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Abstract. We develop a novel technique for communication lower bounds, the pattern matrix
method. Specifically, fix an arbitrary function f : {0, 1}n → {0, 1} and let Af be the matrix whose
columns are each an application of f to some subset of the variables x1, x2, . . . , x4n. We prove that
Af has bounded-error communication complexity Ω(d), where d is the approximate degree of f.
This result remains valid in the quantum model, regardless of prior entanglement. In particular, it
gives a new and simple proof of Razborov’s breakthrough quantum lower bounds for disjointness
and other symmetric predicates. We further characterize the discrepancy, approximate rank, and
approximate trace norm of Af in terms of well-studied analytic properties of f, broadly generalizing
several recent results on small-bias communication and agnostic learning. The method of this paper
has also enabled important progress in multiparty communication complexity.
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1. Introduction. A central model in communication complexity is the bounded-
error model. Let f : X×Y → {−1,+1} be a given function, where X and Y are finite
sets. Alice receives an input x ∈ X, Bob receives y ∈ Y, and their objective is to
compute f(x, y) with minimal communication. To this end, Alice and Bob share an
unlimited supply of random bits. Their protocol is said to compute f if on every input
(x, y), the output is correct with probability at least 1 − ε. The canonical setting
is ε = 1/3, but any other parameter ε ∈ (0, 1/2) can be considered. The cost of
a protocol is the worst-case number of bits exchanged on any input. Depending on
the physical nature of the communication channel, one studies the classical model,
in which the messages are classical bits 0 and 1, and the more powerful quantum
model, in which the messages are quantum bits and arbitrary prior entanglement is
allowed. The communication complexity in these models is denoted Rε(f) and Q∗

ε (f),
respectively.

Bounded-error protocols have been the focus of much research in communication
complexity since the introduction of the area by Yao [66] three decades ago. A
variety of techniques have been developed for proving lower bounds on classical
communication, e.g., [27, 56, 21, 55, 13, 42, 20, 61]. There has been consistent progress
on quantum communication as well [67, 3, 12, 31, 29, 57, 42], although quantum
protocols remain less understood than their classical counterparts.

The main contribution of this paper is a novel method for lower bounds on
classical and quantum communication complexity, the pattern matrix method. The
method converts analytic properties of Boolean functions into lower bounds for the
corresponding communication problems. The analytic properties in question pertain
to the approximation and sign-representation of a given Boolean function by real
polynomials of low degree, which are among the oldest and most studied objects
in theoretical computer science. In other words, the pattern matrix method takes
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the wealth of results available on the representations of Boolean functions by real
polynomials and puts them at the disposal of communication complexity.

We consider two ways of representing Boolean functions by real polynomials. Let
f : {0, 1}n → {−1,+1} be a given Boolean function. The ε-approximate degree of f,
denoted degε(f), is the least degree of a real polynomial p such that |f(x)− p(x)| 6 ε
for all x ∈ {0, 1}n. There is an extensive literature on the ε-approximate degree of
Boolean functions [49, 51, 26, 8, 1, 2, 59, 65], for the canonical setting ε = 1/3 and
various other settings. Apart from uniform approximation, the other representation
scheme of interest to us is sign-representation. Specifically, the degree-d threshold
weight W (f, d) of f is the minimum

∑
|S|6d |λS | over all integers λS such that

f(x) ≡ sgn

 ∑
S⊆{1,...,n}, |S|6d

λSχS(x)

 ,

where χS(x) = (−1)
P

i∈S xi . If no such integers λS exist, we write W (f, d) = ∞. The
threshold weight of Boolean functions has been heavily studied, both when W (f, d)
is infinite [46, 4, 37, 38, 33, 32, 50] and when it is finite [46, 47, 7, 64, 34, 36, 53, 54].
The notions of uniform approximation and sign-representation are closely related, as
we discuss in Section 2. Roughly speaking, the study of threshold weight corresponds
to the study of the ε-approximate degree for ε = 1− o(1).

Having defined uniform approximation and sign-representation for Boolean func-
tions, we now describe how we use them to prove communication lower bounds.
The central concept in our work is what we call a pattern matrix. Consider the
communication problem of computing

f(x|V ),

where f : {0, 1}t → {−1,+1} is a fixed Boolean function; the string x ∈ {0, 1}n is
Alice’s input (n is a multiple of t); and the set V ⊂ {1, 2, . . . , n} with |V | = t is Bob’s
input. In words, this communication problem corresponds to a situation when the
function f depends on only t of the inputs x1, . . . , xn. Alice knows the values of all
the inputs x1, . . . , xn but does not know which t of them are relevant. Bob, on the
other hand, knows which t inputs are relevant but does not know their values. This
communication game was introduced and studied in an earlier work by the author [61],
in the context of small-bias communication. For the purposes of the introduction, one
can think of the (n, t, f)-pattern matrix as the matrix [f(x|V )]x,V , where V ranges
over the (n/t)t sets that have exactly one element from each block of the following
partition:

{1, . . . , n} =
{

1, 2, . . . ,
n

t

}
∪
{
n

t
+ 1, . . . ,

2n
t

}
∪ · · · ∪

{
(t− 1)n

t
+ 1, . . . , n

}
.

We defer the precise definition to Section 4. Observe that restricting V to be of special
form only makes our results stronger.

1.1. Our results. Our main result is a lower bound on the communication
complexity of a pattern matrix in terms of the ε-approximate degree of the base
function f. The lower bound holds for both classical and quantum protocols, regardless
of prior entanglement.
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Theorem 1.1 (communication complexity). Let F be the (n, t, f)-pattern matrix,
where f : {0, 1}t → {−1,+1} is given. Then for every ε ∈ [0, 1) and every δ < ε/2,

Q∗
δ(F ) >

1
4

degε(f) log2

(n
t

)
− 1

2
log2

(
3

ε− 2δ

)
.

In particular,

Q∗
1/7(F ) >

1
4

deg1/3(f) log2

(n
t

)
− 3.(1.1)

Note that Theorem 1.1 yields lower bounds for communication complexity with
error probability δ for any δ ∈ (0, 1/2). In particular, apart from bounded-error
communication (1.1), we obtain lower bounds for communication with small bias, i.e.,
error probability 1

2 − o(1). In Section 6, we derive another lower bound for small-bias
communication, in terms of threshold weight W (f, d).

As R. de Wolf pointed out to us [17], the lower bound (1.1) for bounded-error
communication is within a polynomial of optimal. More precisely, F has a classical
deterministic protocol with cost O(deg1/3(f)6 log(n/t)), by the results of Beals et
al. [5]. See Proposition 5.1 for details. In particular, Theorem 1.1 exhibits a large
new class of communication problems F whose quantum communication complexity
is polynomially related to their classical complexity, even if prior entanglement
is allowed. Prior to our work, the largest class of problems with polynomially
related quantum and classical bounded-error complexities was the class of symmetric
functions (see Theorem 1.3 below), which is broadly subsumed by Theorem 1.1.
Exhibiting a polynomial relationship between the quantum and classical bounded-
error complexities for all functions F : X × Y → {−1,+1} is a longstanding open
problem.

Pattern matrices are of interest because they occur as submatrices in natural
communication problems. For example, Theorem 1.1 can be interpreted in terms of
function composition. Setting n = 4t for concreteness, we obtain:

Corollary 1.2. Let f : {0, 1}t → {−1,+1} be given. Define F : {0, 1}4t ×
{0, 1}4t → {−1,+1} by F (x, y) = f(. . . , (xi,1yi,1 ∨ xi,2yi,2 ∨ xi,3yi,3 ∨ xi,4yi,4), . . . ).
Then

Q∗
1/7(F ) >

1
4

deg1/3(f)− 3.

As another illustration of Theorem 1.1, we revisit the quantum communication
complexity of symmetric functions. In this setting Alice has a string x ∈ {0, 1}n,
Bob has a string y ∈ {0, 1}n, and their objective is to compute D(

∑
xiyi) for some

predicate D : {0, 1, . . . , n} → {−1,+1} fixed in advance. This framework encompasses
several familiar functions, such as disjointness (determining if x and y intersect)
and inner product modulo 2 (determining if x and y intersect in an odd number
of positions). In a celebrated result, Razborov [57] established optimal lower bounds
on the quantum communication complexity of every function of such form:

Theorem 1.3 (Razborov). Let D : {0, 1, . . . , n} → {−1,+1} be a given predicate.
Put f(x, y) = D(

∑
xiyi). Then

Q∗
1/3(f) > Ω(

√
n`0(D) + `1(D)),
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where `0(D) ∈ {0, 1, . . . , bn/2c} and `1(D) ∈ {0, 1, . . . , dn/2e} are the smallest
integers such that D is constant in the range [`0(D), n− `1(D)].

Using Theorem 1.1, we give a new and simple proof of Razborov’s result. No
alternate proof was available prior to this work, despite the fact that this problem
has drawn the attention of various researchers [3, 12, 31, 29, 24, 42]. Moreover, the
next-best lower bounds for general predicates were nowhere close to Theorem 1.3.
To illustrate, consider the disjointness predicate D, given by D(t) = 1 ⇔ t = 0.
Theorem 1.3 shows that it has communication complexity Ω(

√
n), while the next-

best lower bound [3, 12] was Ω(log n).
Approximate rank and trace norm. We now describe some matrix-analytic conse-

quences of our work. The ε-approximate rank of a matrix F ∈ {−1,+1}m×n, denoted
rkε F, is the least rank of a real matrix A such that |Fij − Aij | 6 ε for all i, j. This
natural analytic quantity arose in the study of quantum communication [67, 12, 57]
and has since found applications to learning theory. In particular, Klivans and
Sherstov [35] proved that concept classes (i.e., sign matrices) with high approximate
rank are beyond the scope of known techniques for efficient learning, in Kearns’ well-
studied agnostic model [28]. Exponential lower bounds were cited in [35] on the
approximate rank of disjunctions, majority functions, and decision lists, with the
corresponding implications for agnostic learning. We broadly generalize these results
on approximate rank to any functions with high approximate degree or high threshold
weight:

Theorem 1.4 (approximate rank). Let F be the (n, t, f)-pattern matrix, where
f : {0, 1}t → {−1,+1} is given. Then for every ε ∈ [0, 1) and every δ ∈ [0, ε],

rkδ F >

(
ε− δ

1 + δ

)2 (n
t

)degε(f)

.

In addition, for every γ ∈ (0, 1) and every integer d > 1,

rk1−γ F >

(
γ

2− γ

)2

min
{(n

t

)d
,
W (f, d− 1)

2t

}
.

We derive analogous results for the approximate trace norm, another matrix-
analytic notion that has been studied in complexity theory. Theorem 1.4 is close to
optimal for a broad range of parameters. See Section 8 for details.

Discrepancy. The discrepancy of a function F : X × Y → {−1,+1}, denoted
disc(F ), is a combinatorial measure of the complexity of F (small discrepancy
corresponds to high complexity). This complexity measure plays a central role in the
study of communication. In particular, it fully characterizes membership in PPcc, the
class of communication problems with efficient small-bias protocols [30]. Discrepancy
is also known [43] be to equivalent to margin complexity, a key notion in learning
theory. Finally, discrepancy is of interest in circuit complexity [21, 22, 48]. We are
able to characterize the discrepancy of every pattern matrix in terms of threshold
weight:

Theorem 1.5 (discrepancy). Let F be the (n, t, f)-pattern matrix, for a given
function f : {0, 1}t → {−1,+1}. Then

disc(F ) 6 min
d=1,...,t

max

{(
2t

W (f, d− 1)

)1/2

,

(
t

n

)d/2}
.
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As we show in Section 7, Theorem 1.5 is close to optimal. It is a substantial
improvement on the author’s earlier work [61].

As an application of Theorem 1.5, we revisit the discrepancy of AC0, the class
of polynomial-size constant-depth circuits with AND, OR, NOT gates. In an earlier
work [61], we obtained the first exponentially small upper bound on the discrepancy of
a function in AC0.We used this result in [61] to prove that depth-2 majority circuits for
AC0 require exponential size, solving an open problem due to Krause and Pudlák [37].
Using Theorem 1.5, we are able to considerably sharpen the bound in [61]. Specifically,
we prove:

Theorem 1.6. Let f(x, y) =
∨m
i=1

∧m2

j=1(xij ∨ yij). Then

disc(f) = exp{−Ω(m)}.

We defer the new circuit implications and other discussion to Sections 7 and 10.
Independently of the work in [61], Buhrman et al. [11] exhibited another function in
AC0 with exponentially small discrepancy:

Theorem (Buhrman et al.). Let f : {0, 1}n × {0, 1}n → {−1,+1} be given by
f(x, y) = sgn

(
1 +

∑n
i=1(−2)ixiyi

)
. Then

disc(f) = exp{−Ω(n1/3)}.

Using Theorem 1.5, we give a new and simple proof of this result.

1.2. Our techniques. The setting in which to view our work is the general-
ized discrepancy method, a straightforward but very useful principle introduced by
Klauck [29] and reformulated in its current form by Razborov [57]. Let F (x, y) be a
Boolean function whose bounded-error communication complexity is of interest. The
generalized discrepancy method asks for a Boolean function H(x, y) and a distribution
µ on (x, y)-pairs such that:

(1) the functions F and H have correlation Ω(1) under µ; and
(2) all low-cost protocols have negligible advantage in computing H under µ.

If such H and µ indeed exist, it follows that no low-cost protocol can compute F to
high accuracy (otherwise it would be a good predictor for the hard function H as
well). This method applies broadly to many models of communication, as we discuss
in Section 2.4. It generalizes Yao’s original discrepancy method [40], in which H = F.
The advantage of the generalized version is that it makes it possible, in theory, to prove
lower bounds for functions such as disjointness, to which the traditional method
does not apply.

The hard part, of course, is finding H and µ with the desired properties. Except
in rather restricted cases [29, Thm. 4], it was not known how to do it. As a result,
the generalized discrepancy method was of limited practical use prior to this paper.
Here we overcome this difficulty, obtaining H and µ for a broad range of problems,
namely, the communication problems of computing f(x|V ).

Pattern matrices are a crucial first ingredient of our solution. We derive an
exact, closed-form expression for the singular values of a pattern matrix and their
multiplicities. This spectral information reduces our search from H and µ to a much
smaller and simpler object, namely, a function ψ : {0, 1}t → R with certain properties.
On the one hand, ψ must be well-correlated with the base function f. On the other
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hand, ψ must be orthogonal to all low-degree polynomials. We establish the existence
of such ψ by passing to the linear programming dual of the approximate degree of f.
Although the approximate degree and its dual are classical notions, we are not aware
of any previous use of this duality to prove communication lower bounds.

For the results that feature threshold weight, we combine the above program
with the dual characterization of threshold weight. To derive the remaining results
on approximate rank, approximate trace norm, and discrepancy, we apply our main
technique along with several additional matrix-analytic and combinatorial arguments.

1.3. Recent work on multiparty complexity. We are pleased to report that
this paper has enabled important progress in multiparty communication complexity
by a number of researchers. Lee and Shraibman [41] and Chattopadhyay and Ada [14]
generalized our method to three and more players, thereby obtaining much improved
lower bounds on the multiparty communication complexity of disjointness. David
and Pitassi [15] ingeniously combined this line of work with the probabilistic method,
establishing a separation of the communication classes NPcck and BPPcck for up to
k = (1 − ε) log n players. Their construction was derandomized in a follow-up paper
by David, Pitassi, and Viola [16], resulting in an explicit separation. See the survey
article [62] for a unified guide to these results, complete with all the key proofs. A
very recent development is due to Beame and Huynh-Ngoc [6], who continue this line
of research with much improved multiparty lower bounds for AC0 functions.

1.4. Organization. We start with a thorough review of technical preliminaries
in Section 2. The two sections that follow are concerned with the two principal
ingredients of our technique, the pattern matrices and the dual characterization of
the approximate degree and threshold weight. Section 5 integrates them into the
generalized discrepancy method and establishes our main result, Theorem 1.1. In
Section 6, we prove an additional version of our main result using threshold weight.
We characterize the discrepancy of pattern matrices in Section 7. Approximate rank
and approximate trace norm are studied next, in Section 8. We illustrate our main
result in Section 9 by giving a new proof of Razborov’s quantum lower bounds. As
another illustration, we study the discrepancy of AC0 in Section 10. We conclude with
some remarks on the well-known log-rank conjecture in Section 11 and a discussion
of related work in Section 12.

2. Preliminaries. We view Boolean functions as mappings X → {−1,+1} for a
finite set X, where −1 and 1 correspond to “true” and “false,” respectively. Typically,
the domain will be X = {0, 1}n or X = {0, 1}n × {0, 1}n. A predicate is a mapping
D : {0, 1, . . . , n} → {−1,+1}. The notation [n] stands for the set {1, 2, . . . , n}. For a
set S ⊆ [n], its characteristic vector 1S ∈ {0, 1}n is defined by

(1S)i =

{
1 if i ∈ S,
0 otherwise.

For b ∈ {0, 1}, we put ¬b = 1 − b. For x ∈ {0, 1}n, we define |x| = x1 + · · · + xn.
For x, y ∈ {0, 1}n, the notation x ∧ y ∈ {0, 1}n refers as usual to the component-wise
conjunction of x and y. Analogously, the string x ∨ y stands for the component-wise
disjunction of x and y. In particular, |x ∧ y| is the number of positions in which
the strings x and y both have a 1. Throughout this manuscript, “log” refers to
the logarithm to base 2. As usual, we denote the base of the natural logarithm by
e = 2.718 . . . . For any mapping φ : X → R, where X is a finite set, we adopt the
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standard notation ‖φ‖∞ = maxx∈X |φ(x)|. We adopt the standard definition of the
sign function:

sgn t =


−1 if t < 0,
0 if t = 0,
1 if t > 0.

Finally, we recall the Fourier transform over Zn2 . Consider the vector space of
functions {0, 1}n → R, equipped with the inner product

〈f, g〉 = 2−n
∑

x∈{0,1}n

f(x)g(x).

For S ⊆ [n], define χS : {0, 1}n → {−1,+1} by χS(x) = (−1)
P

i∈S xi . Then {χS}S⊆[n]

is an orthonormal basis for the inner product space in question. As a result, every
function f : {0, 1}n → R has a unique representation of the form

f(x) =
∑
S⊆[n]

f̂(S)χS(x),

where f̂(S) = 〈f, χS〉. The reals f̂(S) are called the Fourier coefficients of f. The
degree of f, denoted deg(f), is the quantity max{|S| : f̂(S) 6= 0}. The orthonormality
of {χS} immediately yields Parseval’s identity :∑

S⊆[n]

f̂(S)2 = 〈f, f〉 = E
x
[f(x)2].(2.1)

The following fact is immediate from the definition of f̂(S).
Proposition 2.1. Let f : {0, 1}n → R be given. Then

max
S⊆[n]

|f̂(S)| 6 2−n
∑

x∈{0,1}n

|f(x)|.

A Boolean function f : {0, 1}n → {−1,+1} is called symmetric if f(x) is uniquely
determined by

∑
xi. Equivalently, a Boolean function f is symmetric if and only if

f(x1, x2, . . . , xn) = f(xσ(1), xσ(2), . . . , xσ(n))

for all inputs x ∈ {0, 1}n and all permutations σ : [n] → [n]. Note that there is a one-
to-one correspondence between predicates and symmetric Boolean functions. Namely,
one associates a predicate D with the symmetric function f(x) ≡ D(

∑
xi).

2.1. Matrix analysis. We draw freely on basic notions from matrix analysis.
In particular, we assume familiarity with the singular value decomposition; positive
semidefinite matrices; matrix similarity; matrix trace and its properties; the Kronecker
product and its spectral properties; the relation between singular values and eigenval-
ues; and eigenvalue computation for matrices of simple form. An excellent reference on
the subject is [23]. The review below is limited to notation and the more substantial
results.

The symbol Rm×n refers to the family of all m×n matrices with real entries. We
specify matrices by their generic entry, e.g., A = [F (i, j)]i,j . In most matrices that
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arise in this work, the exact ordering of the columns (and rows) is irrelevant. In such
cases we describe a matrix by the notation [F (i, j)]i∈I, j∈J , where I and J are some
index sets. We denote the rank of A ∈ Rm×n by rkA. We also write

‖A‖∞ = max
i,j

|Aij |, ‖A‖1 =
∑
i,j

|Aij |.

We denote the singular values of A by σ1(A) > σ2(A) > · · · > σmin{m,n}(A) > 0.
Recall that the spectral norm, trace norm, and Frobenius norm of A are given by

‖A‖ = max
x∈Rn, ‖x‖=1

‖Ax‖ = σ1(A),

‖A‖Σ =
∑

σi(A),

‖A‖F =
√∑

A2
ij =

√∑
σi(A)2.

For a square matrix A ∈ Rn×n, its trace is given by trA =
∑
Aii.

Recall that every matrix A ∈ Rm×n has a singular value decomposition A =
UΣV T, where U and V are orthogonal matrices and Σ is diagonal with entries
σ1(A), σ2(A), . . . , σmin{m,n}(A). For A,B ∈ Rm×n, we write 〈A,B〉 =

∑
AijBij =

tr(ABT). A useful consequence of the singular value decomposition is:

(2.2) 〈A,B〉 6 ‖A‖ ‖B‖Σ (A,B ∈ Rm×n).

Following [57], we define the ε-approximate trace norm of a matrix F ∈ Rm×n by

‖F‖Σ,ε = min{‖A‖Σ : ‖F −A‖∞ 6 ε}.

The next proposition is a trivial consequence of (2.2).
Proposition 2.2. Let F ∈ Rm×n and ε > 0. Then

‖F‖Σ,ε > sup
Ψ6=0

〈F,Ψ〉 − ε‖Ψ‖1

‖Ψ‖
.

Proof. Fix any Ψ 6= 0 and A such that ‖F − A‖∞ 6 ε. Then 〈A,Ψ〉 6 ‖A‖Σ‖Ψ‖
by (2.2). On the other hand, 〈A,Ψ〉 > 〈F,Ψ〉 − ‖A − F‖∞‖Ψ‖1 > 〈F,Ψ〉 − ε‖Ψ‖1.
Comparing these two estimates of 〈A,Ψ〉 gives the sought lower bound on ‖A‖Σ.

Following [12], we define the ε-approximate rank of a matrix F ∈ Rm×n by

rkε F = min{rkA : ‖F −A‖∞ 6 ε}.

The approximate rank and approximate trace norm are related by virtue of the
singular value decomposition, as follows.

Proposition 2.3. Let F ∈ Rm×n and ε > 0 be given. Then

rkε F >
(‖F‖Σ,ε)2∑
i,j(|Fij |+ ε)2

.

Proof (adapted from [35]). Fix A with ‖F −A‖∞ 6 ε. Then

‖F‖Σ,ε 6 ‖A‖Σ 6 ‖A‖F

√
rkA 6

∑
i,j

(|Fij |+ ε)2

1/2

√
rkA.
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We will also need a well-known bound on the trace norm of a matrix product,
which we state with a proof for the reader’s convenience.

Proposition 2.4. For all real matrices A and B of compatible dimensions,

‖AB‖Σ 6 ‖A‖F ‖B‖F.

Proof. Write the singular value decomposition AB = UΣV T. Let u1, u2, . . . and
v1, v2, . . . stand for the columns of U and V, respectively. By definition, ‖AB‖Σ is the
sum of the diagonal entries of Σ. We have:

‖AB‖Σ =
∑

(UTABV )ii =
∑

(uT
i A)(Bvi) 6

∑
‖ATui‖ ‖Bvi‖

6
√∑

‖ATui‖2

√∑
‖Bvi‖2 = ‖UTA‖F ‖BV ‖F = ‖A‖F ‖B‖F.

2.2. Approximation and sign-representation. For a function f : {0, 1}n →
R, we define

E(f, d) = min
p
‖f − p‖∞,

where the minimum is over real polynomials of degree up to d. The ε-approximate
degree of f, denoted degε(f), is the least d with E(f, d) 6 ε. In words, the ε-
approximate degree of f is the least degree of a polynomial that approximates f
uniformly within ε.

For a Boolean function f : {0, 1}n → {−1,+1}, the ε-approximate degree is of
particular interest for ε = 1/3. The choice of ε = 1/3 is a convention and can be
replaced by any other constant in (0, 1), without affecting degε(f) by more than a
multiplicative constant. Another well-studied notion is the threshold degree deg±(f),
defined for a Boolean function f : {0, 1}n → {−1,+1} as the least degree of a real
polynomial p with f(x) ≡ sgn p(x). In words, deg±(f) is the least degree of a
polynomial that represents f in sign.

So far we have considered representations of Boolean functions by real poly-
nomials. Restricting the polynomials to have integer coefficients yields another
heavily studied representation scheme. The main complexity measure here is the
sum of the absolute values of the coefficients. Specifically, for a Boolean function
f : {0, 1}n → {−1,+1}, its degree-d threshold weight W (f, d) is defined to be the
minimum

∑
|S|6d |λS | over all integers λS such that

f(x) ≡ sgn

 ∑
S⊆{1,...,n}, |S|6d

λSχS(x)

 .

If no such integers λS can be found, we put W (f, d) = ∞. It is straightforward to
verify that the following three conditions are equivalent: W (f, d) = ∞; E(f, d) = 1;
d < deg±(f). In all expressions involving W (f, d), we adopt the standard convention
that 1/∞ = 0 and min{t,∞} = t for any real t.

As one might expect, representations of Boolean functions by real and integer
polynomials are closely related. In particular, we have the following relationship
between E(f, d) and W (f, d).
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Theorem 2.5. Let f : {0, 1}n → {−1,+1} be given. Then for d = 0, 1, . . . , n,

1
1− E(f, d)

6 W (f, d) 6
2

1− E(f, d)

{(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

d

)}3/2

,

with the convention that 1/0 = ∞.
Since Theorem 2.5 is not directly used in our derivations, we defer its proof to

Appendix A. Similar statements have been noted earlier by several authors [38, 11].
We close this section with Paturi’s tight estimate [51] of the approximate degree for
each symmetric Boolean function.

Theorem 2.6 (Paturi). Let f : {0, 1}n → {−1,+1} be a given function such that
f(x) ≡ D(

∑
xi) for some predicate D : {0, 1, . . . , n} → {−1,+1}. Then

deg1/3(f) = Θ
(√

n`0(f) +
√
n`1(f)

)
,

where `0(D) ∈ {0, 1, . . . , bn/2c} and `1(D) ∈ {0, 1, . . . , dn/2e} are the smallest
integers such that D is constant in the range [`0(D), n− `1(D)].

2.3. Quantum communication. This section reviews the quantum model of
communication complexity. We include this review mainly for completeness; our proofs
rely solely on a basic matrix-analytic property of such protocols and on no other aspect
of quantum communication.

There are several equivalent ways to describe a quantum communication pro-
tocol. Our description closely follows Razborov [57]. Let A and B be complex
finite-dimensional Hilbert spaces. Let C be a Hilbert space of dimension 2, whose
orthonormal basis we denote by |0〉, |1〉. Consider the tensor product A ⊗ C ⊗ B,
which is itself a Hilbert space with an inner product inherited from A , B, and C .
The state of a quantum system is a unit vector in A ⊗C ⊗B, and conversely any such
unit vector corresponds to a distinct quantum state. The quantum system starts in a
given state and traverses a sequence of states, each obtained from the previous one
via a unitary transformation chosen according to the protocol. Formally, a quantum
communication protocol is a finite sequence of unitary transformations

U1 ⊗ IB, IA ⊗ U2, U3 ⊗ IB, IA ⊗ U4, . . . , U2k−1 ⊗ IB, IA ⊗ U2k,

where: IA and IB are the identity transformations in A and B, respectively;
U1, U3, . . . , U2k−1 are unitary transformations in A ⊗ C ; and U2, U4, . . . , U2k are
unitary transformations in C ⊗ B. The cost of the protocol is the length of this
sequence, namely, 2k. On Alice’s input x ∈ X and Bob’s input y ∈ Y (where X,Y
are given finite sets), the computation proceeds as follows.

1. The quantum system starts out in an initial state Initial(x, y).
2. Through successive applications of the above unitary transformations, the

system reaches the state

Final(x, y) = (IA ⊗ U2k)(U2k−1 ⊗ IB) · · · (IA ⊗ U2)(U1 ⊗ IB) Initial(x, y).

3. Let v denote the projection of Final(x, y) onto A ⊗span(|1〉)⊗B. The output
of the protocol is 1 with probability 〈v, v〉, and 0 with the complementary
probability 1− 〈v, v〉.

All that remains is to specify how the initial state Initial(x, y) ∈ A ⊗ C ⊗ B is
constructed from x, y. It is here that the model with prior entanglement differs from
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the model without prior entanglement. In the model without prior entanglement, A
and B have orthonormal bases {|x,w〉 : x ∈ X, w ∈W} and {|y, w〉 : y ∈ Y, w ∈W},
respectively, where W is a finite set corresponding to the private workspace of each
of the parties. The initial state is the pure state

Initial(x, y) = |x, 0〉 |0〉 |y, 0〉,

where 0 ∈ W is a certain fixed element. In the model with prior entanglement, the
spaces A and B have orthonormal bases {|x,w, e〉 : x ∈ X, w ∈ W, e ∈ E} and
{|y, w, e〉 : y ∈ Y, w ∈W, e ∈ E}, respectively, where W is as before and E is a finite
set corresponding to the prior entanglement. The initial state is now the entangled
state

Initial(x, y) =
1√
|E|

∑
e∈E

|x, 0, e〉 |0〉 |y, 0, e〉.

Apart from finite size, no assumptions are made about W or E. In particular, the
model with prior entanglement allows for an unlimited supply of entangled qubits.
This mirrors the unlimited supply of shared random bits in the classical public-coin
randomized model.

Let f : X × Y → {−1,+1} be a given function. A quantum protocol P is said to
compute f with error ε if

P
[
f(x, y) = (−1)P (x,y)

]
> 1− ε

for all x, y, where the random variable P (x, y) ∈ {0, 1} is the output of the protocol
on input (x, y). Let Qε(f) denote the least cost of a quantum protocol without prior
entanglement that computes f with error ε. Define Q∗

ε (f) analogously for protocols
with prior entanglement. The precise choice of a constant 0 < ε < 1/2 affects Qε(f)
and Q∗

ε (f) by at most a constant factor, and thus the setting ε = 1/3 entails no loss
of generality.

Let D : {0, 1, . . . , n} → {−1,+1} be a predicate. We associate with D the function
f : {0, 1}n × {0, 1}n → {−1,+1} defined by f(x, y) = D(

∑
xiyi). We let Qε(D) =

Qε(f) and Q∗
ε (D) = Q∗

ε (f). More generally, by computing D in the quantum model
we mean computing the associated function f. We write Rε(f) for the least cost of a
classical public-coin protocol for f that errs with probability at most ε on any given
input. Another classical model that figures in this paper is the deterministic model. We
let D(f) denote the deterministic communication complexity of f. Throughout this
paper, by the communication complexity of a Boolean matrix F = [Fij ]i∈I, j∈J we will
mean the communication complexity of the associated function f : I×J → {−1,+1},
given by f(i, j) = Fij .

2.4. The generalized discrepancy method. The generalized discrepancy
method is an intuitive and elegant technique for proving communication lower
bounds. A starting point in our discussion is the following fact due to Linial and
Shraibman [42, Lem. 10], with closely analogous statements established earlier by
Yao [67], Kremer [39], and Razborov [57].

Theorem 2.7. Let X,Y be finite sets. Let P be a quantum protocol (with or
without prior entanglement) with cost C qubits and input sets X and Y. Then[

E[P (x, y)]
]
x,y

= AB
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for some real matrices A,B with ‖A‖F 6 2C
√
|X| and ‖B‖F 6 2C

√
|Y |.

Theorem 2.7 states that the matrix of acceptance probabilities of every low-cost
protocol P has a nontrivial factorization. This transition from quantum protocols to
matrix factorization is now a standard technique and has been used by various authors
in various contexts.

The generalized discrepancy method was first applied by Klauck [29, Thm. 4] and
reformulated more broadly by Razborov [57]. The treatment in [57] is informal. In
what follows, we propose a precise formulation of the generalized discrepancy method
and supply a proof.

Theorem 2.8 (generalized discrepancy method). Let X,Y be finite sets and
f : X × Y → {−1,+1} a given function. Let Ψ = [Ψxy]x∈X, y∈Y be any real matrix
with ‖Ψ‖1 = 1. Then for each ε > 0,

4Qε(f) > 4Q
∗
ε (f) >

〈Ψ, F 〉 − 2ε
3 ‖Ψ‖

√
|X| |Y |

,

where F = [f(x, y)]x∈X, y∈Y .
Proof. Let P be a quantum protocol with prior entanglement that computes f

with error ε and cost C. Put

Π =
[
E[P (x, y)]

]
x∈X, y∈Y

.

Then we can write F = (J − 2Π) + 2E, where J is the all-ones matrix and E is some
matrix with ‖E‖∞ 6 ε. As a result,

〈Ψ, J − 2Π〉 = 〈Ψ, F 〉 − 2 〈Ψ, E〉
> 〈Ψ, F 〉 − 2ε ‖Ψ‖1

= 〈Ψ, F 〉 − 2ε.(2.3)

On the other hand, Theorem 2.7 guarantees the existence of matrices A and B with
AB = Π and ‖A‖F ‖B‖F 6 4C

√
|X| |Y |. Therefore,

〈Ψ, J − 2Π〉 6 ‖Ψ‖ ‖J − 2Π‖Σ by (2.2)

6 ‖Ψ‖
(√

|X| |Y |+ 2 ‖Π‖Σ

)
since ‖J‖Σ =

√
|X| |Y |

6 ‖Ψ‖
(√

|X| |Y |+ 2 ‖A‖F ‖B‖F

)
by Prop. 2.4

6 ‖Ψ‖
(
2 · 4C + 1

)√
|X| |Y |.(2.4)

The theorem follows by comparing (2.3) and (2.4).
Remark 2.9. Theorem 2.8 is not to be confused with Razborov’s multidimen-

sional technique, also found in [57], which we will have no occasion to use or describe.
We will now abstract away the particulars of Theorem 2.8 and articulate the

fundamental mathematical technique in question. This will clarify the generalized
discrepancy method and show that it is simply an extension of Yao’s original
discrepancy method [40, §3.5]. Let f : X × Y → {−1,+1} be a given function whose
communication complexity we wish to estimate. The underlying communication model
is irrelevant at this point. Suppose we can find a function h : X × Y → {−1,+1} and
a distribution µ on X × Y that satisfy the following two properties.
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1. Correlation. The functions f and h are well correlated under µ:

(2.5) E
(x,y)∼µ

[f(x, y)h(x, y)] > ε,

where ε > 0 is a given constant.
2. Hardness. No low-cost protocol P in the given model of communication can

compute h to a substantial advantage under µ. Formally, if P : X×Y → {0, 1}
is a protocol in the given model with cost C bits, then

(2.6) E
(x,y)∼µ

[
h(x, y)E

[
(−1)P (x,y)

]]
6 2O(C)γ,

where γ = o(1). The inner expectation in (2.6) is over the internal operation
of the protocol on the fixed input (x, y).

If the above two conditions hold, we claim that any protocol in the given model
that computes f with error at most ε/3 on each input must have cost Ω(log{ε/γ}).
Indeed, let P be a protocol with P[P (x, y) 6= f(x, y)] 6 ε/3 for all x, y. Then standard
manipulations reveal:

E
µ

[
h(x, y)E

[
(−1)P (x,y)

]]
> E

µ
[f(x, y)h(x, y)]− 2 · ε

3
>
ε

3
,

where the last step uses (2.5). In view of (2.6), this shows that P must have cost
Ω(log{ε/γ}).

We attach the term generalized discrepancy method to this abstract framework.
Readers with background in communication complexity will note that the original
discrepancy method of Yao [40, §3.5] corresponds to the case when f = h and the
communication takes place in the two-party randomized model.

The purpose of our abstract discussion was to expose the fundamental mathe-
matical technique in question, which is independent of the communication model.
Indeed, the communication model enters the picture only in the proof of (2.6). It is
here that the analysis must exploit the particularities of the model. To place an upper
bound on the advantage under µ in the quantum model with entanglement, as we see
from (2.4), one considers the quantity ‖Ψ‖

√
|X| |Y |, where Ψ = [h(x, y)µ(x, y)]x,y. In

the classical randomized model, the quantity to estimate happens to be

max
S⊆X,
T⊆Y

∣∣∣∣∣∣
∑
x∈S

∑
y∈T

µ(x, y)h(x, y)

∣∣∣∣∣∣ ,
which is known as the discrepancy of h under µ.

3. Duals of approximation and sign-representation. Crucial to our work
are the dual characterizations of the uniform approximation and sign-representation of
Boolean functions by real polynomials. As a starting point, we recall a classical result
from approximation theory due to Ioffe and Tikhomirov [25] on the duality of norms.
A more recent treatment is available in the textbook of DeVore and Lorentz [18],
p. 61, Thm. 1.3. We provide a short and elementary proof of this result in Euclidean
space, which will suffice for our purposes. We let RX stand for the linear space of real
functions on the set X.
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Theorem 3.1 (Ioffe and Tikhomirov). Let X be a finite set. Fix Φ ⊆ RX and a
function f : X → R. Then

min
φ∈span(Φ)

‖f − φ‖∞ = max
ψ

{∑
x∈X

f(x)ψ(x)

}
,(3.1)

where the maximum is over all functions ψ : X → R such that∑
x∈X

|ψ(x)| 6 1

and, for each φ ∈ Φ, ∑
x∈X

φ(x)ψ(x) = 0.

Proof. The theorem holds trivially when span(Φ) = {0}. Otherwise, let φ1, . . . , φk
be a basis for span(Φ). Observe that the left member of (3.1) is the optimum of the
following linear program in the variables ε, α1, . . . , αk:

minimize: ε

subject to:

∣∣∣∣∣f(x)−
k∑
i=1

αiφi(x)

∣∣∣∣∣ 6 ε for each x ∈ X,

αi ∈ R for each i,

ε > 0.

Standard manipulations reveal the dual:

maximize:
∑
x∈X

ψxf(x)

subject to:
∑
x∈X

|ψx| 6 1,∑
x∈X

ψxφi(x) = 0 for each i,

ψx ∈ R for each x ∈ X.

Both programs are clearly feasible and thus have the same finite optimum. We have
already observed that the optimum of first program is the left-hand side of (3.1).
Since φ1, . . . , φk form a basis for span(Φ), the optimum of the second program is by
definition the right-hand side of (3.1).

As a corollary to Theorem 3.1, we obtain a dual characterization of the approxi-
mate degree.
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Theorem 3.2 (approximate degree). Fix ε > 0. Let f : {0, 1}n → R be given,
d = degε(f) > 1. Then there is a function ψ : {0, 1}n → R such that

ψ̂(S) = 0 (|S| < d),∑
x∈{0,1}n

|ψ(x)| = 1,

∑
x∈{0,1}n

ψ(x)f(x) > ε.

Proof. Set X = {0, 1}n and Φ = {χS : |S| < d} ⊂ RX . Since degε(f) = d, we
conclude that

min
φ∈span(Φ)

‖f − φ‖∞ > ε.

In view of Theorem 3.1, we can take ψ to be any function for which the maximum is
achieved in (3.1).

We now state the dual characterization of the threshold degree, which is better
known as Gordan’s Transposition Theorem [58, §7.8].

Theorem 3.3 (threshold degree). Let f : {0, 1}n → {−1,+1} be given, d =
deg±(f). Then there is a distribution µ over {0, 1}n with

E
x∼µ

[f(x)χS(x)] = 0 (|S| < d).

See [61] for a derivation of Theorem 3.3 using linear programming duality.
Alternately, it can be derived as a corollary to Theorem 3.1. We close this section
with one final dual characterization, corresponding to sign-representation by integer
polynomials.

Theorem 3.4 (threshold weight). Fix a function f : {0, 1}n → {−1,+1} and an
integer d > deg±(f). Then for every distribution µ on {0, 1}n,

max
|S|6d

∣∣∣∣ E
x∼µ

[f(x)χS(x)]
∣∣∣∣ > 1

W (f, d)
.(3.2)

Furthermore, there exists a distribution µ such that

max
|S|6d

∣∣∣∣ E
x∼µ

[f(x)χS(x)]
∣∣∣∣ 6 ( 2n

W (f, d)

)1/2

.(3.3)

Inequalities (3.2) and (3.3) are originally due to Hajnal et al. [22] and Freund [19],
respectively. For an integrated and simplified treatment of both results, see Goldmann
et al. [21], Lem. 4 and Thm. 10.

4. Pattern matrices. We now turn to the second ingredient of our proof, a
certain family of real matrices that we introduce. Our goal here is to explicitly calculate
their singular values. As we shall see later, this provides a convenient means to generate
hard communication problems.

Let t and n be positive integers, where t < n and t | n. Partition [n] into t
contiguous blocks, each with n/t elements:

[n] =
{

1, 2, . . . ,
n

t

}
∪
{
n

t
+ 1, . . . ,

2n
t

}
∪ · · · ∪

{
(t− 1)n

t
+ 1, . . . , n

}
.
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Let V (n, t) denote the family of subsets V ⊆ [n] that have exactly one element in each
of these blocks (in particular, |V | = t). Clearly, |V (n, t)| = (n/t)t. For a bit string
x ∈ {0, 1}n and a set V ∈ V (n, t), define the projection of x onto V by

x|V = (xi1 , xi2 , . . . , xit) ∈ {0, 1}t,

where i1 < i2 < · · · < it are the elements of V. We are ready for a formal definition
of our matrix family.

Definition 4.1 (pattern matrix). For φ : {0, 1}t → R, the (n, t, φ)-pattern matrix
is the real matrix A given by

A =
[
φ(x|V ⊕ w)

]
x∈{0,1}n, (V,w)∈V (n,t)×{0,1}t

.

In words, A is the matrix of size 2n by (n/t)t2t whose rows are indexed by strings
x ∈ {0, 1}n, whose columns are indexed by pairs (V,w) ∈ V (n, t)×{0, 1}t, and whose
entries are given by Ax,(V,w) = φ(x|V ⊕ w).

The logic behind the term “pattern matrix” is as follows: a mosaic arises from
repetitions of a pattern in the same way that A arises from applications of φ to various
subsets of the variables. Our approach to analyzing the singular values of a pattern
matrix A will be to represent it as the sum of simpler matrices and analyze them
instead. For this to work, we should be able to reconstruct the singular values of A
from those of the simpler matrices. Just when this can be done is the subject of the
following lemma.

Lemma 4.2 (singular values of a matrix sum). Let A,B be real matrices with
ABT = 0 and ATB = 0. Then the nonzero singular values of A + B, counting
multiplicities, are σ1(A), . . . , σrkA(A), σ1(B), . . . , σrkB(B).

Proof. The claim is trivial when A = 0 or B = 0, so assume otherwise. Since
the singular values of A + B are precisely the square roots of the eigenvalues of
(A+B)(A+B)T, it suffices to compute the spectrum of the latter matrix. Now,

(A+B)(A+B)T = AAT +BBT +ABT︸ ︷︷ ︸
=0

+BAT︸ ︷︷ ︸
=0

= AAT +BBT.(4.1)

Fix spectral decompositions

AAT =
rkA∑
i=1

σi(A)2uiuT
i , BBT =

rkB∑
j=1

σj(B)2vjvT
j .

Then

rkA∑
i=1

rkB∑
j=1

σi(A)2σj(B)2〈ui, vj〉2 =

〈
rkA∑
i=1

σi(A)2uiuT
i ,

rkB∑
j=1

σj(B)2vjvT
j

〉
= 〈AAT, BBT〉
= tr(AATBBT)

= tr(A · 0 ·BT)
= 0.(4.2)
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Since σi(A)σj(B) > 0 for all i, j, it follows from (4.2) that 〈ui, vj〉 = 0 for all i, j. Put
differently, the vectors u1, . . . , urkA, v1, . . . , vrkB form an orthonormal set. Recalling
(4.1), we conclude that the spectral decomposition of (A+B)(A+B)T is

rkA∑
i=1

σi(A)2uiuT
i +

rkB∑
j=1

σj(B)2vjvT
j ,

and thus the nonzero eigenvalues of (A+B)(A+B)T are as claimed.
We are ready for the main result of this section.
Theorem 4.3 (singular values of a pattern matrix). Let φ : {0, 1}t → R be given.

Let A be the (n, t, φ)-pattern matrix. Then the nonzero singular values of A, counting
multiplicities, are:

⋃
S:φ̂(S) 6=0

{√
2n+t

(n
t

)t
· |φ̂(S)|

(
t

n

)|S|/2
, repeated

(n
t

)|S|
times

}
.

In particular,

‖A‖ =

√
2n+t

(n
t

)t
max
S⊆[t]

{
|φ̂(S)|

(
t

n

)|S|/2}
.

Proof. For each S ⊆ [t], let AS be the (n, t, χS)-pattern matrix. Thus,

(4.3) A =
∑
S⊆[t]

φ̂(S)AS .

Fix arbitrary S, T ⊆ [t] with S 6= T. Then

ASA
T
T =

 ∑
V ∈V (n,t)

∑
w∈{0,1}t

χS(x|V ⊕ w) χT (y|V ⊕ w)


x,y

=

 ∑
V ∈V (n,t)

χS(x|V ) χT (y|V )
∑

w∈{0,1}t

χS(w) χT (w)

︸ ︷︷ ︸
=0


x,y

= 0.(4.4)

Similarly,

AT
SAT =

 χS(w) χT (w′)
∑

x∈{0,1}n

χS(x|V ) χT (x|V ′)︸ ︷︷ ︸
=0


(V,w),(V ′,w′)

= 0.(4.5)

By (4.3)–(4.5) and Lemma 4.2, the nonzero singular values of A are the union of the
nonzero singular values of all φ̂(S)AS , counting multiplicities. Therefore, the proof
will be complete once we show that the only nonzero singular value of AT

SAS is
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2n+t(n/t)t−|S|, with multiplicity (n/t)|S|. It is convenient to write this matrix as the
Kronecker product

AT
SAS = [χS(w)χS(w′)]w,w′ ⊗

 ∑
x∈{0,1}n

χS(x|V ) χS(x|V ′)


V,V ′

.

The first matrix in this factorization has rank 1 and entries ±1, which means that its
only nonzero singular value is 2t with multiplicity 1. The other matrix, call it M, is
permutation-similar to

2n


J

J
. . .

J

 ,
where J is the all-ones square matrix of order (n/t)t−|S|. This means that the only
nonzero singular value of M is 2n(n/t)t−|S| with multiplicity (n/t)|S|. It follows from
elementary properties of the Kronecker product that the spectrum of AT

SAS is as
claimed.

5. Pattern matrix method using uniform approximation. The previous
two sections examined relevant dual representations and the spectrum of pattern
matrices. Having studied these notions in their pure and basic form, we now apply
our findings to communication complexity. Specifically, we establish the pattern matrix
method for communication complexity, which gives strong lower bounds for every
pattern matrix generated by a Boolean function with high approximate degree.

Theorem 1.1 (restated from p. 3). Let F be the (n, t, f)-pattern matrix, where
f : {0, 1}t → {−1,+1} is given. Then for every ε ∈ [0, 1) and every δ < ε/2,

Q∗
δ(F ) >

1
4

degε(f) log
(n
t

)
− 1

2
log
(

3
ε− 2δ

)
.(5.1)

In particular,

Q∗
1/7(F ) >

1
4

deg1/3(f) log
(n
t

)
− 3.(5.2)

Proof. Since (5.1) immediately implies (5.2), we will focus on the former in the
remainder of the proof. Let d = degε(f) > 1. By Theorem 3.2, there is a function
ψ : {0, 1}t → R such that:

ψ̂(S) = 0 (|S| < d),(5.3) ∑
z∈{0,1}t

|ψ(z)| = 1,(5.4)

∑
z∈{0,1}t

ψ(z)f(z) > ε.(5.5)

Let Ψ be the (n, t, 2−n(n/t)−tψ)-pattern matrix. Then (5.4) and (5.5) show that

(5.6) ‖Ψ‖1 = 1, 〈F,Ψ〉 > ε.
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Our last task is to calculate ‖Ψ‖. By (5.4) and Proposition 2.1,

(5.7) max
S⊆[t]

|ψ̂(S)| 6 2−t.

Theorem 4.3 yields, in view of (5.3) and (5.7):

(5.8) ‖Ψ‖ 6

(
t

n

)d/2(
2n+t

(n
t

)t)−1/2

.

Now (5.1) follows from (5.6), (5.8), and Theorem 2.8.
Theorem 1.1 gives lower bounds not only for bounded-error communication but

also for communication protocols with error probability 1
2 − o(1). For example, if a

function f : {0, 1}t → {−1,+1} requires a polynomial of degree d for approximation
within 1− o(1), equation (5.1) gives a lower bound for small-bias communication. We
will complement and refine that estimate in the next section, which is dedicated to
small-bias communication.

We now prove the corollary to Theorem 1.1 on function composition, stated in
the introduction.

Proof of Corollary 1.2. The (2t, t, f)-pattern matrix occurs as a submatrix of
[F (x, y)]x,y∈{0,1}4t .

Finally, we show that the lower bound (5.2) derived above for bounded-error
communication complexity is tight up to a polynomial factor, even for deterministic
protocols. The proof follows a well-known argument in the literature [9, 5] and was
pointed out to us by R. de Wolf [17].

Proposition 5.1 (R. de Wolf, personal communication [17]). Let F be the
(n, t, f)-pattern matrix, where f : {0, 1}t → {−1,+1} is given. Then

D(F ) 6 O(dt(f) log(n/t)) 6 O(deg1/3(f)6 log(n/t)),

where dt(f) is the least depth of a decision tree for f. In particular, (5.2) is tight up
to a polynomial factor.

Proof. Beals al. [5, Cor. 5.6] prove that dt(f) 6 O(deg1/3(f)6) for all Boolean
functions f. Therefore, it suffices to prove an upper bound of O(d log(n/t)) on the
deterministic communication complexity of F, where d = dt(f).

The needed deterministic protocol is well-known. Fix a depth-d decision tree for
f. Let (x, (V,w)) be a given input. Alice and Bob start at the root of the decision
tree, labeled by some variable i ∈ {1, . . . , t}. By exchanging dlog(n/t)e+ 2 bits, Alice
and Bob determine (x|V )i ⊕ wi ∈ {0, 1} and take the corresponding branch of the
tree. The process repeats until a leaf is reached, at which point both parties learn
f(x|V ⊕ w).

6. Pattern matrix method using threshold weight. As we have already
mentioned, Theorem 1.1 of the previous section can be used to obtain lower bounds
not only for bounded-error communication but also small-bias communication. In the
latter case, one first needs to show that the base function f : {0, 1}t → {−1,+1} can-
not be approximated pointwise within 1− o(1) by a real polynomial of a given degree
d. In this section, we derive a different lower bound for small-bias communication,
this time using the assumption that the threshold weight W (f, d) is high. We will see
that this new lower bound is nearly optimal and closely related to the lower bound
in Theorem 1.1.
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Theorem 6.1 (pattern matrix method using threshold weight). Let F be the
(n, t, f)-pattern matrix, where f : {0, 1}t → {−1,+1} is given. Then for every integer
d > 1 and real γ ∈ (0, 1),

Q∗
1/2−γ/2(F ) >

1
4

min
{
d log

n

t
, log

W (f, d− 1)
2t

}
− 1

2
log

3
γ
.(6.1)

In particular,

Q∗
1/2−γ/2(F ) >

1
4

deg±(f) log
(n
t

)
− 1

2
log

3
γ
.(6.2)

Proof. Letting d = deg±(f) in (6.1) yields (6.2), since W (f, d − 1) = ∞ in that
case. In the remainder of the proof, we focus on (6.1) alone.

We claim that there exists a distribution µ on {0, 1}t such that

max
|S|<d

∣∣∣∣ E
z∼µ

[f(z)χS(z)]
∣∣∣∣ 6 ( 2t

W (f, d− 1)

)1/2

.(6.3)

For d 6 deg±(f), the claim holds by Theorem 3.3 since W (f, d−1) = ∞ in that case.
For d > deg±(f), the claim holds by Theorem 3.4.

Now, define ψ : {0, 1}t → R by ψ(z) = f(z)µ(z). It follows from (6.3) that

|ψ̂(S)| 6 2−t
(

2t
W (f, d− 1)

)1/2

(|S| < d),(6.4) ∑
z∈{0,1}t

|ψ(z)| = 1,(6.5)

∑
z∈{0,1}t

ψ(z)f(z) = 1.(6.6)

Let Ψ be the (n, t, 2−n(n/t)−tψ)-pattern matrix. Then (6.5) and (6.6) show that

(6.7) ‖Ψ‖1 = 1, 〈F,Ψ〉 = 1.

It remains to calculate ‖Ψ‖. By (6.5) and Proposition 2.1,

(6.8) max
S⊆[t]

|ψ̂(S)| 6 2−t.

Theorem 4.3 yields, in view of (6.4) and (6.8):

(6.9) ‖Ψ‖ 6 max

{(
t

n

)d/2
,

(
2t

W (f, d− 1)

)1/2
}(

2n+t
(n
t

)t)−1/2

.

Now (6.1) follows from (6.7), (6.9), and Theorem 2.8.
Recall from Theorem 2.5 that the quantities E(f, d) andW (f, d) are related for all

f and d. In particular, the lower bounds for small-bias communication in Theorems 1.1
and 6.1 are quite close, and either one can be approximately deduced from the other.
In deriving both results from scratch, as we did, our motivation was to obtain the
tightest bounds and to illustrate the pattern matrix method in different contexts. We



THE PATTERN MATRIX METHOD 21

will now see that the lower bound in Theorem 6.1 is close to optimal, even for classical
protocols.

Theorem 6.2. Let F be the (n, t, f)-pattern matrix, where f : {0, 1}t → {−1,+1}
is given. Then for every integer d > deg±(f),

Q∗
1/2−γ/2(F ) 6 R1/2−γ/2(F ) 6 d log

(n
t

)
+ 3,

where γ = 1/W (f, d).
Proof. The communication protocol that we will describe is standard and has been

used in one form or another in several works, e.g., [52, 21, 60, 61]. Put W = W (f, d)
and fix a representation

f(z) ≡ sgn

 ∑
S⊆[t], |S|6d

λSχS(z)

 ,

where the integers λS satisfy
∑
|λS | = W. On input (x, (V,w)), the protocol proceeds

as follows. Let i1 < i2 < · · · < it be the elements of V. Alice and Bob use their
shared randomness to pick a set S ⊆ [t] with |S| 6 d, according to the probability
distribution |λS |/W. Next, Bob sends Alice the indices {ij : j ∈ S} as well as the bit
χS(w). With this information, Alice computes the product sgn(λS)χS(x|V )χS(w) =
sgn(λS)χS(x|V ⊕ w) and announces the result as the output of the protocol.

Assuming an optimal encoding of the messages, the communication cost of this
protocol is bounded by ⌈

log
(n
t

)d⌉
+ 2 6 d log

(n
t

)
+ 3,

as desired. On each input x, V,w, the output of the protocol is a random variable
P (x, V,w) ∈ {−1,+1} that obeys

f(x|V ⊕ w)E[P (x, V,w)] = f(x|V ⊕ w)
∑
|S|6d

|λS |
W

sgn(λS)χS(x|V ⊕ w)

=
1
W

∣∣∣∣∣∣
∑
|S|6d

λSχS(x|V ⊕ w)

∣∣∣∣∣∣
>

1
W
,

which means that the protocol produces the correct answer with probability 1
2 + 1

2W
or greater.

7. Discrepancy of pattern matrices. We now restate some of the results of
the previous section in terms of discrepancy, a key notion already mentioned in Sec-
tion 2.4. This quantity figures prominently in the study of small-bias communication
as well as various applications, such as learning theory and circuit complexity.

For a Boolean function f : X × Y → {−1,+1} and a probability distribution λ
on X × Y, the discrepancy of f under λ is defined by

discλ(f) = max
S⊆X,
T⊆Y

∣∣∣∣∣∣
∑
x∈S

∑
y∈T

λ(x, y)f(x, y)

∣∣∣∣∣∣ .
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We put

disc(f) = min
λ

discλ(f).

As usual, we will identify a function f : X × Y → {−1,+1} with its communication
matrix F = [f(x, y)]x,y and use the conventions discλ(F ) = discλ(f) and disc(F ) =
disc(f).

The above definition of discrepancy is not convenient to work with, and we will
use a well-known matrix-analytic reformulation; cf. Kushilevitz & Nisan [40, Ex. 3.29].
For matrices A = [Axy] and B = [Bxy], recall that their Hadamard product is given
by A ◦B = [AxyBxy].

Proposition 7.1. Let X,Y be finite sets, f : X×Y → {−1,+1} a given function.
Then

discP (f) 6
√
|X| |Y | ‖P ◦ F‖,

where F = [f(x, y)]x∈X, y∈Y and P is any matrix whose entries are nonnegative and
sum to 1 (viewed as a probability distribution). In particular,

disc(f) 6
√
|X| |Y |min

P
‖P ◦ F‖,

where the minimum is over matrices P whose entries are nonnegative and sum to 1.
Proof. We have

discP (f) = max
S,T

∣∣1T
S (P ◦ F )1T

∣∣
6 max

S,T

{
‖1S‖ · ‖P ◦ F‖ · ‖1T ‖

}
= ‖P ◦ F‖

√
|X| |Y |,

as claimed.
We will need one last ingredient, a well-known lower bound on communication

complexity in terms of discrepancy.
Proposition 7.2 (see [40, pp. 36–38]). For every function f : X×Y → {−1,+1}

and every γ ∈ (0, 1),

R1/2−γ/2(f) > log
γ

disc(f)
.

Using Theorems 6.1 and 6.2, we will now characterize the discrepancy of pattern
matrices in terms of threshold weight.

Theorem 7.3 (discrepancy of pattern matrices). Let F be the (n, t, f)-pattern
matrix, where f : {0, 1}t → {−1,+1} is given. Then for every integer d > 0,

disc(F ) >
1

8W (f, d)

(
t

n

)d
(7.1)

and

disc(F )2 6 max

{
2t

W (f, d− 1)
,

(
t

n

)d}
.(7.2)
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In particular,

disc(F ) 6

(
t

n

)deg±(f)/2

.(7.3)

Proof. The lower bound (7.1) is immediate from Theorem 6.2 and Proposition 7.2.
For the upper bound (7.2), construct the matrix Ψ as in the proof of Theorem 6.1.
Then (6.7) shows that Ψ = F ◦ P for a nonnegative matrix P whose entries sum
to 1. As a result, (7.2) follows from (6.9) and Proposition 7.1. Finally, (7.3) follows
by taking d = deg±(f) in (7.2), since W (f, d− 1) = ∞ in that case.

This settles Theorem 1.5 from the introduction. Theorem 7.3 follows up and
considerably improves on our earlier result, the Degree/Discrepancy Theorem [61]:

Theorem 7.4 (Sherstov). Let f : {0, 1}t → {−1,+1} be given. Fix an integer
n > t. Let M = [f(x|S)]x,S , where the row index x ranges over {0, 1}n and the column
index S ranges over all t-element subsets of {1, 2, . . . , n}. Then

disc(M) 6

(
4et2

n deg±(f)

)deg±(f)/2

.

Note that (7.3) is already stronger than Theorem 7.4. In Section 10, we will see
an example when Theorem 7.3 gives an exponential improvement on Theorem 7.4.

Threshold weight is typically easier to analyze than the approximate degree. For
completeness, however, we will now supplement Theorem 7.3 with an alternate bound
on the discrepancy of a pattern matrix in terms of the approximate degree.

Theorem 7.5. Let F be the (n, t, f)-pattern matrix, for a given function
f : {0, 1}t → {−1,+1}. Then for every γ > 0,

disc(F ) 6 γ +
(
t

n

)deg1−γ(f)/2

.

Proof. Let d = deg1−γ(f) > 1. Define ε = 1− γ and construct the matrix Ψ as in
the proof of Theorem 1.1. Then (5.6) shows that Ψ = H ◦P, where H is a sign matrix
and P is a nonnegative matrix whose entries sum to 1. Viewing P as a probability
distribution, we infer from (5.8) and Proposition 7.1 that

discP (H) 6

(
t

n

)d/2
.(7.4)

Moreover,

discP (F ) 6 discP (H) + ‖(F −H) ◦ P‖1

= discP (H) + 1− 〈F,H ◦ P 〉
6 discP (H) + γ,(7.5)

where the last step follows because 〈F,Ψ〉 > ε = 1−γ by (5.6). The proof is complete
in view of (7.4) and (7.5).
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8. Approximate rank and trace norm of pattern matrices. We will
now use the results of the previous sections to analyze the approximate rank and
approximate trace norm of pattern matrices. These notions were originally motivated
by lower bounds on quantum communication [67, 12, 57]. However, they also arise in
learning theory [35] and are natural matrix-analytic quantities in their own right.

Theorem 8.1. Let F be the (n, t, f)-pattern matrix, where f : {0, 1}t → {−1,+1}
is given. Let s = 2n+t(n/t)t be the number of entries in F. Then for every ε ∈ [0, 1)
and every δ ∈ [0, ε],

‖F‖Σ,δ > (ε− δ)
(n
t

)degε(f)/2√
s(8.1)

and

rkδ F >

(
ε− δ

1 + δ

)2 (n
t

)degε(f)

.(8.2)

Proof. We may assume that degε(f) > 1, since otherwise f is a constant function
and the claims hold trivially by taking Ψ = F in Proposition 2.2. Construct Ψ as
in the proof of Theorem 1.1. Then the claimed lower bound on ‖F‖Σ,δ follows from
(5.6), (5.8), and Proposition 2.2. Finally, (8.2) follows immediately from (8.1) and
Proposition 2.3.

We prove an additional lower bound in the case of small-bias approximation.
Theorem 8.2. Let F be the (n, t, f)-pattern matrix, where f : {0, 1}t → {−1,+1}

is given. Let s = 2n+t(n/t)t be the number of entries in F. Then for every γ ∈ (0, 1)
and every integer d > 1,

‖F‖Σ,1−γ > γmin

{(n
t

)d/2
,

(
W (f, d− 1)

2t

)1/2
}
√
s(8.3)

and

rk1−γ F >

(
γ

2− γ

)2

min
{(n

t

)d
,
W (f, d− 1)

2t

}
.(8.4)

In particular,

‖F‖Σ,1−γ > γ
(n
t

)deg±(f)/2√
s(8.5)

and

rk1−γ F >

(
γ

2− γ

)2 (n
t

)deg±(f)

.(8.6)

Proof. Construct Ψ as in the proof of Theorem 6.1. Then the claimed lower bound
on ‖F‖Σ,δ follows from (6.7), (6.9), and Proposition 2.2. Now (8.4) follows from (8.3)
and Proposition 2.3. Finally, (8.5) and (8.6) follow by taking d = deg±(f) in (8.3)
and (8.4), respectively, since W (f, d− 1) = ∞ in that case.

Theorems 8.1 and 8.2 settle Theorem 1.4 from the introduction.
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Recall that Theorem 4.3 gives an easy way to calculate the trace norm and rank
of a pattern matrix. In particular, it is straightforward to verify that the lower bounds
in (8.2) and (8.4) are close to optimal for various choices of ε, δ, γ. For example, one has
‖F −A‖∞ 6 1/3 by taking F and A to be the (n, t, f)- and (n, t, φ)-pattern matrices,
where φ : {0, 1}t → R is any polynomial of degree deg1/3(f) with ‖f − φ‖∞ 6 1/3.

9. Application: quantum complexity of symmetric functions. As an illus-
trative application of the pattern matrix method, we now give a short and elementary
proof of Razborov’s optimal lower bounds for every predicate D : {0, 1, . . . , n} →
{−1,+1}. We first solve the problem for all predicates D that change value close to 0.
Extension to the general case will require an additional step.

Theorem 9.1. Let D : {0, 1, . . . , n} → {−1,+1} be a given predicate. Suppose
that D(`) 6= D(`− 1) for some ` 6 1

8n. Then

Q∗
1/3(D) > Ω(

√
n`).

Proof. It suffices to show that Q∗
1/7(D) > Ω(

√
n`). Define f : {0, 1}bn/4c →

{−1,+1} by f(z) = D(|z|). Then deg1/3(f) > Ω(
√
n`) by Theorem 2.6. Theorem 1.1

implies that

Q∗
1/7(F ) > Ω(

√
n`),

where F is the (2bn/4c, bn/4c, f)-pattern matrix. Since F occurs as a submatrix of
[D(|x ∧ y|)]x,y, the proof is complete.

The remainder of this section is a simple if tedious exercise in shifting and padding.
We note that Razborov’s proof concludes in a similar way (see [57], beginning of
Section 5).

Theorem 9.2. Let D : {0, 1, . . . , n} → {−1,+1} be a given predicate. Suppose
that D(`) 6= D(`− 1) for some ` > 1

8n. Then

(9.1) Q∗
1/3(D) > c(n− `)

for some absolute constant c > 0.
Proof. Consider the communication problem of computing D(|x ∧ y|) when the

last k bits in x and y are fixed to 1. In other words, the new problem is to compute
Dk(|x′ ∧ y′|), where x′, y′ ∈ {0, 1}n−k and the predicate Dk : {0, 1, . . . , n − k} →
{−1,+1} is given by Dk(i) ≡ D(k + i). Since the new problem is a restricted version
of the original, we have

(9.2) Q∗
1/3(D) > Q∗

1/3(Dk).

We complete the proof by placing a lower bound on Q∗
1/3(Dk) for

k = `−
⌊

α

1− α
· (n− `)

⌋
,

where α = 1
8 . Note that k is an integer between 1 and ` (because ` > αn). The

equality k = ` occurs if and only if
⌊

α
1−α (n − `)

⌋
= 0, in which case (9.1) holds

trivially for c suitably small. Thus, we can assume that 1 6 k 6 `− 1, in which case
Dk(`− k) 6= Dk(`− k− 1) and `− k 6 α(n− k). Therefore, Theorem 9.1 is applicable
to Dk and yields:

(9.3) Q∗
1/3(Dk) > C

√
(n− k)(`− k),
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where C > 0 is an absolute constant. Calculations reveal:

(9.4) n− k =
⌊

1
1− α

· (n− `)
⌋
, `− k =

⌊
α

1− α
· (n− `)

⌋
.

The theorem is now immediate from (9.2)–(9.4).
Together, Theorems 9.1 and 9.2 give the main result of this section:
Theorem 1.3 (restated from p. 4). Let D : {0, 1, . . . , n} → {−1,+1}. Then

Q∗
1/3(D) > Ω(

√
n`0(D) + `1(D)),

where `0(D) ∈ {0, 1, . . . , bn/2c} and `1(D) ∈ {0, 1, . . . , dn/2e} are the smallest
integers such that D is constant in the range [`0(D), n− `1(D)].

Proof. If `0(D) 6= 0, set ` = `0(D) and note that D(`) 6= D(` − 1) by
definition. One of Theorems 9.1 and 9.2 must be applicable, and therefore Q∗

1/3(D) >

min{Ω(
√
n`), Ω(n− `)}. Since ` 6 n/2, this simplifies to

(9.5) Q∗
1/3(D) > Ω(

√
n`0(D)).

If `1(D) 6= 0, set ` = n − `1(D) + 1 > n/2 and note that D(`) 6= D(` − 1) as
before. By Theorem 9.2,

(9.6) Q∗
1/3(D) > Ω (`1(D)) .

The theorem follows from (9.5) and (9.6).

10. Application: discrepancy of constant-depth circuits. As another ap-
plication of the pattern matrix method, we revisit the discrepancy of AC0, the class
of polynomial-size constant-depth circuits with AND, OR, NOT gates. In an earlier
work [61], we obtained the first exponentially small upper bound on the discrepancy
of a function in AC0, with applications to threshold circuits. Independently, Buhrman
et al. [11] exhibited another function in AC0 with exponentially small discrepancy.
We revisit these two discrepancy bounds below, considerably sharpening the bound
in [61] and giving a new and simple proof of the bound in [11].

Consider the function MPm : {0, 1}4m3 → {−1,+1} given by

MPm(x) =
m∨
i=1

4m2∧
j=1

xij .

This function was originally defined and studied by Minsky and Papert [46] in their
seminal monograph on perceptrons. Using this function and the Degree/Discrepancy
Theorem (Theorem 7.4), an upper bound of exp{−Ω(n1/5)} was derived in [61] on
the discrepancy of an explicit AC0 circuit f : {0, 1}n×{0, 1}n → {−1,+1} of depth 3.
We will now sharpen that bound to exp{−Ω(n1/3)}.

Theorem 1.6 (restated from p. 5). Let f(x, y) = MPm(x ∨ y). Then

disc(f) = exp{−Ω(m)}.

Proof. Put d = bm/2c. A well-known result of Minsky and Papert [46] states
that deg±(MPd) > d. Since the (8d3, 4d3,MPd)-pattern matrix is a submatrix of
[f(x, y)]x,y, the proof is complete in view of equation (7.3) of Theorem 7.3.
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We now turn to the result of Buhrman et al. The ODD-MAX-BIT function
OMBn : {0, 1}n → {−1,+1}, due to Beigel [7], is given by

OMBn(x) = sgn

(
1 +

n∑
i=1

(−2)ixi

)
.(10.1)

It is straightforward to compute OMBn by a linear-size DNF formula and even a
decision list. In particular, OMBn belongs to the class AC0. Buhrman et al. [11, §3.2]
proved the following result.

Theorem 10.1 (Buhrman et al.). Let f(x, y) = OMBn(x ∧ y). Then

disc(f) = exp{−Ω(n1/3)}.

Using the results of this paper, we can give a short alternate proof of this theorem.
Proof. Put m = bn/4c. A well-known result due to Beigel [7] shows that

W (OMBm, cm1/3) > exp(cm1/3) for some absolute constant c > 0. Since the
(2m,m,OMBm)-pattern matrix is a submatrix of [f(x, y)]x,y, the proof is complete
by Theorem 7.3.

Remark 10.2. The above proofs illustrate that the characterization of the dis-
crepancy of pattern matrices in this paper (Theorem 7.3) is a substantial improvement
on our earlier result (Theorem 7.4). In particular, the representation (10.1) makes it
clear that deg±(OMBn) = 1 and therefore Theorem 7.4 cannot yield an upper bound
better than n−Ω(1) on the discrepancy of OMBn(x ∧ y). Theorem 7.3, on the other
hand, gives an exponentially better upper bound.

It is well-known [21, 22, 48] that the discrepancy of a function f implies a lower
bound on the size of depth-2 majority circuits that compute f. Following [61], we
record the consequences of Theorems 1.6 and 10.1 in this regard.

Theorem 10.3. Any majority vote of threshold gates that computes the function

f(x, y) = MPm(x ∨ y)

has size exp{Ω(m)}. Analogously, any majority vote of threshold gates that computes
the function

f(x, y) = OMBn(x ∧ y)

has size exp{Ω(n1/3)}.
Proof. Analogous to the proof given in [61, §7].

11. Pattern matrices and the log-rank conjecture. In previous sections,
we characterized various matrix-analytic and combinatorial properties of pattern ma-
trices, including their classical and quantum communication complexity, discrepancy,
approximate rank, and approximate trace norm. We conclude this study with another
fact about pattern matrices. Specifically, we show that they satisfy the log-rank
conjecture due to Lovász and Saks [44].

In a seminal paper, Mehlhorn and Schmidt [45] observed that the deterministic
communication complexity of a sign matrix F satisfies D(F ) > log rkF. The log-rank
conjecture is that this lower bound is always tight up to a polynomial factor, i.e.,
D(F ) 6 (log rkF )O(1) +O(1). Using the results of the previous sections, we can give
a short proof of this hypothesis in the case of pattern matrices.
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Theorem 11.1 (on the log-rank conjecture). Let f : {0, 1}t → {−1,+1} be a
given function, d = deg(f). Let F be the (n, t, f)-pattern matrix. Then

rkF >
(n
t

)d
> exp{Ω(D(F )1/4)}.(11.1)

In particular, F satisfies the log-rank conjecture.
Proof. Since f̂(S) 6= 0 for some set S with |S| = d, Theorem 4.3 implies that F

has at least (n/t)d nonzero singular values. This settles the first inequality in (11.1).
Proposition 5.1 implies that D(F ) 6 O(dt(f) log(n/t)), where dt(f) denotes the

least depth of a decision tree for f. Nisan and Smolensky [10, Thm. 12] prove that
dt(f) 6 2 deg(f)4 for all f. Combining these two observations establishes the second
inequality in (11.1).

12. Related work. Shi and Zhu [63] independently obtained a result related to
our lower bound (5.2) on bounded-error communication. Fix functions f : {0, 1}n →
{−1,+1} and g : {0, 1}k×{0, 1}k → {0, 1}. Let f ◦gn denote the composition of f with
n independent copies of g. More formally, the function f ◦ gn : {0, 1}nk × {0, 1}nk →
{−1,+1} is given by

(f ◦ gn)(x, y) = f
(
g(x(1), y(1)), . . . , g(x(n), y(n))

)
,

where x = (x(1), . . . , x(n)) ∈ {0, 1}nk and y = (y(1), . . . , y(n)) ∈ {0, 1}nk. Shi and Zhu
study the communication complexity of f ◦gn. Their main result [63, Lem. 3.5] is that

Q∗
1/3(f ◦ g

n) > Ω(deg1/3(f)) provided that ρ(g) 6
deg1/3(f)

2en
,

where ρ(g) is a new variant of discrepancy that the authors introduce. As an illustra-
tion, they re-prove a weaker version of Razborov’s lower bounds in Theorem 1.3. In
our terminology (Section 2.4), their proof also fits in the framework of the Klauck-
Razborov generalized discrepancy method.

Shi and Zhu’s result revolves around the quantity ρ(g), which needs to be small.
This poses two complications. First, the function g will generally need to depend on
many variables, from k = Θ(log n) to k = nΘ(1), which weakens the final lower bounds
on communication. For example, the lower bounds obtained in [63] for symmetric
functions are polynomially weaker than optimal (Theorem 1.3).

A second complication, as the authors note, is that “estimating ρ(g) is unfortu-
nately difficult in general” [63, §4.1]. For example, re-proving Razborov’s lower bounds
reduces to estimating ρ(g) for g(x, y) = x1y1 ∨ · · · ∨ xkyk. Shi and Zhu accomplish
this using Hahn matrices, an advanced tool that is the centerpiece of Razborov’s own
proof (Razborov’s use of Hahn matrices is somewhat more demanding).

Our method avoids these complications altogether. For example, we prove (by
taking n = 2t in the pattern matrix method, Theorem 1.1) that

Q∗
1/3(f ◦ g

n) > Ω(deg1/3(f))

for any function g : {0, 1}k×{0, 1}k → {0, 1} such that the matrix [g(x, y)]x,y contains
the following submatrix, up to permutations of rows and columns:

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 .
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To illustrate, one can take g to be

g(x, y) = x1y1 ∨ x2y2 ∨ x3y3 ∨ x4y4

or

g(x, y) = x1y1y2 ∨ x1 y1y2 ∨ x2 y1 y2 ∨ x2 y1 y2.

In summary, there is a simple function g on k = 2 variables that works universally for
all f. This means no technical conditions to check, such as ρ(g), and no blow-up in
the number of variables. As a result, we are able to re-prove Razborov’s optimal lower
bounds exactly. Moreover, the technical machinery of this paper is self-contained and
disjoint from Razborov’s proof.

A further advantage of the pattern matrix method is that it extends in a
straightforward way to the multiparty model [41, 14, 15, 16, 6]. This extension depends
on the fact that the rows of a pattern matrix are applications of the same function
to different subsets of the variables. In the general context of block composition, it is
unclear how to carry out this extension. Further details can be found in the survey [62].

These considerations do not diminish the technical merit of Shi and Zhu’s method,
which is of much interest. The proofs in [63] and this paper start out with the same
duality transformation (Theorem 3.2) but diverge substantially from then on, which
explains the differences in our results. Specifically, we introduce and analyze pattern
matrices, while Shi and Zhu construct a much different family of matrices.
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Appendix A. On uniform approximation and sign-representation. The
purpose of this appendix is to prove Theorem 2.5 on the representation of a Boolean
function by real versus integer polynomials. Similar statements have been noted earlier
by several authors [38, 11]. We derive our result by modifying a recent analysis due
to Buhrman et al. [11, Cor. 1].

Theorem 2.5 (restated from p. 10). Let f : {0, 1}n → {−1,+1} be given. Then
for d = 0, 1, . . . , n,

1
1− E(f, d)

6 W (f, d) 6
2

1− E(f, d)

{(
n

0

)
+
(
n

1

)
+ · · ·+

(
n

d

)}3/2

,

with the convention that 1/0 = ∞.

Proof. One readily verifies that W (f, d) = ∞ if and only if E(f, d) = 1. In what
follows, we focus on the complementary case when W (f, d) <∞ and E(f, d) < 1.

For the lower bound on W (f, d), fix integers λS with
∑

|S|6d |λS | = W (f, d)
such that the polynomial p(x) =

∑
|S|6d λSχS(x) satisfies f(x) ≡ sgn p(x). Then

1 6 f(x)p(x) 6 W (f, d) and therefore

E(f, d) 6

∥∥∥∥f − 1
W (f, d)

p

∥∥∥∥
∞

6 1− 1
W (f, d)

.

To prove the upper bound on W (f, d), fix any degree-d polynomial p such that
‖f − p‖∞ = E(f, d). Define δ = 1 − E(f, d) > 0 and N =

∑d
i=0

(
n
i

)
. For a real t, let

rnd t be the result of rounding t to the closest integer, so that |t − rnd t| 6 1/2. We
claim that the polynomial

q(x) =
∑
|S|6d

rnd(Mp̂(S))χS(x),

where M = 3N/(4δ), satisfies f(x) ≡ sgn q(x). Indeed,∣∣∣∣f(x)− 1
M
q(x)

∣∣∣∣ 6 |f(x)− p(x)|+ 1
M
|Mp(x)− q(x)|

6 1− δ +
1
M

∑
|S|6d

|Mp̂(S)− rnd(Mp̂(S))|

6 1− δ +
N

2M
< 1.
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It remains to examine the sum of the coefficients of q. We have:∑
|S|6d

| rnd(Mp̂(S))| 6 1
2
N +M

∑
|S|6d

|p̂(S)|

6
1
2
N +M

(
N E

x

[
p(x)2

])1/2

6
2N

√
N

δ
,

where the second step follows by an application of the Cauchy-Schwarz inequality and
Parseval’s identity (2.1).


