sim A,(A \wedge B),(A \cup B), \forall x A, \exists \times A
$$

Example: FO Formulas in \mathcal{L}_{A}
(3) Fermat's Last Theorem (actually Andrea wiles theorem)

$$
\forall n \geqslant 3 \quad\left(\forall a, b, c \quad a^{n}+b^{n} \neq c^{n}\right)
$$

Problem: How to say a^{n} ?
(well see later how to do this!)

FREE/BOUND vARIABLES

- An occurrence of x in A is bound if x is in a subformula of A of the form $\forall \times B$, or $\exists \times B$ (otherwise x is free in A)
Example $\exists y(x=y+y)$

$$
P x \wedge \forall x(2(x+5 x=x))
$$

- A fromula/term is closed if it contains no free variables
- A closed formula is called a sentence

SEmANTICS of FO LOgiC
An \mathcal{L}-structure $9 M$ (or model) consists of:
(1) A nonempty set M called the universe (variables range over M)
(2) For cary n-ary function symbol f in \mathcal{Z}, an associated function $f^{m}: M^{n} \rightarrow M$
(3) For each n-ary relation symbol P in \mathcal{Z}, an associated relation $p^{m} \leq M^{n}$

* Equality predicate $=$ is always true equality relation on M.

Example

$$
\mathcal{L}_{A}=\{0, s,+, \cdots=\}
$$

(1) \mathbb{N} : standard model of \mathcal{L}_{A}

$$
\begin{aligned}
& M=\mathbb{N} \\
& O=O \in \mathbb{N}
\end{aligned}
$$

$t, 0, s$ are usual plus, times, successor functions
Jumping ahead a bit: Evaluation of a formula in \mathbb{N}

$$
\begin{gathered}
\forall x \forall z \quad\left(\exists z^{\prime}\left(\neg\left(z^{\prime}=0\right) \wedge z+z^{\prime}=x\right) \rightarrow\right. \\
\left.\exists z^{\prime}\left(s z+z^{\prime \prime}=x\right)\right)
\end{gathered}
$$

Definition: Evaluation of terms/formulas over $M, 6$
Let $9 n$ be an \mathcal{L}-structure, 6 an object assignment for M

Evaluation of terms over $9 \prod, 6$
(a) $x^{m}[6]$ is $\sigma(x)$ for all variables x
(b) $\left(f t_{1} . . t_{n}\right)^{m n}[6]=f^{m}\left(t_{1}^{m n}[6], \ldots, t_{n}^{m}[6]\right)$

Evaluation of formulas over $0 m, 6$
Let A be an \mathcal{L}-formula. $~ M \vDash A[6]$
(O n satisfies A under σ) iff
(a) $9 m \vDash P t_{1}, t_{n}[6]$ iff $\left\langle t_{1}^{m n}[6], \ldots, t_{n}^{m}[6]\right\rangle \in p^{m n}$
(6) $M \vDash(s=t)[6]$ iff $s^{m n}[6]=t^{m n}[6]$
(c) $M=\neg A[\sigma]$ iff Not $M \vDash A[6]$
(d) $m \neq(A \cup B)[6]$ iff $9 n \vDash A[6]$ or $M_{\neq B[6]}$
(e) $m \in(A \wedge B)[6]$ iff $\quad M \neq A[6]$ and $m \vDash B(6)$
(f) $m \vDash \forall x A[6]$ iff $\forall m \in M \quad m \in A[6(m / x)]$
(g) $m \vDash \exists x A[6]$ iff $\exists m \in M \quad M \in A\left[6\left(\frac{m}{x}\right)\right]$

Example $\mathcal{L}=\{; R,=\}$

$$
m=(\mathbb{N} ; \leq,=)
$$

$R^{m}(m, n)$ eff $m \leq n$
Then $\quad m \stackrel{y+?}{\stackrel{ }{\rightleftharpoons}} \forall x \exists y R(x, y)$
satisfiable

$$
g M \stackrel{N!}{\rightleftharpoons} \exists y \forall x R(x, y)
$$

F but $\exists y \forall x R(x, y)$ -is also sats/lable

IMPORTANT DEFINITIONS
(1) A is satisfiable iff there exists a model 91 and an object assignment 6 such that $M \models A[6]$
(2) A set of formulas Φ is satisfiable if $\exists M, 6$ such that $m \equiv \Phi[\sigma]\left[\begin{array}{c}M \in A[\sigma] \text { for } \\ \text { all } A \in \Phi\end{array}\right]$
(3) $\Phi \vDash A \quad(A$ is a logical consequence of $\Phi)$ of $\forall M \forall \forall$ if $M \vDash \Phi[6]$ then $m \in A[6]$ $\vDash A$ (A is valid) of $\forall O M, 6 \quad O M \vDash A[6]$

FIRST ORDER SEQUENT CALCULUS LE
Lines are again sequents

$$
\left.\begin{array}{l}
\text { are again sequents } \\
A_{1}, \ldots, A_{k} \rightarrow B_{1}, \ldots, B_{l}
\end{array}\right\} s
$$

where each $A_{i}, B_{\text {, }}$ is a proper \mathcal{L}-formula

$$
A_{s}: A_{1} \wedge A_{2} \wedge \ldots \wedge A_{k} \supset B_{1} \vee \ldots \vee B_{l}
$$

FIRST ORDER SEQUENT CALCULUS LE
Lines are again sequent

$$
A_{1}, \ldots, A_{k} \rightarrow B_{1}, . ., B_{l}
$$

where each $A_{i}, B_{\text {, }}$ is a proper \mathcal{L}-formula
RULES
OLD RULES OF PK
plus new rules for \forall, \exists
like a large AND

New Logical Rules for \forall, \exists
\forall-left $\quad \frac{A(t), \Gamma \rightarrow \Delta}{\forall x A(x), \Gamma \rightarrow \Delta} \quad \forall$-Right $\quad \frac{\Gamma \rightarrow \Delta, A(b)}{\Gamma \rightarrow \Delta, \forall \times A(x)}$

Heft $\quad \frac{A(b), \Gamma \rightarrow \Delta}{\exists x A(x), \Gamma \rightarrow \Delta} \quad \exists$-right $\quad \frac{\Gamma \rightarrow \Delta, A(t)}{\Gamma \rightarrow \Delta, \exists \times A(x)}$

* Att are proper
* b is a free variable Not appearing in cower sequent of rule

Example of an LK proof

Theorem (LK soundness)
Every sequent provable in $L K$ is valid

Pf by induction on the number of sequents in proof.
Axiom $A \rightarrow A$ is valid
Induction step: use previous soundness lemma

Soundness (Proof): By induction on the number of sequents in proof

Example: ヨ Left
Assume: $A(b), \Gamma \rightarrow \Delta$ has an LK proof and is valid show: $\exists x A(x), r \rightarrow \Delta$ also valid
By def $\overline{A(b)} \vee \bar{r}_{1} v \ldots v \bar{\Gamma}_{k} \vee \Delta_{1} v \ldots \Delta_{k}$ is valid Let on be any structure, 6 any object assignment,
Show: \quad mn $\neq \neg \exists x A(x) \vee \bar{\Gamma}_{1} \vee \ldots \vee \bar{\Gamma}_{k} \vee \Delta_{4} \vee \ldots \vee \Delta_{k}[6] \quad(*)$
case 1 an $\Leftarrow \bar{\Gamma}_{1} \vee \ldots \nu \bar{\Gamma}_{i c} \vee \Delta_{1} \cdots \ldots \Delta_{k}[6]$. Then (t) holds
case 2 Case 1 does not hold.

Soundness (Proof): By induction on the number of sequents in proof

Example: \exists Left
Assume: $A(b), \Gamma \rightarrow \Delta$ has an $L K$ proof and is valid show: $\exists x A(x), n \rightarrow \Delta$ also valid
By def $\overline{A(b)} v \bar{r}_{1} v \ldots v \bar{\Gamma}_{k} \vee \Delta, v \ldots \sim \Delta_{k}$ is valued let $9 n$ be any structure, 6 any object assignment.
Show: $9 n \neq \neg \exists x \beta(x) \vee \bar{\Gamma}_{1} v \ldots \bar{\Gamma}_{k} \vee \Delta v \ldots \vee \Delta_{k}[6](*)$
case 1 $\quad 0 n \vDash \bar{\Gamma}_{1} v \ldots \nu \bar{\Gamma}_{1 c} \sim \Delta_{1} \cdots \cdots \Delta_{k}[6]$. Then (H) holds
case 2 Case 1 does not hold.
Since b does not occur in Γ or Δ,
$9 m * \bar{\Gamma}_{1} \vee \ldots \sim \bar{\Gamma}_{k} \vee \Delta_{1} \vee \ldots \Delta_{k}\left[6\left(\frac{m}{b}\right)\right]$ for $a(l m \in M$
Since $A(b), r \rightarrow \Delta$ is valid, $m \vDash \overline{A(b)}\left[6\left[\frac{m}{6}\right]\right] \forall m \in M$
Thus $M \vDash \neg \exists x A(x)$ [6], thus $\exists x A(x), n \rightarrow \Delta$ is valid.

TODAY: giodels completeness TIIEDREM
Defy $A_{n} L K-\Phi$ proof is an $L K$-proof, but leaves are either axioms $(A \rightarrow A)$ or of the form $\rightarrow A$ for $A \in \Phi$
goal Prove that if $r \rightarrow \Delta$ is a logical consequence of Φ, then there is an $L K-\Phi$ proof of $\Gamma \rightarrow \Delta$ (Called Derivational completeness)
Deffer Let $A\left(a_{1} \ldots a_{n}\right)$ be a formula with free variables $a_{1} \ldots a_{n}$. Then $\forall A$ is $\forall x_{1} \forall x_{2} \ldots \forall x_{n} A\left(x_{1} \ldots x_{n}\right)$ (called universal closure of A)

TODAY: GK COMPLETENESS
(MAIN CEMMA) completeness Lemma
If $\Gamma \rightarrow \Delta$ is a logical consequence of a set of (possibly infinite) formulas $\forall \Phi$ then there exists a finite subset $\left\{C_{1}, \ldots C_{n}\right\}$ of Φ such that
$\forall C_{1}, \ldots, \forall C_{n}, \Gamma \rightarrow \Delta$ has a (cut-free) PK proof

* We will assume = not in Language for now

Derivational Completeness Theorem
Let Φ be a set of sequent or formulas such that the sequent $\Gamma \rightarrow \Delta$ is a logical consequence of $\forall \Phi$.
Then there is an $L K-\Phi$ proof of $\Gamma \rightarrow \Delta$.

Proof follows from Completeness Lemma (simitar to derivational completeness of PK from (completeness)

Proof of LK completeness Lemma
High Level idea (assume Φ is empty for Now)

- As in PK completeness, we want to construct on LK proof in reverse.
- Start isth $r \rightarrow \Delta$ at root, and apply rules in reverse cto break up a formula into one or 2 smaller ones)
- Tricky rules are right + $\forall l e f t$. When applying one of these in reverse, Need to "guess" a term

New Logical Rules for \forall, \exists
\forall-left $\quad \frac{A(t), \Gamma \rightarrow \Delta}{\forall x A(x), \Gamma \rightarrow \Delta} \quad \forall$-Right $\quad \frac{\Gamma \rightarrow \Delta, A(b)}{\Gamma \rightarrow \Delta, \forall \times A(x)}$

Heft $\quad \frac{A(b), \Gamma \rightarrow \Delta}{\exists x A(x), \Gamma \rightarrow \Delta} \quad \exists$-right $\quad \frac{\Gamma \rightarrow \Delta, A(t)}{\Gamma \rightarrow \Delta, \exists \times A(x)}$

* Att are proper
* b is a free variable Not appearing in cower sequent of rule

Proof of LK completeness Lemma
High Level idea (assume Φ is empty for Now)

- As in PK completeness, we want to construct an $L K$ proof in reverse.
- Start inst $r \rightarrow \Delta$ at root, and apply rules in reverse Pto break up a formula into one or 2 smaller ones)
- Tricky rules are $\exists r i g h t+\forall l e f t$. when applying one of these in reverse, Need to "guess" a term
- Key is to systematically try all possible terms - without going down a rabbit hole.

Example of an LK proof

Example of an LK proof
$P a_{1} Q_{a} \rightarrow P b$

$$
\begin{aligned}
& \frac{P_{a} \wedge Q_{a} \rightarrow P_{b}}{P_{a} \wedge Q_{a} \rightarrow \exists x^{\prime} P_{x}} \\
& \exists x\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x}
\end{aligned} \frac{P_{a} \wedge Q_{a} \rightarrow \exists_{x} Q_{x}}{\exists x\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x} \wedge \exists_{x}}
$$

Instead:
(i)

$$
\begin{aligned}
& P_{a}, Q_{a} \rightarrow P_{b}, \exists_{x} P_{x} \\
& \xi \\
& \mathrm{~Pa}_{\mathrm{a}} \wedge \mathrm{Qa}_{a} \rightarrow \mathrm{~Pb}, \exists \times \mathrm{Px}_{x} \\
& \begin{array}{ll}
P_{a \wedge} \wedge Q_{a} \rightarrow \exists x y x
\end{array} \quad \begin{array}{l}
P_{x}\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x}
\end{array} \quad \begin{array}{ll}
P_{x}\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} Q_{x}
\end{array} \\
& \exists x\left(P_{x} \wedge Q_{x}\right) \rightarrow Z_{x} P_{x} \wedge \exists x Q_{x}
\end{aligned}
$$

Instead

Try
again $P a, Q a \rightarrow P b_{1} \exists x P_{x}$
$\}$

$$
\begin{aligned}
& P_{a} \wedge Q_{a} \rightarrow P b, \exists x P_{x} \\
& \begin{array}{ll}
P_{a} \wedge Q_{a} \rightarrow \exists x_{x}
\end{array} \quad \begin{array}{l}
P_{x}\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x}
\end{array} \quad \begin{array}{ll}
& Q_{x}\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} Q_{x}
\end{array} \\
& \exists x\left(P_{x} \wedge Q_{x}\right) \rightarrow \exists_{x} P_{x} \wedge \exists x Q x
\end{aligned}
$$

Instead
and again
and $P a, Q a \rightarrow P b, P f a, P F b, \exists x P_{x}$ again

Completeness: Proof search Algonthm
Enumeration of formulas + terms:
Since the number of underlying symbols of \mathcal{L} is finite, there is an enumeration of pairs $\left\langle A_{1}, t_{1}\right\rangle,\left\langle A_{2}, t_{2}\right\rangle,\left\langle A_{3}, t_{3}\right\rangle, \ldots$. such that every term and every formula in \mathcal{L} occur infinitely often in the enumeration
more details of enumeration (\mathscr{L} finite)
Enumerate all \mathcal{L}-formulas A_{1}, A_{2}, \ldots
Enumerate " \mathcal{L}-terms t_{1}, \ldots
such that even formula/term occurs infinitely often

Enumerate all pairs to have same property

Completeness: Proof search Algonthm

- Initially π is the sequent $\Gamma \rightarrow \Delta$
- At each stage, modify π by adding some $A_{i} \in \Phi$ to antecedent of all sequents in Π, and adding onto the "frontier" or "active" sequents in TT
- Active sequent: a leaf sequent in π, not a weakening of $A \rightarrow A$
- at stage k : we will use the $k^{\text {th }}$ pair $\left\langle A_{k}, t_{k}\right\rangle$ in the enumeration

Completeness: Proof search Algonthm
Stage K: $:\langle A, t\rangle_{k}$
(1) If $A_{k} \in \Phi$, replace $\Gamma^{\prime} \rightarrow \Delta^{\prime}$ in Π by $\Gamma^{\prime} A_{k} \rightarrow \Delta^{\prime}$
(2) If A_{k} atomic, skip this step. Otherwise for all leaf sequent containing A_{k}, break up outermost connective of A_{k} using the appropriate logical rule, and t_{k} if Necessary.

Completeness: Proof search Algonthm
Stage K:
(1) If $A_{k} \in \Phi$, replace $\Gamma^{\prime} \rightarrow \Delta^{\prime}$ in Π by $\Gamma^{\prime}, A_{k} \rightarrow \Delta^{\prime}$
(2) If A_{k} atomic, skip this step. Otheriulse for all leaf sequent containing A_{k}, break up outermost connective of A_{k} using the appropriate logical rule, and t_{k} if Necessary.

Examples:

- $A_{k}=\exists \times B x$

$$
\frac{\Gamma, B(C) \rightarrow \Delta}{\Gamma, \exists \times B(x) \rightarrow \Delta}
$$

$$
\frac{\Gamma \rightarrow \Delta, \exists \times B(x), B\left(t_{k}\right)}{r \rightarrow \Delta, \exists x B(x)}\left\{\begin{array}{c}
\text { keep both } \\
\text { here }
\end{array}\right\}
$$

Completeness: Proof search Algonthm
Stage K:
(1) If $A_{k} \in \Phi$, replace $\Gamma^{\prime} \rightarrow \Delta^{\prime}$ in π by $\Gamma^{\prime}, A_{k} \rightarrow \Delta^{\prime}$
(2) If A_{k} atomic, skip this step. Otherwise for all leaf sequent containing A_{k}, break up outermost connective of A_{k} using the appropriate logical rule, and t_{k} if Necessary.
Examples:

- $A_{k}=\forall x B(k)$

$$
\begin{aligned}
& \Gamma \rightarrow \Delta, B(c) \leftarrow \\
& \Gamma \rightarrow \Delta, \forall x B(x) \\
& \Gamma, \forall x B(x) \rightarrow \Delta
\end{aligned}
$$

Exit when wo more active sequents

Proof of Correctness
We want to show:

- If Δl gonithm halts, Π is an $L K-\Phi$ proof of $\forall c_{1}, \cdots \forall C_{n} n \rightarrow \Delta$
- If Algorithm Never halts, then

$$
\forall \Phi \not \Gamma \rightarrow \Delta
$$

Proof of Correctness
we want to show: If Algorithm never halts, then $\forall \Phi k r \rightarrow \Delta$

Suppose Algorithm doesn't halt and let π be the (typically infinite) tree that results
Leaf "sequent" of π look like $\Gamma^{\prime}, \underbrace{c_{1}}_{1, c_{2}, \ldots} \rightarrow \Delta^{\prime}$. infinite sequence containing all of Φ each infinitely often
Find a bad path β in the tree:
If $I I$ finite, \exists some active leaf Node containing only atomic formulas. Choose β to be path from root to this leaf

Proof of Correctness
we want to show: If Algorithm never halts, then $\forall \Phi \Gamma^{\Gamma} \rightarrow \Delta$
Find a bad path β in the tree:
If π finite, 3 some active leaf Node containing only atomic formulas. Choose β to be path from root to this leaf
If π infinite by Körig's Lemma, \exists an infinite path. Let β bethis path

Proof of Correctness
Properties of β
(1) β is a path starting at root
(2) all sequents in β were once active
(3) for all sequents in β, no formula occurs on both the Left and right side of sequent
(4) all atomic formulas $A \in \Phi$ in root sequent of $\boldsymbol{\beta}$ on LEFT, and thus occur on LEFT of all sequent in $\boldsymbol{\beta}$

By (3)+(4), we know that no atomic $A \in \Phi$ occurs on the Right of any sequent in β

Proof of Correctness (cont ${ }^{\prime} d$)
We will construct a "term" model $9 M$, object assignment 6 from β such that $m \not \equiv \Phi[6]$ but $m \Gamma \Gamma \rightarrow \Delta$ (and thus our algorithm fails to halt + produce a proof only when $\Gamma \rightarrow \Delta$ is not a logical consequence of Φ.)

Proof of correctness (cont ${ }^{\prime} d$)
We will construct a "term" model $9 M$, object assignment 6 from β such that $m \notin[6]$ but $M \Gamma \Gamma \rightarrow \Delta$
Universe M : all \mathcal{L}-terms t (containing only free vars)
6 : map vanable a to itself

$$
\lambda_{o n}^{f n}\left(r_{1} \ldots r_{k}\right) \stackrel{d}{=} f r_{1} \ldots r_{k}
$$

$P^{d n}\left(r_{1} \ldots r_{k}\right) \stackrel{d}{=}$ true if and only if $P r_{1} \ldots r_{k}$ is on the LEFT of some sequent in β

$$
f^{a n}\left(\underline{r_{1}} \ldots r_{k}\right) \stackrel{d}{=} f_{r_{1}} \ldots r_{k}
$$

Proof of correctness (contd)
Claim: For every formula A,
M, 6 satisfies A iff A is on the LEFT of some sequent in β, and
an, σ falsifies A iff A s on the RIgHT of some sequent in β

Proof of correctness (contd)
Claim: For every formula A,
OM, 6 satisfies A iff A is on the LEFT of some sequent in β, and
m, σ falsifies A iff A s on the RigHT of some sequent in β
Proof (induction on A)
A atomic: A cannot occur
on LEFT of some sequent in β and on RIgHT of some sequent in β (since A persists up β)

Proof of correctness (contd)
Claim: For every formula A,
OM, 6 satisfies A iff A is on the LEFT of some sequent in β, and
$90, \sigma$ falsifies A iff A s on the RIgHT of some sequent in β
Proof (induction on A)
Induction step Example $A=\exists x B(x)$ on RIgHT
high level: if A occurs in some sequent in β, then A persists upward until it becomes the active formula (at stage $K, A_{k}=A$) then use inductive hypothesis

Proof of correctness (contd)
Claim: For every formula A,
$m, 6$ satisfies A iff A is on the LEFT of some sequent in β, and
$m_{1} \sigma$ falsifies A iff A s on the RIgHT of some sequent in β
Proof (induction on A)
Induction step $A=\exists x B(x)$ on R Lg ht
By Ind hyp, $M, 6$ falsify $B\left(t_{j}\right)$
Since $\exists x B(x)$ persists, we have $\forall t$ $B(t)$ on RigHT of some sequent in β
Thus om, 6 falsify $B(t)$ for all terms t

