CSC 438/2404 Week 7

· HW3 Due Nov 11

TODAY: Computability
 (See Notes from last Friday)
 On Turing Machines

"On computable Numbers, with an application to the Entscheidungspröblen" 1936

Turing Machines :

1912 - 1954

"On computable Numbers, with an application to the Entscheidungspröblem" 1936

1912 - 1954

Notation

Today

Definition Let M be a TM,
$$\Xi = \{0, i\}$$

 $d(M) \equiv \{0, i\}^*$ is the set of all (finite-length)
strings $x \in \{0, i\}^*$ such that
 $M(x)$ halts and outputs 1
the Language accepted by M

A language $L = \underbrace{10,12^*}$ is <u>recursively enumerable</u> if finere exists a TM M such that $\mathcal{L}(M) = L$

A language $L \leq 20,13^{*}$ is <u>recursively enumerable</u> if finere exists a TM M such that $\mathcal{L}(M) = L$

recursively enumerable (r.e.) also called semidecidable, partial computable

A language $L = \underbrace{\{0,1\}}^{*}$ is <u>recursive</u> if there exists a TM M such that $\mathcal{L}(M) = L$ and M always halts

So
$$\forall x \in z_{0,1}$$
?
 $x \in L \implies M \text{ on } x \text{ halts and outputs "1"}$
 $x \in L \implies M \text{ on } x \text{ halts and does not output 1}$
 $(without loss of generality, x \in L \implies M(x) \text{ halts } + \text{ outputs "0"})$

A language $L = \underbrace{\{0,1\}}^*$ is <u>recursive</u> if there exists a TM M such that $\mathcal{L}(M) = L$ and M always halts

So
$$\forall x \in \mathbb{E}_{0,1}^{\times}$$

 $X \in L \implies M$ on x halts and outputs "1"
 $X \in L \implies M$ on x halts and does not output 1
 $(without loss of generality, x \in L \implies M(x)$ halts + outputs "0")

recursive also called decidable, computable.

Recursive / RE sets A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ (or $f: \mathbb{N}^n \rightarrow \mathbb{N}$) is total computable if there exists a TM M such that $\forall x \in \{0,1\}^*$ M(x) halfs and outputs f(x).

Easy Properties

I L recursive ⇒ L r.e. 2 Class of recursive languages is closed under n, U, 7 : L, L2 recursive => L, UL2, L, nL2, nL1, nL2 are recursive 3 Total computable functions closed under composition: f, g computable \rightarrow fog = f(g(x)) is computable

(4) L r.e., and
$$\overline{L}$$
 r.e. \Rightarrow L is recursive
 $\{\chi \mid \chi \in L\}$

* Note: Often $L \in \mathbb{E}[0, 1]^*$ is a set of encodings. Example $L = \mathbb{E} \times (\mathbb{E} \times \mathbb{I}, \mathbb{E} \times \mathbb{I})$ then we usually think of \mathbb{E} as $\mathbb{E} \times [\mathbb{E} \times \mathbb{I}, \mathbb{E} \times \mathbb{I}]$ although technically $\mathbb{E} = \mathbb{E} \times (\mathbb{E} \times \mathbb{I})$ and a legal encoding or $\mathbb{E} \times \mathbb{I}$, does not accept information of $\mathbb{E} \times \mathbb{I}$.

Another Property (not as easy)

$$(P) \perp r.e., and \perp r.e. $\Rightarrow \perp$ is recursive
Proof: (Dovetailing)
Let M, be a TM st $Z(M) = L$,
 M_2 be a TM st $Z(M) = L$
New TM M on x:
For $i = 1, 2, 3, ...$
Run M, on x for i steps
 $T \in M, accepts \times hatt + accept$
Run M₂ on x for i steps
 $T \in M_2$ accepts x, hatt + reject$$

~

Many Languages are Not r.e.

Proof: Diagonalization Main idea : There are many more Languages (subsets of $\{0,1\}^*$) than there are TMs. Proof very similar to cantor's argument showing that there is NO 1-1 mapping from the Real numbers to the Natural numbers

Theorem D is Not r.e. Proof By construction: For all TMs M_i , $M_i(x_i) \neq D(x_i)$ so $J(M_i) \neq D$ $\therefore D$ Not r.e.

The Halting Problem is Not Recursive

$$K \stackrel{d}{=} \begin{cases} x [TM \{x\}\} halts on input x] \end{cases}$$

HALT $\stackrel{d}{=} \begin{cases} \langle x, y \rangle | TM \{x\} halts on input y] \end{cases}$
HALT, K are both r.e.
Pf: simply run $\{x\}$ on y. Accept it
simulation halts.

•

•
$$M$$
, halts on all X
• $X \in D \implies \{x3(x) \neq 1 \implies M, (x) = 1$

•
$$x \neq 0 \Rightarrow t x 3(x) = 1 \Rightarrow M_1(x) \neq 1$$

The Halting Problem is Not Recursive

$$K = \begin{cases} X \ [TM SX3 halts on input X] \end{cases}$$

$$V = \begin{cases} X \ [TM SX3 halts on input X] \end{cases}$$

$$V = \begin{cases} K \text{ is Not recursive} \\ \hline Theorem K \text{ is Not recursive} \\ \hline Theorem K \text{ is Not r.e.} \end{cases}$$

$$K = \begin{cases} K \text{ is recursive} \\ F \text{ recursive} \\ F \text{ reperty (4)} \end{cases}$$

$$K = \begin{cases} K \text{ Not r.e.} \end{cases}$$

The Halting Problem is Not Recursive K = { X [TM {x} halts on input x] V Theorem K is not recursive V Theorem K is Not r.e. Theorem HALT is Not recursive * K'is a special case of HALT + K not recursive L, = K, Lz = HALT. Assume Mz always halts and accepts Lz. Construct M, For L, M on X: Run M2 on XX, X>. Accept iff M2 accepts

The Halting Problem is Not Recursive K = { X [TM {x} halts on input x] V Theorem K is not recursive V Theorem K is Not r.e. V Theorem HALT is Not recursive * K'is a special case of HALT + K not recursive - L, = K, Lz = HALT. Assume Mz always halts and accepts Lz. Construct M, For L, M on X: Run M2 on (X, X). Accept iff M2 accepts

