
CSC 438/2404 Week 7

• HW3 Due Nov 11

• TODAY : computability
{ See Notes from last Friday
\ on Turing Machines)

Turingrlachines " on computable Numbers
,

with an

application to the Entsuheidungspnblem
"

1936

TuringMachines :

"

lli-
'

93

1912 - 1954
M = GQ ,

E
,
T

,
S

, of , , B , { qz3)

Turingrlachines " on computable Numbers
,

with an

application to the Entsuheidungspnblem
"

1936

^

Church-TuringTh
A function predicate is computable
realizable in physical world ⇒

it is computable by a TM

1912 - 1954

Notation

{ × } = Turing machine M such that # M = ×

2×3
,

= the unary function computed by ×

Ex }n = the n-ary function computed by ×

(can generalize earlier so M takes

n inputs instead of 1)

today

what is computable and what isn't ?

We will mostly focus on unary relations

or languages
- L E Eo

,
I 3*
(all finite length
strings over { 0,13

Definition Let M be a TM
,
E = { 0,13

L (M) E Eo
,
I 3* is the set of all (finite - length)

f i :* :*: : :* :
na:

the Language accepted by M

Recursiveltesets

A language LE { o
, if is recursively enumerable if

- -

there exists a TM M such that LCM) =L

So f x E Eo
,
134

'

XEL ⇒ Mon x halts and outputs "
1
"

x KL ⇒ Mon x halts and does Not output 1

or M does Not halt on x

Recursiveltesets

A language LE { o
, if is recursively enumerable if

- -

there exists a TM M such that LCM) =L

So f x c- Eo
,
134

XEL ⇒ Mon x halts and outputs "
1
"

x KL ⇒ M on x halts and does Not output 1

or M does Not halt on x

recursively enumerable Cne
.) also called

semi decidable
, partial computable

Recursiveltesets

A language LE { 0,13¥ is recursive if there

exists a TM M such that LCM) =L

and M always halts

so Axe Eo
, is

XEL ⇒ Mon x halts and outputs "
1
"

X AL ⇒ Mon x halts and does Not output 1

(without loss of generality ,

XXL ⇒ Mex) halts - outputs
"
O
")

Recursiveltesets

A language LE { o
, IT is recursive if there

exists a TM M such that LCM) =L

and M always halts

so f x c- Eo
,
134

XEL ⇒ Mon x halts and outputs "
1
"

x AL ⇒ Mon x halts and does Not output 1

(without loss of generality ,

XXL ⇒ Mex) halts a outputs
"
O
")

recursive alto called decidable
, computable

Recursiveltesets

A function f : 10,13*-7 EO
,
I]* (or f : AN

"

→ IN)
is totalcomputabk if there exists a

TM M such that the Eo
, if

M Cx) halts and outputs fcx)
.

Easy ties

① L recursive ⇒ L re .

⑦ Class of recursive Languages
-

is closed under

A
,
U
,

7 ' :

L
, , he

recurs lie ⇒ 4uLz ,
L
, nhz , 7454

are recursive

③ Total computable functions closed

under composition : f
, g computable

⇒ fog & f (g Cx)) is computable

Another (not as easy)

O L r
.
e.

,
and I re

. ⇒ L is recursive4

T
{ × I x * is

* Note : often L E E O , it is a set of

encodings . Example L = { x / Ex 3
,
accepts input "

M
"}

then we usually think of
'

I as Ex 143
,

does not accept in}
although technically
[= { x / x is not a legal encoding or Ex}

,
does not accept HD

Another (not as easy)

④ L r
.
e.

,
and I re

. ⇒ L is recursive

Proof : (Dovetailing)
Tet M

,
be a TM st LCM) =L

,

Mz be a TM st LCM) =I

New TM M on x :
run

For i = I
,

2
,
3
,

- - -

Run M , on x for i steps
- if M

,
accepts x halt t accept

Run Mz on x for i steps
it Mzaccgsts x ,

half r reject

Another (not as easy)

④ L r
.
e.

,
and I re

. ⇒ L is recursive

Proof : (Dovetailing)
Tet M

,
be a TM st LCM) =L

,

Mz be a TM st LCM) -

- I

Newton :

For i = I
,

2
,
3
,

- - -

Run Ma on x for i steps
- if M accepts x halt a accept

Run Mz 'm x for i steps
it Mzaccgsts x ,

halt r reject

• M on x eventually halts since x accepted by exactly one

of M
, , Mz

• x EL ⇒ M
,
accepts x ⇒ M accepts *

• XXL ⇒ Ma accepts x ⇒ M halts and rejects x

manylanguasesarenotn.e.PL
: Diagonal i Eatin

Mainidea : There are many more Languages

(subsets of 20,1J) than there are TMS
.

Proof very similar to Cantor 's argument

showing that there
-

is NO I - I mapping

from the Real numbers to the Natural

numbers

manylanguasesarenotn.e.PL
: Diagonal i Eatin

• Fix an enumeration of all TMS with E -

- Eo
,
I }

Me
, Me , Mz , - - -

- -

(use encoding of TMS to give an enumeration)

• Make a 2- way
infinite Klout countable) fable

rows correspond to M
, , Mz ,

. -

columns correspond to enumeration of
encodings of Turing machines x

, ,xz ,
.

.
- -

• Entry Li
,
's) : o - if Mi accepts Xj

1 otherwise

÷: ie

manylanguasesarenotn.ee#KXX

M
,

Mz 0
Mt

:¥¥t¥¥÷÷
:i O l O l

-

DC x) = { x ; I M
;
does Not accept x ; }

~

theorem D '

is not re .

Proof By construction : For all TMS Me
,

Miki) ⇐ Dlxi) so L (Mi) ⇐ D

E . D not r
.
e

.

um÷÷÷:÷÷÷÷÷÷÷%÷:÷

High Level :
-

① Say we know 4 Not recursive

To show Lz Not recurs ice
,
design a TM M

,

always halts a LCM ,) =L , , assuming a

TM Me that always halts a LCM a) = Lz

② suppose L
,
Not r

.
e

.

To show Lz Not r
.
e.

,
construct M ,

St LCM ,
)=L

,

assuming a TM Mz St LCMZ) Lz

Theltaltingproblemisnottecursivek
D= { x / TM Ex } halts on input x }

HALT & { Lx , y) / TM Ex } halts on input y }

claim HALT
,
K are both r . e

.

PI . simply run Ex } on y .
Accept it

°

simulation halts
.

Theltaltingproblemisnottecursivek
sd { x / TM Ex } halts on input x }

theorem K is Not recursive

Proof Let L
,
=D .

We know L
,

is Not me
.

Assume he k is recursive ,
t Let Mz always halt t LCM*) =L z

TM M
,

for D on input x :c.onstmct.no#
Run Mz on X

- If Mz accepts x then

Run { is on x and output 1
'

iff Ex } (x) ± 1

• If M
,
halts a does Not accept x then output I

I

TheltaltingproblemisnottecursivekI { x / TM Ex } halts on input x }

theorem K is Not recursive

Proof Let L
,
=D .

We know L
,

is Not me
.

Assume he k is recursive ,
t Let Mz always halt t LCM*) =L z

TM M
,

for D on input x :c.onstmct.no#
Run Mz on X

- If Mz accepts x then

Run { is on x and output 1
'

iff Ex } (x) ± 1

• If M
,
halts a does Not accept x then output I

• Me
,

halts on all X
.

• X ED ⇒ E xxx) d l ⇒ M
,
C =L

•

x * D ⇒ Ex 347=1 ⇒ M
,
Cx) ⇒ I

Theltaltingproblemisnottecursivek
D= { x / TM Ex } halts on input x }

✓ theorem K is Not recursive

Theorem Ts is Not r
.
e

.

-

-

K is re .

K re .

and I re . ⇒ K recurs lie

property 14)

ie E not re .

Theltaltingproblemisnottecursivek& f x / TM Ex } halts on input x }

✓ theorem K is Not recursive

✓ theorem Ts is Not r
.
e

.

-

theorem HALT
-

is Not recursive

* k is a special case of HALT t k not recursive

-0 L
,

= K , Lz = HALT
.
Assume Mz always halts

and accepts Lz .

Construct M
,
for L

,

I M,m
Run Ma on TX

,
X) .

Accgst iff Mz accepts

Theltaltingproblemisnottecursivek
D= { x / TM Ex } halts on input x }

✓ theorem K is Not recursive

✓ theorem Ts is Not r
.
e

.

-

✓ theorem HALT
-

is Not recursive

* k is a special case of HALT t k not recursive

-0 L
,

= K , Lz = HALT
.
Assume Mz always halts

and accepts Lz .

Construct M
,
for L

,

I M,m
Run Ma on SX

,
X) .

Accgst iff Mz accepts

Tips

(1.) Try obvious algorithms to see if you think

Language is recurs lie
,

re
,

or Neither

(2.) To show L Not me
,
sometimes it helps

to work with T

(ie .

- if I re .

,
or I Not recurs lie then

L Not r . e
.)

I get reduction in correct direction .

Many times constructed TM M
,
will ignore its own

input

