

• Midtern in class OCT 21 3-5

• Extra office hours Wed OCT 16 and FRI OCT 18

· Study Problems - see course we builte

TODAY :

- · Corollaries of completeness
- · Dealing with Equality
- · Theories of Arithmetic

Corollaries of completeness

Corollaries of completeness

(2) First Order compactness Theorem. An infinite set of first order sentences @ 1s unsatisfiable it and only it some finite subset of $\overline{\mathfrak{F}}$ is unsatisfiable Proof Let A be the empty sequent (or any unsatisfiable formula) Dunsatufiable means DEA. Thus (by completeness) there is a \$-LK proof of A proof. Thus there is a finite subset $\overline{\Phi}'$ of $\overline{\Phi}$ such that there is a $\overline{\Phi}'$ -LK proof $\overline{\Phi}$ A : • • is unsatisfiable. (other direction is easy)

Dealing with Equality

So far we have treated equality predicate as true equality. We want to show that a finite number of equality axioms essentially characterizes frue equality Dealing with Equality

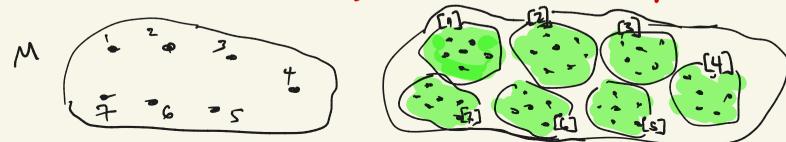
So far we have treated equality predicate as true equality. We want to show that a finite number of equality axioms essentially characterizes frue equality

Definition A weak L-structure is an Z-structure where = can be any binary predicate Question: Can we define a finite set of sentences & that defines equaliby? (That is, a proper structure satisfies & and any weak structure satisfying & must have = be true equaliby?)

Dealing with Equality

Question: Can we define a finite set of sentences & that defines equality? (That is, a proper structure satisfies & and any weak structure satisfying & must have = be true equality?)

But this is the only counterexample. There is a natural, finite set of axioms that characterizes true equality (up to isomorphism)



Dealing with Equality
Equality Axioms for
$$\mathcal{L}$$
 (\mathcal{E}_{X})
= is (E1. $\forall x(x=x)$)
equiv
E2. $\forall x \forall y (x=y > y=x)$
equiv
E3. $\forall x \forall y \forall z ((x=y \land y=z) > x=z)$
(E4. $\forall x ... \forall x n \forall y_1 ... \forall y_n (x=y_1 \land ... \land x_n=y_n) > f x_1 ... x_n = f y_1 ... y_n$
for all n-ary Eunstein symbols, and for all $n \ge 1$
 \mathcal{E}_{2} . $\forall x ... \forall x_n \forall y_1 ... \forall y_n ((x=y_1 \land ... \land x_n=y_n) > f x_1 ... y_n = f y_1 ... y_n)$
(E4. $\forall x ... \forall x_n \forall y_1 ... \forall y_n ((x=y_1 \land ... \land x_n=y_n) > f x_1 ... y_n = f y_1 ... y_n)$
 \mathcal{E}_{2} . $\forall x_1 ... \forall x_n \forall y_1 ... \forall y_n ((x=y_1 \land ... \land x_n=y_n) > f x_1 ... y_n)$

equivalence relation preservet by functions and predicates Equality Theorem

Theorem Let & be a set of L-sentences & is satisfiable iff & u & is satisfied by some weak L-structure.

Proof straightforward (see Lecture Notes)

Add these axioms for all terms u,t, u,..,t,...

LI

$$f = t$$
 $f = t$
 $f = u \longrightarrow u = t$
 $f = u_1, \dots, t_n = u_n \longrightarrow f = v$
 $f = u_1, \dots, t_n = u_n \longrightarrow f = f = u_1 \dots u_n$
 $f = u_1, \dots, t_n = u_n, P = \dots \longrightarrow P = u_1 \dots u_n$
Now an $L = t = p = p = 0$ of $f \to A$ means an
 $L = p = p = 0$ of A from $f = and$ from above axioms

We will soon see that TA is Not decidable. On the other hand, restricted systems of TA are decidable (Ls, L+)

Theories

Note: JN Lecture notes this is not defined until p.75 but it is important enough that we introduce it Now.

Theories

Note: JN Lecture notes this is not defined until p.75 but it is important enough that up introduce it Now. Definition A theory (over 2) is a set 2 of sentences closed under logical consequence. (ZEA then AGE) We can specify a theory by a finite or countable set Q sentences Ψ -- the theory corresponding to Ψ - is $\Xi A \mid \Psi \models A]$ Notation Za theory ZFA means AEZ Definition For a Language L, Φ_{o}^{d} -is the set of all sentences over L

Definition Ξ is consistent if and only if $\Xi \neq \overline{\Phi}_{o}$ (If $\Xi = \overline{\Phi}_{o}$ then Ξ contains $A + \tau A$) conversely if Ξ contains $A + \tau A$ then Ξ contains all of $\overline{\Phi}_{o}$

Definition Ξ is consistent if and only if $\Xi \neq \phi$

E is complete iff E is consistent and for all senfences A, either ZMA or ZMA

Definition Ξ is consistent if and only if $\Xi \neq \overline{\Phi}$ Z is complete iff Z is consistent and for all sentences A, either ZMA or ZMA Example $f_A = \{0, s, t, \cdot\} = \}$ TA = all sentences over La that are true in IN

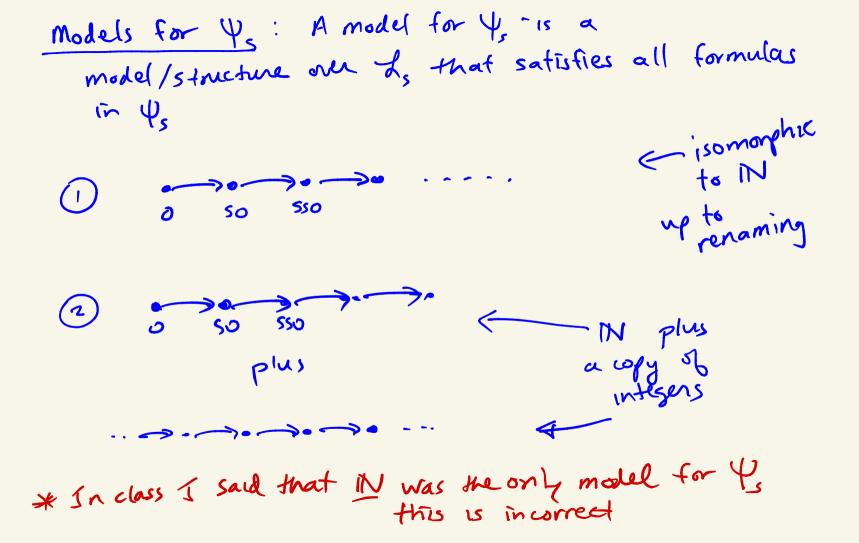
The sensistent and complete

Definition Ξ is consistent if and only if $\Xi \neq \overline{\Phi}$ Z is complete iff Z is consistent and for all sentences A, either ZMA or ZMA Definition A theory Ξ over d_A is sound iff $\Xi \leq TA$

Subsystems of True Arithmetic
• Theory of Successor (0, s; =)
• Presburger Anthmetic (0, s, +; =)
Defn
$$Z_s = \{0, s; =\}$$
 Language of successor
The standard model for Z_s , N_s :
 $M = iN$, 0 and s have usual meaning (s(x)=x+1)
Let Th(s) (theory of successor) be the set of all
sentences of Z_s that are true in iN_s

Th(s): There is a simple (infinite but countable)
complete set of axioms for th(s),
$$\Psi_s$$

 Ψ_s : (51) Ψ_x ($s_x \neq 0$)
(52) $\Psi_x \Psi_y$ ($s_x = s_y = x = y$)
(53) $\Psi_x(x=0 = y(x=s_y))$
(53) $\Psi_x(x=0 = y(x=s_y))$
(54) Ψ_x ($s_x \neq x$)
(57) Ψ_x ($s_x \neq x$)
(57) Ψ_x ($s_x \neq x$)
(57)



3 generalizing 3, models contain one wyg Q W, plus any number g copus (isopophic to) the integers Note instract all axioms 54,55,56,... we wild have additional models inth loops

0 50 550 & Cycles plus

Theorem Us is complete and consistent (proof omitted)

Therefore although ψ_s has both the . Standard model IN as well as wonstandard models all models M of ψ_s have the same set of true sentences.

Theorem Us is complete and consistent (proof omitted)

Therefore although ψ_s has both the . Standard model IN as well as wonstandard models all models of ψ_s have the same set of true sentences.

We'll see later that when a set of sentences (such as This)) has a Nice (enumerable) axiomatization, then This) - is decidable.

BACK TO TA (TRUE ARITHMETIC)

Theorem 1A has a noriseandary mod

MIDTERM REVIEW

Material covered: 1) Propositional Calculus (pp 1-17 of Notes and Notes on Resolution) 2 Predicate Calculus (pp 18-30 of Notes) 3 completeness (pp. 31-38 of Notes) (4) Equality Axions (pp. 43-47) Corollaries of completeness (48-53)

MIDTERM REVIEW

Study Tips -Read Lecture Notes and Course Notes carefully first -Then do / review solutions to homework questions and tutorial problems - Then do practice questions (see handout "Midtern Study Problems") Office hours wed oct 16 3-4 Fri Oct 18 2-3

MIDTERM REVIEW

Study Tips • given a propositional or first order formula/ sequent, produce a (RES, PK, LK) proof • Run completeness Algorithm (s) Compactness: what is if ? how to use it?
 why is if true? • give a model for \$; does \$ ≠ A." is] valid? satisfiable? invalid/unsat.?