CSC $438 / 2404$ Weak 7

- HW3 Due Nov 11
- TodAy: computability (See Notes from last Finday)
on Turing Machines

Turing Machines "on Computable Numbers, with an application to the Entscheidungsproblem"

1936

$1912-1954$

Turing Machines:

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{1}, B,\left\{q_{2}\right\}\right)
$$

Turing Machines "On Computable Numbers, with an application to the Entscheidung sproblem"
 1936

Church-Turing Thesis
A function/predicate is computable/ realizable in physical world \Rightarrow it is computable by a TM

$$
1912-1954
$$

Notation
$\{x\}=$ Turing machine M such that $\# M=x$
$\{x\}_{1}=$ the unary function computed by x
$\{x\}_{n}=$ the n-arr function computed by x (can generalize earlier so M takes n inputs instead of 1)

Today
What is computable and what isn't?
We will mostly focus on unary relations or Languages - $L \leq\{0,1\}^{*}$
all finite length strings over $\{0,1\}$

Definition Let M be a $T M$, $\Sigma=\{0,1\}$ $\mathscr{L}(M) \subseteq\{0,1\}^{*}$ is the set of all (finite-length)
 strings $x \in\{0,1\}^{*}$ such that $M(x)$ halts and outputs 1 the Language accepted by M

Recursive / RE Sets
A language $L \leq\{0,1\}^{*}$ is recursively enumerable if there exists a TM M such that $\mathcal{L}(M)=L$

So $\forall x \in\{0,1\}^{*}$
$x \in L \Rightarrow M$ on x halts and outputs " 1 "
$x \notin L \Rightarrow M$ on x halts and does not output 1 or M does not halt on x

Recursive / RE Sets
A language $L \leq\{0,1\}^{*}$ is recursively enumerable if there exists a TM M such that $\mathcal{L}(M)=L$

So $\forall x \in\{0,1\}^{*}$
$x \in L \Rightarrow M$ on x halts and outputs " 1 "
$x \notin L \Rightarrow M$ on x halts and does not output 1 or M does not halt on x
recursively enumerable (re) also called semidecidable, partial computable

Recursive / RE sets
A language $L \leq\{0,1\}^{*}$ is recursive if there exists a TM M such that $\mathscr{L}(M)=L$ and M always halts

So $\forall x \in\{0,1\}^{*}$
$x \in L \Rightarrow$ Mon x halts and outputs " 1 "
$x \notin L \Rightarrow M$ on x halts and does Not output 1 (without loss of generality, $x \times L \Rightarrow M(x)$ halts + outputs " 0 ")

Recursive / RE sets
A language $L \leq\{0,1\}^{*}$ is recursive if there exists a TM M such that $\mathscr{L}(M)=L$ and M always halts

So $\forall x \in\{0,1\}^{*}$
$x \in L \Rightarrow$ Mon x halts and outputs " 1 "
$x \not L \Rightarrow M$ on x halts and does Not output 1 (without loss of generality,

$$
x \times L \Rightarrow M(x) \text { halts + outputs " } 0 \text { ") }
$$

recursive also called decidable, computable.

Recursive / RE Sets
A function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ (or $f: \mathbb{N}^{n} \rightarrow N$) is total computable if there exists a TM M such that $\forall x \in\{0,1\}^{x}$ $M(x)$ halts and outputs $f(x)$.

Easy Properties
(1) L recursive $\Rightarrow L$ re.
(2) Class of recursive languages is closed under

$$
\begin{aligned}
& n, U_{1} \neg: \\
& L_{1}, L_{2} \text { recursive } \Rightarrow L_{1} \cup L_{2}, L_{1} n L_{2}, L_{1}, L_{2}
\end{aligned}
$$

are recursive
(3) Total computable functions closed under composition: f, g computable $\Rightarrow f \circ g \stackrel{d}{=} f(g(x))$ is computable

Another Property (not as easy)
(4) L re., and \bar{L} re. $\Rightarrow L$ is recursive

$$
\mathbb{R}_{\{x \mid x \notin L\}}
$$

* Note: Often $L \subseteq\{0,1\}^{8}$ is a set of encoding. Example $L=\{x \mid\{\times\}$, accepts input "II" $\}$ then we usually think of \bar{L} as $\{x \mid\{x$,$\} does not accept$ al though technically
$L=\{x \mid x$ is not a legal en coding or $\{x\}$, does not accept 111 $\}$

Another Property (not as easy)
(4) L re., and \bar{L} re. $\Rightarrow L$ is recursive

Proof: (Dovetailing)
Let M, be a $T M$ st $\mathcal{L}(M)=L$,
M_{2} be a $T M$ st $Z(M)=\bar{L}$
New TM M on x :
For $i=1,2,3, \ldots$
Run M_{1} on x for i steps
if M_{1} accepts x halt + accept
Run $M_{2} m_{1} \times$ for is steps
$M_{\text {it }}^{2} M_{2}$ accepts s x, hat + reject

Another Property (not as easy)
(4) L r.e., and L r.e. $\Rightarrow L$ is recursive

Proof: (Dovetailing)
Let M, be a $T M$ st $\mathcal{Z}(M)=L$,

$$
M_{z} \text { be a } T M \text { st } Z(M)=\bar{L}
$$

$\underbrace{\text { New }}_{\text {For }} \mathrm{TM}_{i=1,2,3,}^{M}$ on $x:$
Run M_{1} on x for i steps
if M_{1} accepts x halt + accept
Run $M_{2} \tilde{n}_{x} \times$ for is steps

- M on x eventually halts since x accepted by exactly one of M_{1}, M_{2}
- $x \in L \Rightarrow M_{1}$ accepts $x \Rightarrow M$ accepts x
- $x \& L \Rightarrow M_{2}$ accepts $x \Rightarrow M$ halts and rejects x

Many Languages are Not r.e.
Proof : Diagonalization
main idea: There are many more Languages (subsets of $[0,1\}^{*}$) than there are $T M_{s}$. Proof very similar to Cantor's argument showing that there is no $1-1$ mapping from the Real numbers to the Natural numbers

Many Languages are Not re.
Proof: Diagonalization

- Fix an enumeration of all $T M_{s}$ with $\Sigma=\{0,1\}$

$$
M_{1}, M_{2}, M_{3}, \ldots .
$$

(use encoding of $T M$ s to give an enumeration)

- Make a z-way infinite (but countable) table rows correspond to M_{1}, M_{2},..
columns correspond to enumeration of encoding of Turing machines x_{1}, x_{2}, \ldots
- Entry $(i, j)=0$ if M_{i} accepts x_{j} 1 otherwise

Many Languages are Not re.

x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	\cdots		
M_{1}	0	1	1	0	1	0	0	\cdots
M_{2}	0	0	1	1	0	1	1	
M_{3}	1	1	1	1	1	0	1	
	M_{4}	1	1	0	0	0	0	1
M_{5}	0	0	0	0	1	1	1	
	0	1	0	1	0	1	0	
	$:$							

Many Languages are Not re.

									x_{2}
M_{1}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	\cdots			
	0	1	1	0	1	0	0	\cdots	
M_{2}	0	0	1	1	0	1	1		
M_{3}	1	1	1	1	1	0	1		
M_{4}	1	1	0	0	0	0	1		
M_{5}	0	0	0	0	1	1	1		

$$
D(x)=\left\{x_{j} \mid M_{j} \text { does Not accept } x_{j}\right\}
$$

Theorem D is not re.
Proof By construction: For all $T M_{S} M_{i}$,

$$
M_{i}\left(x_{i}\right) \neq D\left(x_{i}\right) \text { so } \mathscr{L}\left(M_{i}\right) \neq D
$$

\therefore D not re.

Using Reductions to show other (more Natural) Languages/functions are not computable/recursic/r.e.

High Level:
(1) Say we know L not recursive To show L_{2} not recursive, design a $T M M_{1}$ always halts $+\mathcal{L}\left(M_{1}\right)=L_{1}$, assuming a TM M_{2} that al maps halts $+\mathcal{L}\left(M_{2}\right)=L_{2}$
(2) suppose L, not re.

To show L_{2} Not re., construct M_{1} st $\mathcal{L}\left(M_{1}\right)=L_{1}$ assuming a $T M M_{2}$ st $f\left(M_{2}\right)=L_{2}$

The Halting Problern is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$

HALT $\stackrel{d}{=}\{\langle x, y\rangle$ /TM $\{x\}$ halts on input $y\}$

Claim HALT, K are both r.e.
PF: simply run $\{x\}$ on y. Accept it simulation halts.

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
Theorem K is not recursive
Proof Let $L_{1}=D$. We know L_{1} is not re. Assume $L_{2}=K$ is recursive, + Let M_{2} always halt $+\mathcal{Z}\left(M_{2}\right)=L_{2}$ Construction of $T M M_{1}$, for D on input x :

Run M_{2} on x

- If M_{2} accepts x then

Run $\{x\}$ on x and output 1 iff $\{x\}(x) \neq 1$

- If M_{2} halts + does not accept x then output 1

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
Theorem K is not recursive
Proof Let $L_{1}=D$. We know L_{1} is not re. Assume $L_{2}=K$ is recursive, + Let M_{2} always halt $+\mathcal{Z}\left(M_{2}\right)=L_{2}$ Construction of $T M M$, for D on input x :

Run M_{2} on x

- If M_{2} accepts x then

Run $\{x\}$ on x and output 1 iff $\{x\}(x) \neq 1$

- If M_{2} halts + does not accept x then output 1
- M_{1}, halts on all x
- $x \in D \Rightarrow\{x\}(x) \neq 1 \Rightarrow M_{1}(x)=1$
- $x \neq D \Rightarrow\{x\}(x)=1 \Rightarrow \mu_{1}(x) \neq 1$

The Halting Problern is not Recursive

$$
K \stackrel{d}{=}\{x \mid T M\{x\} \text { halts on input } x\}
$$

\checkmark Theorem K is not recursive
Theorem \bar{K} is not r.e.
K is re.
k re. and \bar{k} r.e. $\Rightarrow k$ recursive property (4)
$\therefore \bar{k}$ not re.

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
\checkmark Theorem K is not recursive
\checkmark Theorem \bar{K} is not r.e.
Theorem HALT is not recursive

* K is a special case of HALT $+K$ not recursive
$\rightarrow L_{1}=K, L_{2}=H A L T$. Assume M_{2} always halts and accepts L_{2}. Construct M_{1} for L_{1}
\rightarrow M, on x:
Run M_{2} on $\langle x, x\rangle$. Accept iff μ_{2} accepts

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
\checkmark Theorem K is not recursive
\checkmark Theorem \bar{K} is not r.e.
\checkmark Theorem HALT is not recursive

* K is a special case of HALT + K not recursive
$\rightarrow L_{1}=K, L_{2}=H A L T$. Assume M_{2} always halts and accepts L_{2}. Construct M_{1} for L_{1}
\rightarrow M, on x:
Run M_{2} on $\langle x, x\rangle$. Accept iff μ_{2} accepts

Tips
(1.) Try obvious algorithms to see if you think Language is recursive, re, or Neither
(2.) To show L not re., sometimes it helps to work with L
(ie. if I re., I not recursive then L not rue.)
(3) get reduction in correct direction. many times constructed TM M_{1} will ignore its own input

