Week 8

Week 7 Summary (2 weeks ago!)
1. We saw
$$D = \{\chi \mid \{\chi\}_1(\chi) \text{ does not accept}\}$$

1. Not r.e. by diagonalization

The Halting Problem is Not Recursive

$$K \stackrel{d}{=} \{ x \mid TM \ {x} \}$$
 halts on input $x \}$
HALT $\stackrel{d}{=} \{ \langle x, y \rangle \mid TM \ {x} \}$ halts on input $y \}$
Theorem. HALT, K are both r.e.,
Neither are recursive

The Halting Problem is Not Recursive d { X [TM {x} halts on input x]

Theorem K is not recursive

If k recursive then D also recursive

Theorem Halt Not recursive If Halt recursive then K recursive

L = { × | { x } accepts at least one input }

L = { × | { x} accepts at least one input } · L'is r.e. (Dovetailing) · L'is not recursive $L_1 = K = \{y \mid y \}(y) \text{ halts} \}$ Assume L2=L is recursive + cet M2 be TM 2(M2)=L and M2 always halts M, on input y: Construct encoding 2 QTM [2] where {2} on input x: Ignores x + runs {} on y and accepts x if {y3(y) halls Run M2 on z and accept y iff M2(2) accepts claim L(M,) = K and M, always halts yek => 2-3(y) halts => 223 accepts all inputs => M2(2)=/=>M(y)=/

Completeness

A set $A = (N \text{ is } r.e. - complete if}$ (1) A is r.e. (2) VB = IN, if B is r.e. then B = AB reduces to A So if A is recursive then B recursive

Completeness

A set
$$A = (N \text{ is } r.e. - complete `ff
(1) A is r.e.
(2) $\forall B \leq IN$, if B is r.e. then $B \leq_m A$
 $\exists \text{ computable function } f: IN \Rightarrow N \text{ such that}$
 $\forall x \quad f(x) \in A \iff x \in B$$$

Hilbert's 10th Problem (1900)

A diophantine equation -is of the form p(x) = 0where p is a polynomial over variables $\chi_{1,3}, \dots, \chi_{n}$ with integer coefficients

$$\frac{6\times}{2} \frac{3\times}{1} \frac{1}{1} \frac{$$

Theorem J DIORH is r.e. - complete

An Equivalent characterization of RE Sets

Let
$$f: IN \rightarrow IN$$

Then $R_f \in IN \times IN$
is the set of all pairs (x, y) such that $f(x) = y$
Theorem f computable if and only if R_f is r.e.

An Equivalent characterization of RE Sets

Let f: IN -> N Then R_f = IN × IN is the set of all pairs (x,y) such that f(x)=y of theorem & computable if and only if Rf is r.e. Proof => : Suppose f computable. TM for Rf on input (x,y): Run TM computing f on X. If it haits and outputs y then accept (X, Y) Otherwise reject (x,y)

An Equivalent characterization of RE Sets

Let f: IN -> IN Then R_f = IN × IN is the set of all pairs (x,y) such that f(x)=y *Theorem f computable if and only if Rf is r.e. Proof \in : Let R, be r.e. with TM M On X: Enumerate all IN: Y1, Y2, For i=1, 2, ... For all j=i; simulate M on (x, y;) for i steps If simulation accepts (x, y;), halt + output y,

A second Characterization of RE sets

*Theorem A relation
$$A = N^{k}$$
 is r.e.
if and only if there is a recursive relation
 $R = N^{ktl}$ such that
 $\vec{x} \in A \iff \exists y R(\vec{x}, y) \quad \forall \vec{x} \in N^{n}$
Note we defined A to be r.e. iff there is a TM M
such that $\forall \vec{x} \in IN^{n}$ (M(xx)) accepts $\iff \vec{x} \in A$

-

A second Characterization of RE Sets

** Theorem A relation
$$A = IN^{k}$$
 is r.e.
if and only if there is a recursive relation
 $R = IN^{kti}$ such that
 $\vec{x} \in A \iff \exists y R(\vec{x}, y) \quad \forall \vec{x} \in N^{n}$
Proof sketch
 $\Rightarrow:$ Let A be r.e., $\vec{x}(M) = A$
 $R(\vec{x}, y):$ view y as encoding of an $m \times m$ tableaux
for some $m \in IN$
 $(\vec{x}, y) \in R \iff M(\vec{x})$ halfs in m steps and accepts
and y is the $m \times m$ tableaux
of $M(\vec{x})$

A second Characterization of RE Sets

Theorem A relation
$$A \equiv N^{K}$$
 is r.e.
If and only if there is a recursive relation
 $R \equiv N^{K+1}$ such that
 $\vec{x} \in A \iff \exists y R(\vec{x}, y) \quad \forall \vec{x} \in N^{n}$
Proof sketch
 \leftarrow Let $R \equiv iN^{K+1}$ be recursive relation such that
 $\vec{x} \in A \iff \exists y R(\vec{x}, y), \quad * \text{ Let } \vec{z}(M) = R$
on input \vec{x} :
For $i = 1, 2, -**$
For $j = 1$ to i
Run M on (\vec{x}, y_{j})

halt + accept if M(x, Y;) a ccepts

Review of Definitions Language of arithmetic $J_{A} = 20, s, t, \cdot; = 3$ € = all Z_A-sentences TA > 2 A ∈ Q. / IN = A 3 True Anthmetic A theory Z is a set of sentences (over ZA) closed under logical consequence -We can specify a theory by a subset of sentences that logically implies all sentences in Z Σ is <u>consistent</u> iff $\Phi_{S} \neq \Sigma$ (iff $\forall A \in \Phi_{O}$, either A or $\uparrow A$) Not in Σ) Z is complete iff Z is consistent and VA either A or 7 A is in Z

Z is sound iff Z STA

Let M be a model/structure over LA Th $(\mathfrak{M}) = \{A \in \overline{\Phi}_{\mathcal{B}} \mid \mathfrak{M} \models A\}$ Th (M) is complete (for all structures M) Note TA = Th(IN) is complete, consistent, & sound VALID = ZAE Do | FAZ - smallest theory

Let Z be a theory Z is <u>axiomatizable</u> if there exists a set $\Gamma \leq \geq$ such that O Γ is recursive $O \geq Z = E A \in \Phi_0 | \Gamma \models A = E$

Theorem Z is axiomatizable iff Z is n.e. (P. 76 of Notes)

Let
$$\Xi$$
 be a theory
 Ξ is axiomatizable if there exists a set $\Gamma \equiv \Xi$
such that $\bigcirc \Gamma$ is recursive
 $\bigcirc \Xi = \xi A \in \overline{\vartheta}_0 | \Gamma \models A \overline{\beta}$
Theorem Ξ is axiomatizable iff Ξ is re.
Proof \Longrightarrow . Suppose Ξ is axiomatizable Γ recursive
Define $R(x, y) = true$ iff y encodes a $\Gamma - LK$ proof
of (the formula encoded by) x
 R is recursive, so by previous #Theorem, Ξ is r.e.

Let Z be a theory
Z is axiomatizable if there exists a set
$$\Gamma = \Xi$$

such that ① Γ is recursive
② $\Xi = \xi A \in \overline{\$}_0 | \Gamma \models A \overline{3}$
Theorem Ξ is axiomatizable iff Ξ is ne.
Proof = D. Suppose Ξ is axiomatizable. Γ recursive
Define $R(x, y) = true$ iff y encodes a Γ -LK proof
of (the formula encoded by) x
R is recursive, so by previous # Theorem, Ξ is r.e.
 \Leftrightarrow By *theorem, $\Xi = range$ of total computable function f
 $\vdots \quad \Xi = \xi f(0), f(1), f(2), \dots$

Incompleteness - Introduction TA is Not r.e. (so by previous theorem, Not axiomatizable) <u>First Incompleteness Theorem</u> Every sound axiomatizable theory is incomplete

Incompleteness - Introduction This Not r.e. (so by previous theorem, Not axiomatizable) <u>First Incompleteness Theorem</u> Every sound axiomatizable theory is incomplete

FIRST INCOMPLETENESS THEOREM

We will show that Truth is Not r.e.

FIRST INCOMPLETENESS THEOREM

We define a predicate Truth = N
Truth =
$$\frac{2}{m}$$
 | m encodes a sentence $\frac{m}{E} = \frac{1}{2}$
that is in $7A\frac{3}{2}$

We will show that Truth is Not r.e.: <u>Defn</u> A predicate is arithmetical if it can be represented by a formula over Z_A <u>We'll show:</u> *Every r.e. predicate/Language is arithmetical (2)* Truth is Not arithmetical

.", Truth is Not r.e.

Since Truth is Not r.e., there is no r.e. TM that accepts exactly the sentences in TA . TA is Not axiomatizable Any sound, axiomatizable theory ∑ is incomplete.
 (There is a sentence A∈ ∅, such that Neither A or 7 A are in ∑.) FIRST INCOMPLETENESS THEOREM

We will show that Truth is Not r.e. A predicate is arithmetical if it can be represented Defn by a formula over ZA Show Every r.e. predicate/Language -15 arithmétical (\cdot) Delta Theorem) Truth is Not arithmetical (2) ... Truth is Not r.e. Theorem pp.73-74

1) Every R.e. predicate is arithmetical Definition Let so=0, si=so, si=so, etc. Let $R(x_1...x_n)$ be an n-ary relation $R = IN^n$ Let $A(x_1,...,x_n)$ be an d_A formula, with free variables $x_1,...,x_n$ A(\$) represents R iff ∀ā∈Nn R(ā) ⇔N ⊨ A(s, s, s,) Example REIN R= EaeIN | a is even } A : ==== (y+y=x) $3 \notin R$ and $N \notin A(sso) = \exists y (y + y = sso)$ $4 \in R$, and $IN \models A(ssso) = \exists y (y + y = sso)$ y = sso

1) Every R.e. predicate is arithmetical Definition Let so=0, s1=s0, s2=sso, etc. Let R(x,...Xn) be an n-ary relation R= IN" Let A(X,,..,Xn) be an ZA formula, with free variables X,...,Xn A(\$) represents R iff VācNⁿ R(ā) (>)N = A(sa, sa, san) R is <u>arithmetical</u> iff there is a formula A & da that represents R Exists-Delta-Theorem every r.e. relation is arithmetical. In fact every r.e. relation is represented by a ELS ZA-formula.

30, Formulas

$$t_{i} \leq t_{2} \text{ stands for } \exists z(t_{i} + z = t_{2})$$

$$\exists x \leq t \text{ A stands for } \exists x (x \leq t \land A) \text{ Bounded}$$

$$\forall x \leq t \text{ A stands for } \forall x (x \leq t \supset A) \text{ Quantifiers}$$

$$Detinition \text{ A formula is a } A_{0} \text{-formula if it has}$$

$$the form \quad \forall x_{i} \in t_{i} \exists x_{2} \leq t_{2} \forall x_{3} \leq t_{3} \dots \exists x_{k} \leq t_{k} A(x_{i} \dots x_{k} \vec{y})$$

Bounded Quantifiers No
Quantifiers

$$Definition \text{ A relation } R(\vec{x}) \text{ is a } A_{0} \text{-relation iff}$$

Some A_{0}^{-} formula represents it

30, Formulas

Ils Formulas
Lemma Every
$$A_{2}$$
 relation is recursive
Lemma Every $\exists A_{2}$ relation is r.e.
 $\exists A_{2}$ (Exists-Delta) Theorem every r.e.
relation is represented by a $\exists A_{2}$ formula

30 Theorem

Main Lemma Let $f: IN^n \rightarrow IN$ be a total computable function. Let $R_f = \{(\vec{x}, y) \in IN^{n+1} \mid f(\vec{x}) = y\}$ also called Then R_f is a $\exists A_p$ -relation.

Main Lemma Let
$$f: iN \rightarrow iN$$
 be total, computable
Then $R_{f} = \frac{5}{2}(\vec{x}, y) | f(\vec{x}) = y^{2}$ is a $\exists \Delta_{0}$ relation

Proof of $\exists \Delta_{0}$ Theorem from Main Lemma
Let $R(\vec{x})$ be an r.e. relation
Then $R(\vec{x}) = \frac{3}{2}yS(\vec{x}, y)$ where S is recursive
Since S is recursive, $f_{s}(\vec{x}, y) = \begin{cases} 1 & \text{if } (\vec{x}, y) \in S \\ 0 & \text{otherwise} \end{cases}$
To total computable
By main lemma, $R_{f_{s}}$ is represented by a $\exists \Delta_{0}$ relation
So $R(\vec{x}) = \exists y \exists z B$ is represented by a $\exists \Delta_{0}$ relation
 $R_{f_{s}}$

Proof of Main Lemma (see pp 10-71)
Definition
$$\beta$$
-function
 $\beta(c, d, i) = rm(c, d(i+1)+1)$ where $rm(x, y) = x \mod y$
Lemma 0. $\forall n, r_0, r_1, ..., r_n = \exists c_i d$ such that
 $\beta(c, d, i) = r_i$ $\forall i, 0 \le i \le n$
 $\Re(c, d, i) = r_i$ $\forall i, 0 \le i \le n$
 $\Re(c, d, i) = r_i$ $\forall i, 0 \le i \le n$

Proof of Main Lemma (see pp 10-71) Definition B-function $\beta(c,d,i) = rm(c,d(i+i)+i)$ where $rm(x,y) = x \mod y$ Lemma O. Vn, ro, ri, ..., rn 3c, d such that $\beta(c,d,i) = r_i \quad \forall i \quad 0 \leq i \leq n$ ERT (chinese Remainder Theorem) Let $f_{0,...,n_i}$, $m_{0,...,m_n}$ be such that $0 \le f_i \le m_i$, $\forall i'_i$, $0 \le i \le n$ and $gcd(m_i, m_j) = 1$ $\forall i'_j$ Then Fr such that $rm(r, M_i) = r_i \quad \forall i, \ 0 \leq i \leq n$

Proof of Main Lemma (see pp 10-71)
Lemma
$$\forall n, r_0, r_1, ..., r_n \exists c_i d \text{ such that}$$

 $\beta(c_i d_i i) = r_m (c_i d(i+i)+i)$
 $\beta(c_i d_i i) = r_m (k_i y) = k \mod y$
where $m(k_i y) = k \mod y$

 $\frac{P \operatorname{Noof} of \operatorname{Lemmalb}}{\operatorname{Let} d = (n + r_0 + \ldots + r_n + 1)!}$ $\operatorname{Let} M_i = d(i+i) + 1$ $\operatorname{Claim} \forall i, j \quad \gcd(m_i m_j) = 1 \quad (\operatorname{See} \operatorname{Nofes})$ $\operatorname{By} CRT \quad \exists r = c \quad \operatorname{so} \quad \text{that} \quad \beta(c, d, i) = rm(c, m_i) = r_i \quad \forall i \in [n]$

Proof of Main Lemma (see pp 10-71)

_

FIRST INCOMPLETENESS THEOREM

We will show that Truth is Not r.e. A predicate is arithmetical if it can be represented by a formula over ZA Detn DONE Every r.e. predicate/Language -15 arithmétical Deita Theorem) Truth is Not arithmetical (2) larsk -. Truth is Not r.e. Theorem pp. 73-74

Define the predicate Truth = N Truth = { m | m encodes a sentence <m} ETA } Then Truth is Not arithmetical

Tarski Theorem

Define the predicate Truth = N Truth = { m | m encodes a sentence <m} ETA } Then Truth is Not arithmetical

PF of Tarski's 1hm Let $sub(m,n) = \begin{cases} 0 & \text{if } m \text{ is } not a legal encoding of a formula.} \\ Otherwise say <math>m \text{ encodes the formula.} \\ A(k) & \text{ with free variable } x. \end{cases}$ Then sub(m,n) = m' where m' encodes A(sn) Let d(n) = sub(n, n) $\begin{cases} d(n) = 0 \text{ if } n \text{ not } a \text{ legal encoding.} \\ ow say n encodes A(x). \\ Then d(n) = n' where n' encodes A(s_n) \end{cases}$

cleanly sub, d are both computable

Proof of Tarski's Thm
Suppose that Truth is arithmetical.
Then define
$$R(x) = \pi \operatorname{Truth} (d(x))$$

Since d , Truth both arithmetical, so is R
Let $R(x)$ represent $R(x)$, and let e be the encoding of $R(x)$
Let $d(e) = e^{t}$ so e^{t} encodes $R(s_{e})$ encodes
Then
 $\overline{R(s_{e})} \in TA \iff \pi \operatorname{Truth}(d(e_{e}))$ since \overline{R} represents R
 $\implies \pi R(s_{e}) \in TA$ by defin q truth
 $\implies R(s_{e}) \in TA$ to ontains exactly one of $A, \pi I$

this is a contradiction. ... Truth is not arithmetical

FIRST INCOMPLETENESS THEOREM

FINALLY WE HAVE PROVEN:

Truth Not r.e. => TA Not axiomatizable ... Any sound, axiomatizable theory is incomplete.

r sound and axiomatizable ⇒ ∃A, 7A & r

2" InCOMPLETENESS THEOREM

- · We will define PA (Peano Arithmetić), an axiomatizable sound theory.
- · Most of number theory provable in PA
- We will see that PA cannot prove its own consistency (2nd Incompleteness Thm)