Week 8

HW3 Due Today!
HW4 (Last one!) ouT

Week 7 Summary (2 weeks ago!)

1. We saw $D=\left\{x \mid\{x\}_{1}(x)\right.$ does not accept $\}$ is not re. by diagonalization
2. Using reductions we proved K, Halt are not recursive

Using Reductions to show other (more Natural) Languages/functions are not computable/recursic/r.e.

High Level:
(1) Say we know L not recursive To show L_{2} not recursive, design a $T M M_{1}$ always halts $+\mathcal{L}\left(M_{1}\right)=L_{1}$, assuming a TM M_{2} that al maps halts $+\mathcal{L}\left(M_{2}\right)=L_{2}$
(2) suppose L, not re.

To show L_{2} not re., construct M_{1} st $\mathcal{L}\left(M_{1}\right)=L_{1}$ assuming a $T M M_{2}$ st $f\left(M_{2}\right)=L_{2}$

The Halting Problern is not Recursive $K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$

$$
\text { HALT } \stackrel{d}{=}\{\langle x, y\rangle \mid T M\{x\} \text { halts on input } y\}
$$

Theorem. HALT, K are both r.e., Neither are recursive

The Halting Problem is not Recursive
$K \stackrel{d}{=}\{x \mid T M\{x\}$ halts on input $x\}$
Theorem K is not recursive
If k recursive then D also recursive

Theorem Halt not recursive If Halt recursive then K recursive

Tips
(1.) Try obvious algorithms to see if you think Language is recursive, re, or Neither
(2.) To show L not re., sometimes it helps to work with L
(ie. if I re., I not recursive then L not rue.)
(3) get reduction in correct direction. many times constructed TM M_{1} will ignore its own input
$L=\{x \mid\{x\}$ accepts at least one input $\}$
$L=\{x \mid\{x\}$ accepts at least one input $\}$

- L is re. (Dovetailing)
- L' is not recursive

$$
L_{1}=K=\{y \mid\{y\}(y) \text { hales }\}
$$

Assume $L_{2}=L$ is recursive + Let M_{2} be $T M \mathcal{L}\left(M_{2}\right)=C$ and M_{2} always halts
M_{1} on input y :
construct encoding z aTM $\{z\}$ where
$\{z\}$ on input x : Ignores $x+$ runs $\& 1\}_{m} y$

Run $M_{2} m z$ and accept y iff $M_{2}(z)$ accepts
claim $\mathscr{L}\left(M_{1}\right)=K$ and μ_{1} always halts
$y \in K \Rightarrow\{y\}(y)$ halts $\Rightarrow\{z\}$ accepts all inputs $\Rightarrow M_{z}(z)=1 \Rightarrow M_{1}(y)=1$
$y * K \Rightarrow\{y\}(y)$ doers $\Rightarrow\{z\}$ aced's No input $\Rightarrow M_{2}(z) \neq 1 \Rightarrow M_{1}(y) \neq 1$
halt

Compreteness
A set $A \subseteq \mathbb{N}$ is re.-complete if
(1) A is r.e.
(2) $\forall B \leq \mathbb{N}$, if B is re. then $B \leq m$
B reduces to A
so if A is recursce then B recursice

N

Compreteness
A set $A \subseteq \mathbb{N}$ is re.-complete if
(1) A is r.e.
(2) $\forall B \leq \mathbb{N}$, if B is r.e. then $B \leqslant_{m} A$
\exists computable function $f: \mathbb{N} \Rightarrow N$ such that $\forall x \quad f(x) \in A \Leftrightarrow x \in B$

N

Hilbert's $10^{\text {th }}$ Problem (1900)
A diophantivic equation is of the form $p(\vec{x})=0$ where p is a polynomial over variables X_{1}, \ldots, X_{n} with integer coefficients

Ex $3 x_{1}^{5} x_{2}^{3}+\left(x_{1}+1\right)^{8}-x_{7}^{10}=0$

$$
\mathcal{L}_{\text {DIOPH }}=\{\langle p\rangle \mid p \text { has a solution over } \mathbb{N}\}
$$

Theorem

$$
\mathcal{L}_{\text {DIopH }} \text { is r.e.-complete }
$$

An Equivalent characterization of RE Sets

Let $\quad f: \mathbb{N} \rightarrow \mathbb{N}$
Then $R_{f} \subseteq \mathbb{N} \times \mathbb{N}$
is the set of all pairs (x, y) such that $f(x)=y$

* Theorem f computable if and only if R_{f} is re.

An Equivalent characterization of RE sets

Let $\quad f: \mathbb{N} \rightarrow \mathbb{N}$
Then $R_{f} \subseteq \mathbb{N} \times \mathbb{N}$
is the set of all pairs (x, y) such that $f(x)=y$

* Theorem f computable if and only if R_{f} is re.

Proof \Rightarrow : Suppose f computable.
TM for R_{f} on input (x, y) :
Run TM computing f on x.
If it halts and outputs y then accept (x, y) Otherwise reject (x, y)

An Equivalent Characterization of RE Sets

Let $f: \mathbb{N} \rightarrow \mathbb{N}$
Then $R_{f} \subseteq \mathbb{N} \times \mathbb{N}$
is the set of all pairs (x, y) such that $f(x)=y$

* Theorem f computable if and only if R_{f} is re.

Proof \Leftarrow : Let R_{f} be r.e. with TM M
On X: Enumerate all $\mathbb{N}: Y_{1}, Y_{2}, \ldots$
For $i=1,2, \ldots$
For all $j \leq i$: $\operatorname{simulate} M$ on $\left(x, y_{j}\right)$ for i steps If simulation accepts $\left(x, y_{j}\right)$, halt + output Y,

A second Characterization of $R E$ sets
*Theorem A relation $A \subseteq \mathbb{N}^{k}$ is re. If and only if there is a recursive relation $R \leq \mathbb{N}^{k+1}$ such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y) \quad \forall \vec{x} \in \mathbb{N}^{n}
$$

Note we defined A to be re. iff there is a TM M such that $\forall \vec{x} \in \mathbb{N}^{n} \quad(M(\langle x\rangle)$ accepts $\Leftrightarrow \vec{x} \in A)$

A Second Characterization of RE Sets

* Theorem A relation $A \subseteq N^{k}$ is re.

If and only if there is a recursive relation $R \leq \mathbb{N}^{k+1}$ such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y) \quad \forall \vec{x} \in \mathbb{N}^{n}
$$

Proof sketch
\Rightarrow : Let A be re., $\mathscr{L}(M)=A$
$R(\vec{x}, y)$: view y as encoding of an $m \times m$ tableaux for some $m \in \mathbb{N}$
$(\vec{x}, y) \in R \Leftrightarrow M(\vec{x})$ halts in m steps and accepts and y is the $m \times m$ tableaux of $M(\vec{x})$

A second Characterization of $R E$ Sets

* Theorem A relation $A \subseteq \mathbb{N}^{k}$ is re.

If and only if there is a recursive relation $R \leq \mathbb{N}^{k+1}$ such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y) \quad \forall \vec{x} \in \mathbb{N}^{n}
$$

Proof sketch
\Leftarrow Let $R \leq \mathbb{N}^{k+1}$ be recursive relation such that

$$
\vec{x} \in A \Leftrightarrow \exists y R(\vec{x}, y), \quad+\text { Let } \mathscr{L}(M)=R
$$

on input \vec{x} :
For $i=1,2, \ldots$
For $j=1$ to i
Run M on (\vec{x}, \hat{y}_{j})
halt + accept if $M\left(\vec{x}, y_{j}\right)$ a accepts

Review of Definitions
$\mathcal{L}_{A}=\left\{0_{1} s_{,}+, \cdots ;=\right\} \quad$ Language of arithmetic $\Phi_{0}=$ all \mathcal{L}_{A}-sentences
$T A=\left\{A \in \Phi_{0} \mid \mathbb{N} \vDash A\right\}$ True Anthmetic
A theory \sum is a set of sentences (over \mathcal{Z}_{A}) closed under logical consequence

- We can specify a theory by a subset of sentences that logically implies all sentences in Σ
Σ is consistent iff $\Phi_{0} \neq \Sigma$ (iff $\forall A \in \Phi_{0}$, either A or $1 A$ Not in Σ)
Σ is complete iff Σ is consistent and $\forall A$ either A or $7 A$ is in Σ
Σ is sound iff $\Sigma \leq T A$
Let m be a modu/structure over \mathcal{L}_{A}

$$
T h(m)=\left\{A \in \Phi_{0} \mid \quad m \in A\right\}
$$

Th (an) is complete (for all structures $O M$)
Note $T A=T h(\mathbb{N})$ is complete, consistent, a sound
$V A L I D=\left\{A \in \Phi_{0} \mid \in A\right\} ;$ smallest theory

Let Σ be a theory
Σ is axiomafizable if there exists a set $\Gamma \leq \Sigma$ such that (1) Γ is recursive
(2) $\Sigma=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem \sum is axiomatizable iff Σ is re. (P. 76 of Notes)

Let \sum be a theory
Σ is axiomatizable it there exists a set $\Gamma \leqslant \Sigma$ such that (1) Γ is recursive
(2) $\sum=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem Σ is axiomatizable ff Σ is re.
Proof \Rightarrow Suppose Σ is axiomatizable, r recursive Define $R(x, y)=$ true iffy y encodes a Γ-LK proof of (the formula encoded by) x R is recursive, so by previous *Theorem, Σ is re.

Let Σ be a theory
Σ is axiomatizable if there exists a set $\Gamma \leqslant \Sigma$ such that (1) Γ is recursive
(2) $\Sigma=\left\{A \in \Phi_{0} \mid \Gamma \vDash A\right\}$

Theorem Σ is axiomatizable of Σ is re.
Proof \Rightarrow. Suppose Σ is axiomatizable, Γ recursive
Define $R(x, y)=$ true iffy y encodes a Γ-LK proof of (the formula encoded by) x
r is recursive, so by previous $\#$ Theorem, Σ is re. \Leftarrow By *Theorem, $\Sigma=$ range of total computable function f

$$
\therefore \quad \Sigma=\{f(0), f(1), f(2), \ldots\}
$$

Incompleteness - Introduction
(1) TA is not r.e. (so by previous theorem, not axiomatizable) First Incompleteness Theorem Every sound axiomatizable theory is incomplete

\sum sound and axionmatizable $\left.\Rightarrow \exists A,\right\urcorner^{\wedge} \nLeftarrow \Sigma$

Incompleteness - Introduction
(1) TA is not r.e. (so by previous theorem, not axiomatizable)

First Incompleteness Theorem Every sound axiomatizable theory is incomplete
(2) Define PA - Peano arithmetic Sound, axiomafizable
So by Tarski's Thy, PA is incomplete
(3) gödel's second Incompleteness The:

A specific sentence asserting "PA is consistent" is not a theorem of PA

FIRST INCOMPLETE NESS THEOREM
We define a predicate Truth $\subseteq \mathbb{N}$

$$
\text { Truth }=\left\{m \mid m \text { encodes a sentence }\langle m\rangle \in \Phi_{0}\right.
$$ that is in TA\}

We will show that Truth is not re.

FIRST INCOMPLETENESS THEOREM
We define a predicate Truth $\leq \mathbb{N}$
Truth $=\left\{n \mid m\right.$ encodes a sentence $\langle m\rangle \in \Phi_{0}$ that is in TA\}

We will show that Truth is Not re::
Def A predicafe-is arithmetical if it can be represented by a formula over \mathcal{L}_{A}
weill show:
(1) Every re. predicate/language is arithmetical
(2) Truth is not arithmetical
\therefore Truth is not re.

Since Truth is not re., there is no re. TM that accepts exactly the sentences in TA
\therefore TA is not axiomatizable
\therefore Any sound, axiomatizable theory Σ is incomplete (There is a sentence $A \in \Phi_{0}$ such that Neither A or $\neg A$ are in Σ.

FIRST INCOMPLETENESS THEOREM
We define a predicate Truth $\leq \mathbb{N}$
Truth $=\left\{n \mid m\right.$ encodes a sentence $\langle m\rangle \in \Phi_{0}$ that is in TA\}

We will show that Truth is Not re::
Defn A predicate is arithmetical if it can be represented by a formula over \mathcal{L}_{A}
Show
(1) Every re. predicate/Language is arithmetical
(2) Truth is not arithmetical
\therefore Truth is not re.
(1) Every Re predicate is arithmetical

Definition Let $s_{0}=0, s_{1}=s 0, s_{2}=s 50$, etc.
Let $R\left(x_{1} \ldots x_{n}\right)$ be an n-arg relation $R \subseteq \mathbb{N}^{n}$
Let $A\left(x_{1}, \ldots, x_{n}\right)$ be an $\mathscr{\alpha}_{A}$ formula, with free variables x_{1}, \ldots, x_{n} $A(\vec{x})$ represents R iff $\forall \vec{a} \in \mathbb{N}^{n} \quad R(\vec{a}) \Leftrightarrow N \vDash A\left(s_{a_{1}} s_{a_{2}} \cdot s_{a_{n}}\right)$
Example $R \leq \mathbb{N} \quad R=\{a \in \mathbb{N} \mid a$ is even $\}$

$$
\begin{aligned}
& A: \exists y(y+y=x) \\
& 3 \not R \text {, and } \mathbb{N} A(\text { sso })=\exists y(y+y=s s 50) \\
& 4 \in R \text {, and } \mathbb{N} \in A(\text { ssso })=\exists y(y+y=\text { sssso }) \quad y=s 50
\end{aligned}
$$

(1) Every Re predicate is arithmetical

Definition Let $s_{0}=0, s_{1}=s 0, s_{2}=s 50$, etc.
Let $R\left(x_{1} \ldots x_{n}\right)$ be an n-arg relation $R \subseteq \mathbb{N}^{n}$
Let $A\left(x_{1}, \ldots, x_{n}\right)$ be an \mathscr{L}_{A} formula, with free variables x_{1}, \ldots, x_{n} $A(\vec{x})$ represents R iff $\forall \vec{a} \in \mathbb{N}^{n} \quad R(\vec{a}) \Leftrightarrow N \vDash A\left(s_{a_{1}} s_{a_{2}} \cdot s_{a_{n}}\right)$
R is arithmetical iff there is a formula $A \in \mathcal{L}_{A}$ that represents R

Exists-Delta-Theorem every re. relation is arithmetical. In fact every re. relation is represented by a $\exists A_{0} \mathcal{Z}_{A}$-formula.
$\exists \Delta_{0}$ Formulas
$t_{1} \leq t_{2}$ stands for $\exists z\left(t_{1}+z=t_{2}\right)$
$\exists x \leqslant t A$ stands for $\exists x(x \leqslant t \wedge A) \quad$ Bounded
$\forall x \leq t A$ stands for $\forall x(x \leq t \supset A)$ Quantifiers
Definition A formula is a Δ_{0}-formula if it has the form $\forall x_{1} \leqslant t_{1} \exists x_{2} \leqslant t_{2} \forall x_{3} \leqslant t_{3} \ldots \exists x_{k} \leqslant t_{k} A\left(x_{1} \ldots x_{k} \vec{y}\right)$

Bounded Quantifiers
No
quantifiers
Definition A relation $R(\vec{x})$ is a Δ_{0}-relation iff some Δ_{0}-formula represents it
$\exists \Delta_{0}$ Formulas
Example Prime $=\left\{x \in \mathbb{N} \mid x^{\text {is }}\right.$ prinie $\}$ is a Δ_{0}-relation, represented by the following
Δ_{0}-formula:

$$
\text { so }<x \wedge \forall z \leq x \forall y \leq x(x=z \cdot y>(z=1 \vee z=x))
$$

$\exists \Delta_{0}$ Formulas
$t_{1} \leq t_{2}$ stands for $\exists w\left(t_{1}+w=t_{2}\right)$
$\exists z \leqslant t A$ stands for $\exists z(z \leqslant t \wedge A)$ Bounded
$\forall z \leq t A$ stands for $\forall z(z \leq t \supset A)\}$ Quantifiers
Definition A formula is a Δ_{0}-formula if it has the form $\forall z_{1} \leq t_{1} \exists z_{2} \leq t_{2} \forall z_{3} \leq f_{3} \ldots \exists z_{k} \leq t_{k} A\left(z_{1} . z_{k}, \vec{x}\right)$
Definition $A \exists \Delta_{0}$ formula has the form $\exists 9$ B
Definition A relation $R(\vec{x})$ is a Δ_{0}-relation iff some Δ_{0}-formula represents it
Definition $R(\vec{x})$ is a $\exists \Delta_{0}$-relation iff some $\exists \Delta_{0}$-formula represents' it
$\exists d_{0}$ Formulas
Lemma Every Δ_{0} relation is recursive
Lemma Every $\exists \Delta_{0}$ relation is re. $\exists \Delta_{0}$ (Exists-Delta) Theorem every re. relation is represented by a $\exists \Delta_{0}$ formula
$\exists \Delta_{0}$ Theorem
Main Lemma Let $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ be a total computable function.
Let $R_{f}=\left\{(\vec{x}, y) \in \mathbb{N}^{n+1} \mid f(\vec{x})=y\right\} \hookleftarrow$ also Then R_{f} is a $\exists \Delta_{0}$-relation.

Main Lemma Let $f: \mathbb{N}^{n} \rightarrow \mathbb{N}$ be total, computable
Then $R_{f}=\{(\vec{x}, y) \mid f(\vec{x})=y\}$ is a $\exists \Delta_{0}$ relation
Proof of $\exists \Delta_{0}$ Theorem from Main Lemma
Let $R(\vec{x})$ be an re. relation
Then $R(\vec{x})=\exists y S(\vec{x}, y)$ where S is recursive
Since S is recursive, $f_{s}(\vec{x}, y)= \begin{cases}1 & \text { if }(\vec{x}, y) \in S \\ 0 & \text { otherwise }\end{cases}$
is total computable
By main lemma, $R_{f_{s}}$ is represented by a $\exists \Delta_{0}$ relation
So $R(\vec{x})=\exists y \underbrace{\exists z B}_{R_{f_{s}}}$ is represented by a $\exists \Delta_{0}$ relation

Proof of Main Lemma (see pp 10-71)
Main idea: is a way of representing sequencer of numbers by numbers using $\exists \Delta$, formulas
Note: Prime power decomposition not useful here since we only hale s, t, -
(ie. represent $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ by $2^{a_{1}} \cdot 3^{a_{2}} \cdot 5^{a_{3}} \cdot 7^{a_{4}}$)
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1)
$$

where $\operatorname{rm}(x, y)=x \bmod y$

Proof of Main Lemma (see pp 70-71)
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1) \text { where } r m(x, y)=x \bmod y
$$

Lemma 0. $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that

$$
B(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

$_{\text {so }}$ the pair (c, d) represents the sequence $r_{0} r_{1,2}, r_{n}$ using β

Proof of Main Lemma (see PP 70-71)
Definition β-function

$$
\beta(c, d, i)=r m(c, d(i+1)+1) \text { where } m(x, y)=x \bmod y
$$

Lemma 0 $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that

$$
B(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

ERT (Chinese Remainder Theorem)
Let $r_{0}, \ldots, r_{n}, m_{0}, \ldots, m_{n}$ be such that

$$
0 \leqslant r_{i} \leqslant m_{i} \quad \forall i, 0 \leqslant i \leqslant n \quad \text { and } \operatorname{gcd}\left(m_{i}, m_{j}\right)=1 \quad \forall i, j
$$

Then $\exists r$ such that $r m\left(r, m_{i}\right)=r_{i} \quad \forall i, 0 \leqslant i \leqslant n$

Proof of Main Lemma (see pp 70-71)
Lemma $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that

$$
\beta(c, d, i)=r m(c, d(i+1)+1)
$$

$$
b(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

where $m(x, y)=x \bmod y$
chinese Remainder Theorem
Let $r_{0}, . ., r_{n}, m_{0}, \ldots, m_{n}$ be such that
$0 \leq r_{i} \leq m_{i}$ and $\operatorname{gcd}\left(m_{i}, m_{j}\right)=1$. Then $\operatorname{\exists r} \quad m\left(r, m_{i}\right)=r_{i} \forall i$
Proof of Lemma
Let $d=\left(n+r_{0}+\ldots+r_{n}+1\right)$!
Let $m_{i}=d(i+1)+1$
claim $\forall i, j \operatorname{gcd}\left(m_{i} m_{j}\right)=1 \quad$ (see Notes)
By CRT $\exists r=c$ so that $\beta(c, d, i)=r m\left(c, m_{i}\right)=r_{i} \quad \forall i \in[n]$

Proof of Main Lemma (see Pp 10-71)
Lemma o $\forall n, r_{0}, r_{1}, \ldots, r_{n} \exists c_{1} d$ such that

$$
\beta(c, d, i)=r_{i} \quad \forall i, 0 \leq i \leq n
$$

Lemma $1 R_{\beta}$ is a Δ_{0} relation

$$
\text { PF: } y=\beta(c, d, i) \Leftrightarrow[\exists q \leq c(c=q(d(i+1)+1)+y) \wedge y<d(i+1)+1]
$$

Lemma 2 If $R(\vec{x}, y)$ is a $\exists \Delta_{0}$ relation, R_{β} is a $\exists \Delta_{0}$ relation then $S(\vec{x})=\exists y\left(R_{\beta}(\vec{x}, y) \wedge R(\vec{x}, y)\right)$ is a $\exists a_{0}$ relation

Proof of Main Lemma (see Pp 70-71)
Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be unary, total computable function, + let M_{f} be TM computing f
$R(\vec{x}, y)$ will be a $\exists \Delta_{0}$ relation saying:
$\exists m, c, d$ such that
(1) c, d describe the tableaux given by $r_{1} \ldots r_{m} \ldots r_{m^{2}}$ given by β function
(2) $r_{1} \ldots r_{m}$ encode start config of M_{f} on x
(3) Last m numbers $r_{(m \rightarrow) m} \cdots r_{m^{2}}$ encode last config, containing Y in first cells then B, and state is q_{2}
(4) For all other configs, state is not q_{2}.
(5) all 2×3 local cells are consistent with transition fundion of M_{f}

Recap: we wanted to prove
$\exists \Delta_{0}$ (Exists-Delta) Theorem every rue. relation is represented by a $\exists \Delta_{0}$ formula

Which followed by Main Lemma:
f total, computable $\Rightarrow R_{f}$ is a $\exists \Delta_{0}$ relation

FIRST INCOMPLETENESS THEOREM
We define a predicate Truth $\subseteq \mathbb{N}$
Truth $=\left\{m \mid m\right.$ encodes a sentence $\langle m\rangle \in \Phi_{0}$ that is in TA\}

We will show that Truth is not re.:
Def A prediciafe-is arithmetical if it can be represented by a formula over \mathcal{L}_{A}
(1) Every re. predicate/language is arithmetical DONE!
(2) Truth is not arithmetical PP 68-71
\therefore Truth is not r.e.

Tarski Theorem
Define the predicate Truth $\leq \mathbb{N}$

$$
\text { Truth }=\{m \mid m \text { encodes a sentence }\langle m\rangle \in T A\}
$$

Then Truth is not arithmetical

Tarski Theorem
Define the predicate Truth $\leq \mathbb{N}$

$$
\text { Truth }=\{m \mid m \text { encodes a sentence }\langle m\rangle \in T A\}
$$

Then Truth is not arithmetical
High Level idea:
Formulate a sentence "J am false" which is self-contradictory

Pf of Tarski's 1 hm
Let $\operatorname{sub}(m, n)=\left\{\begin{array}{l}0 \text { if } m \text { is not a legal encoding of a formula } \\ \text { otherwise say } m \text { encodes the formula }\end{array}\right.$ $A(x)$ with free variable x.
Then $\operatorname{sub}(m, n)=m^{\prime}$ where m^{\prime} encodes $A\left(S_{n}\right)$

Let $d(n)=\operatorname{sub}(n, n)$

$$
\begin{aligned}
& d(n)= \text { sub }(n, n) \\
&\left\{\begin{aligned}
d(n)= & 0 \text { if } n \text { not a legal encoding. } \\
& \text { ow say } n \text { encodes } A(x) . \\
& \text { then } d(n)=n^{\prime} \text { where } n^{\prime} \text { encodes } A\left(s_{n}\right)
\end{aligned}\right\}
\end{aligned}
$$

clearly sub, d are both computable

Proof of Tarski's The
Suppose that Truth is arithmetical.
Then define $R(x)=1 \operatorname{Truth}(d(x))$
Since d, Truth both arithmetical, so is R
Let $\widetilde{R(x)}$ represent $R(x)$, and let e be the encoding of $\widetilde{R(x)}$
Let $d(e)=e^{\prime}$ so e^{\prime} encodes $R\left(s_{e}\right)$
Then

$$
\begin{aligned}
& R\left(S_{e}\right) \in T A \Leftrightarrow \neg \operatorname{Truth}(d(e,)) \text { since } \widetilde{R} \text { represents } R \\
& \Leftrightarrow+R\left(s_{e}\right) \in T A \quad \text { by deft of truth } \\
& \Leftrightarrow R\left(s_{e}\right) \& T A \quad T A \text { contains exactly one of } A, T A
\end{aligned}
$$

this is a contradiction. \because Truth is not arithmetical

FIRST INCOMP LETENESS TH EOREM
finally we have proven:
(1) Every r.e. predicate/Language is arithmetical
(2) Truth is not arithmefical
\therefore Truth is not r.e.

Truth not r.e. \Rightarrow TA not axiomatizable
\therefore Any SOUND, axiomatizable theory is incomplete

Γ sound and axiomatizable $\Rightarrow \exists A,{ }^{7} A \nLeftarrow \Gamma$
$2^{\text {Nd }}$ Incompleteness THEOREM

- We will defirie PA (Plano Arithmetic), an axiomatizable sound theory.
- Most of number theory provable in PA
- We will see that PA cannot prove its own consistency ($Z^{\text {rd }}$ Incompleteness The)

