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Abstract. We solve an open problem in communication complexity
posed by Kushilevitz and Nisan (1997). Let Rε(f) and Dµ

ε (f) denote
the randomized and µ-distributional communication complexities of f,
respectively (ε a small constant). Yao’s well-known minimax principle
states that Rε(f) = maxµ {Dµ

ε (f)} . Kushilevitz and Nisan (1997) ask
whether this equality is approximately preserved if the maximum is
taken over product distributions only, rather than all distributions µ.
We give a strong negative answer to this question. Specifically, we prove
the existence of a function f : {0, 1}n × {0, 1}n → {0, 1} for which
maxµ product {Dµ

ε (f)} = Θ(1) but Rε(f) = Θ(n). We also obtain an
exponential separation between the statistical query dimension and sign-
rank, solving a problem previously posed by the author (2007).
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1. Introduction

Among the primary models of communication complexity is the randomized
model. Let f : X × Y → {−1, +1} be a given function, where X and Y are
finite sets. Alice receives an input x ∈ X, Bob receives y ∈ Y, and their
objective is to compute f(x, y) with minimal communication. To this end,
Alice and Bob share an unlimited supply of random bits. Their protocol is said
to compute f if on every input (x, y), the output is correct with probability at
least 2/3. The cost of a protocol is the worst-case number of bits exchanged on
any input. The randomized communication complexity of f, denoted R1/3(f),
is the least cost of a protocol that computes f.

Randomized communication complexity is intimately related to distribu-
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tional complexity. Let µ be a probability distribution on X × Y. The µ-
distributional communication complexity of f, denoted Dµ

1/3(f), is the least

cost of a deterministic protocol for f with error probability at most 1/3 with
respect to µ. Using the Minimax Theorem for zero-sum games, Yao (1983) gave
a simple proof that

R1/3(f) = max
µ

{
Dµ

1/3(f)
}

,

where the constant 1/3 can be replaced by any other (see also Kushilevitz
& Nisan 1997, Thm. 3.20). This equation has been the basis for essentially
all lower bounds on randomized communication complexity: one defines a
probability distribution µ on X × Y and argues that the cost Dµ

1/3(f) of the

best deterministic protocol with error at most 1/3 over µ must be high.
The main design question, then, is what distribution µ to consider. A

product distribution µ on X × Y is a distribution that can be expressed as
µ(x, y) = µX(x) µY (y), where µX and µY are distributions over X and Y,
respectively. Product distributions are particularly attractive because they are
easier to analyze. Unfortunately, they do not always lead to optimal lower
bounds. A standard example is the disjointness function on n-bit strings,
whose randomized complexity is Θ(n) (Kalyanasundaram & Schnitger 1992;
Razborov 1992) and whose distributional complexity is O(

√
n log n) under every

product distribution (Babai et al. 1986, Sec. 8). Define

D×
1/3(f) = max

µ product

{
Dµ

1/3(f)
}

.

These considerations motivate the following problem:

Problem 1.1 (Kushilevitz & Nisan 1997, p. 37). Can restricting the distri-
bution µ to be a product distribution affect the resulting lower bound
on R1/3(f) by more than a polynomial factor? Formally, is R1/3(f) =
(D×

1/3(f))O(1)?

Since its formulation, this problem has seen little progress. Kremer, Nisan,
and Ron (1999) studied its restriction to one-way randomized protocols and
obtained a separation of O(1) versus Ω(n) for the function greater-than.
Unfortunately, a function can have vastly different communication complexity
in the one-way model and the usual, two-way model. Such is the case of
greater-than, whose two-way randomized complexity is a mere O(log n).

Another step toward solving the Kushilevitz-Nisan question was recently
taken by the author (Sherstov 2008). Namely, we gave an exponential separa-
tion between the discrepancy under product and nonproduct distributions, for
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an explicit function. In particular, we showed that the use of nonproduct
distributions is essential to the discrepancy method, a major technique for
communication lower bounds.

This paper solves the Kushilevitz-Nisan problem completely and in its
original form: we prove the existence of a function f with D×

1/3(f) = O(1)

and R1/3(f) = Ω(n).

Theorem 1.2 (Main Theorem). Let ε > 0 be an arbitrary constant. Then
there exists a function f : {0, 1}n×{0, 1}n → {−1, +1} with all of the following
properties:

D×
ε (f) = O(1),

R1/3(f) = Ω(n),

disc×(f) = Ω(1),

disc(f) = O(2−n( 1
2
−ε)).

(See Section 3 for a more detailed statement, with all dependencies on ε
spelled out.) The symbols disc(f) and disc×(f) above stand for the smallest
discrepancy of f under arbitrary distributions and product distributions, re-
spectively. We review the discrepancy of functions and sign matrices thoroughly
in Section 2. For now, it suffices to know that low discrepancy implies high
communication complexity in most models.

A key aspect of Theorem 1.2 is that the function f in question has
exponentially small discrepancy. Indeed, its discrepancy essentially meets the
Ω(2−n/2) lower bound for any function on n bit strings (see Proposition 2.8
below). As a result, f has communication complexity Ω(n) not only in the
randomized model, but also in the nondeterministic and various quantum
models. Furthermore, the communication complexity of f remains Ω(n) even
if one simply seeks a randomized/quantum protocol with advantage 2−n/4 over
random guessing, on every input. Finally, it is clear from our proof (see
Remark 3.10) that f has complexity Ω(n) in the unbounded-error model due
to Paturi and Simon (1986), which has an even weaker success criterion.

To summarize the previous paragraph, f has the highest communication
complexity in all standard models. Yet, the distributional method restricted
to product distributions can certify at best an Ω(1) lower bound.

Finally, Theorem 1.2 improves on our previously obtained exponential
separation for discrepancy (Sherstov 2008). In that earlier work, we constructed
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an explicit matrix A ∈ {−1, +1}2n×2n2

with disc×(A) = Ω(1/n4) and disc(A) =
O(
√

n/2n/4). Theorem 1.2 amplifies that gap to what is essentially optimal,
although the function is no longer explicit.

Complexity measures of sign matrices. We now consider a different
contribution of this work, which pertains to the complexity measures of sign
matrices. This comparatively new area studies matrices with ±1 entries from
a complexity-theoretic point of view, focusing on their analytic rather than
combinatorial structure. The study of sign matrices has strong ties to classical
complexity theory, computational learning, and functional analysis, and has
drawn considerable interest (Ben-David et al. 2003; Forster 2002; Forster et al.
2001, 2003; Forster & Simon 2006; Linial et al. 2007; Linial & Shraibman 2008;
Sherstov 2008).

Fundamental complexity measures of a sign matrix A are:

◦ disc×(A), the smallest discrepancy of A under a product distribution;

◦ sq(A), the statistical-query (SQ) dimension of A viewed as a concept class.
This quantity arises in Kearns’ statistical query model of learning (1993)
and turns out to be intimately related to discrepancy (Sherstov 2008).

◦ dc(A), the dimension complexity of A, also known as sign-rank;

◦ mc(A), the margin complexity of A;

◦ disc(A), the smallest discrepancy of A under an arbitrary distribution.

Precise definitions of these quantities appear in Section 2. Among the early
findings is the following inequality due to Ben-David et al. (2003):

dc(A) 6 O(mc(A)2 log(M + N)) for every A ∈ {−1, +1}M×N .

Linial and Shraibman (2008) showed that mc(A) and 1/ disc(A) are always
within a factor of 8 of each other. The author extended these two results to
the following picture (Sherstov 2008):

∣∣∣∣∣
exponential gap

achievable -�

∣∣∣∣∣
1

disc×(A)
=poly sq(A) 6poly dc(A) 6poly mc(A) ≈ 1

disc(A)
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The symbols 6poly and =poly in the above diagram have their intuitive meaning;
we give precise statements in Section 2.2. The only piece missing from this
diagram is the gap between sq(A) and dc(A), which we left as an open
problem (Sherstov 2008, §7). We solve this problem here, showing that this
gap can be arbitrary :

Theorem 1.3 (SQ dimension vs. dimension complexity). Let ε > 0 be an
arbitrary constant. Then there exists a matrix A ∈ {−1, +1}N×N with

sq(A) = O(1),

dc(A) = Ω(N1−ε).

It is easy to show (see Section 2.2) that dc(A) 6 min{M, N} for every A ∈
{−1, +1}M×N . In this light, Theorem 1.3 gives essentially the best gap that
can exist by definition. This completes our taxonomy to the following overall
picture:

∣∣∣∣∣
arbitrary gap

achievable -�

∣∣∣∣∣
exponential gap

achievable -�

∣∣∣∣∣
1

disc×(A)
=poly sq(A) 6poly dc(A) 6poly mc(A) ≈ 1

disc(A)

Our techniques. An important ingredient in our proof is a simulation due
to Kremer et al. (1999) that relates the one-way communication complexity
of a sign matrix to its Vapnik-Chervonenkis dimension. Another ingredient
is an analytic fact due to Ben-David et al. (2003) about matrices with low
Vapnik-Chervonenkis dimension, which in turn relies on fundamental results
in combinatorics by Alon et al. (1985) and Bollobás (1978). To combine these
ingredients, we use the above taxonomy of complexity measures.

2. Preliminaries

This section surveys facts regarding communication complexity, sign matrices,
and learning theory that figure in our proofs.
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2.1. Communication complexity. We consider Boolean functions of the
form f : X × Y → {−1, +1}, where −1 and +1 correspond to “true” and
“false,” respectively. Typically X = Y = {0, 1}n, but we also allow X and
Y to be arbitrary finite sets, possibly of unequal cardinality. We identify f
with its communication matrix A = [f(x, y)]y∈Y, x∈X . In particular, we use
the terms “communication complexity of f” and “communication complexity
of A” interchangeably (and likewise for other complexity measures, such as
discrepancy). The two communication models of interest to us are the public-
coin randomized model and the deterministic model, both reviewed in Section 1.

For a fixed distribution µ over X × Y , the discrepancy of f is defined as

discµ(f) = max
X′⊆X,
Y ′⊆Y

∣∣∣∣∣∣
∑

(x,y)∈X′×Y ′

µ(x, y)f(x, y)

∣∣∣∣∣∣ .

We define disc(f) = minµ{discµ(f)}. We let disc×(f) denote the minimum
discrepancy of f under product distributions. The discrepancy method is a
powerful technique that gives lower bounds on the randomized and distribu-
tional complexity in terms of the discrepancy:

Proposition 2.1 (see Kushilevitz & Nisan 1997, pp. 36–38). For every
Boolean function f(x, y), every distribution µ, and every γ > 0,

R1/2−γ/2(f) > Dµ
1/2−γ/2(f) > log2

γ

discµ(f)
.

As an illustration, consider the well-studied function inner product
modulo 2, defined on {0, 1}n × {0, 1}n by

ip(x, y) = (−1)
Pn

i=1 xiyi .

The following fact is well-known; see Kushilevitz & Nisan (1997, §3.5) as well
as earlier work (Babai et al. 1986; Chor & Goldreich 1988).

Proposition 2.2. The function ip has discrepancy at most 2−n/2 with respect
to the uniform distribution on {0, 1}n×{0, 1}n. In particular, D×

1/3(ip) = Θ(n)

and R1/3(ip) = Θ(n).

A definitive resource for further details is the book of Kushilevitz and
Nisan (1997).



Communication: Product vs. Nonproduct Distributions 7

2.2. Sign matrices. We frequently use “generic-entry” notation to specify
a matrix succinctly: we write A = [F (i, j)]i,j to mean that the (i, j)th entry
of A is given by the expression F (i, j). A (Euclidean) embedding of a matrix
A ∈ {−1, +1}M×N is a collection of vectors u1, . . . ,uM ∈ Rk and v1, . . . ,vN ∈
Rk (for some k) such that 〈ui,vj〉 · Aij > 0 for all i, j. The integer k is the
dimension of the embedding. The quantity

γ = min
i,j

|〈ui,vj〉|
‖ui‖2 · ‖vj‖2

is the margin of the embedding. The dimension complexity dc(A) is the smallest
dimension of an embedding of A. The margin complexity mc(A) is the minimum
1/γ over all embeddings of A.

Let ei denote the vector with 1 in the ith component and zeroes elsewhere.
The following is a trivial embedding of a sign matrix A = [ a1 | . . . | aN ] ∈
{−1, +1}M×N : label the rows by vectors e1, . . . , eM ∈ RM and the columns by
vectors a1, . . . , aN . It is easy to see that this embedding has dimension M and
margin 1/

√
M. By interchanging the roles of the rows and columns, we obtain

the following well-known fact:

Proposition 2.3. Let A ∈ {−1, +1}M×N . Then

1 6 dc(A) 6 min{M, N},

1 6 mc(A) 6 min
{√

M,
√

N
}

.

Let X be a finite set. For a family C of functions X → {−1, +1}, define
its statistical query (SQ) dimension sq(C ) to be the largest integer d for which
there are functions f1, f2, . . . , fd ∈ C and a probability distribution µ on X
such that ∣∣∣∣ E

x∼µ

[
fi(x)fj(x)

]∣∣∣∣ 6
1

d
for all i 6= j.

For a sign matrix A ∈ {−1, +1}M×N , we define sq(A) to be the SQ dimension of
the rows of A viewed as functions {1, 2, . . . , N} → {−1, +1}. The SQ dimension
is an important quantity in learning theory. It was originally defined as a
complexity measure in Kearns’ statistical query model of learning (1993).

At this point, we have introduced five complexity measures of a sign matrix:
disc×(A), sq(A), dc(A), mc(A), and disc(A). The relationships among them can



8 Alexander A. Sherstov

be stated concisely as follows:

1

disc×(A)
=poly sq(A) 6poly dc(A) 6poly mc(A) ≈ 1

disc(A)

This diagram summarizes work by different authors at different times. We now
traverse it left to right, giving precise quantitative statements.

Theorem 2.4 (Sherstov 2008, Thm. 7.1). Let A be a sign matrix. Then√
1

2
sq(A) <

1

disc×(A)
< 8 sq(A)2.

Theorem 2.5 (Sherstov 2008, Thm. 3.5). Let A be a sign matrix. Then

sq(A) < 2 dc(A)2.

Theorem 2.6 (Ben-David et al. 2003). Let A ∈ {−1, +1}M×N . Then

dc(A) 6 O(mc(A)2 log(M + N)).

Theorem 2.7 (Linial & Shraibman 2008). Let A be a sign matrix. Then

1

8
mc(A) 6

1

disc(A)
6 8 mc(A).

The following observation is immediate from Proposition 2.3 and Theorem 2.7:

Proposition 2.8. Let A ∈ {−1, +1}M×N . Then

disc(A) >
1

8 min
{√

M,
√

N
} .
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2.3. Learning theory. Let X be a finite set, such as X = {0, 1}n. A concept
class C is any set of functions X → {−1, +1}. We identify C with the sign
matrix A whose rows are indexed by the functions of C , columns indexed by
the inputs x ∈ X, and entries given by A(f, x) = f(x). In what follows, we use
C and its corresponding sign matrix interchangeably.

Let µ be a probability distribution over X. Then the following is a natural
notion of distance between functions f, g : X → {−1, +1}:

∆µ(f, g) = P
x∼µ

[
f(x) 6= g(x)

]
.

A concept class C is learnable to accuracy ε and confidence δ under distribution
µ from m examples if there is an algorithm L that, for every unknown
f ∈ C , takes as input i.i.d. examples x(1), x(2), . . . , x(m) ∼ µ and their labels
f(x(1)), f(x(2)), . . . , f(x(m)), and with probability at least 1 − δ produces a
hypothesis h : X → {−1, +1} with ∆µ(h, f) 6 ε. The probability is over the
random choice of examples and any internal randomization in L.

For a sign matrix A (and thus its corresponding concept class), define its
Vapnik-Chervonenkis (VC) dimension vc(A) to be the largest d such that A
features a 2d × d submatrix whose rows are the distinct elements of {−1, +1}d.
The VC dimension is a combinatorial quantity that exactly captures the
learning complexity of a concept class. This is borne out by the following
classical theorem (Vapnik & Chervonenkis 1971; Blumer et al. 1989).

Theorem 2.9 (VC Theorem; see Kearns & Vazirani 1994, Thm. 3.3). Let C
be a concept class and µ a distribution. Then C is learnable to accuracy ε
and confidence δ under µ from

m = O

(
1

ε
log

1

δ
+

vc(C )

ε
log

1

ε

)
examples. Moreover, any algorithm that outputs as a hypothesis some member
of C consistent with the given m examples will successfully learn C .

Theorem 2.9 almost matches the information-theoretic lower bounds on the
number of examples necessary. These lower bounds come in different flavors; for
example, see Kearns & Vazirani (1994, Thm. 3.5). We will need the following
specialized version, which we state with a proof for the reader’s convenience.

Proposition 2.10 (Information-theoretic barrier). Let µ be a probability
distribution and C a concept class such that ∆µ(f, f ′) > ε for every two distinct
f, f ′ ∈ C . Then learning C to accuracy ε/2 and confidence δ under µ requires
log2 |C |+ log2(1− δ) examples.
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Proof. Let L be a learner for C that uses m examples, achieving accuracy
ε/2 and confidence δ. View L as a function L(x(1), y1, . . . , x

(m), ym, r) that
takes labeled training examples and a random string as input and outputs
a hypothesis. With this notation, we have:

E
f∈C

[
P

x(1),...,x(m),r

[
∆µ

(
f, L

(
x(1), f(x(1)), . . . , x(m), f(x(m)), r

))
6

ε

2

]]
> 1−δ.

Reordering the expectation and probability operators yields

E
x(1),...,x(m),r

[
P

f∈C

[
∆µ

(
f, L

(
x(1), f(x(1)), . . . , x(m), f(x(m)), r

))
6

ε

2

]]
> 1−δ.

Thus, there is a fixed choice of x(1), . . . , x(m), r for which

(2.11) P
f∈C

[
∆µ

(
f, L

(
x(1), f(x(1)), . . . , x(m), f(x(m)), r

))
6

ε

2

]
> 1− δ.

With x(1), . . . , x(m), r fixed in this way, algorithm L becomes a deterministic
mapping from {−1, +1}m to the hypothesis space. In particular, L can output
at most 2m different hypotheses. Equation (2.11) says that L succeeds in
producing an ε

2
-approximator for at least (1 − δ) |C | functions in C . Since

no hypothesis can be an ε
2
-approximator for two different functions in C , we

have 2m > (1− δ) |C |. �

For a thorough introduction to computational learning, see the textbook by
Kearns and Vazirani (1994).

3. The communication gap

In this section, we prove our main result concerning communication under
product vs. nonproduct distributions. We first recall an elegant simulation that
relates the communication complexity of a sign matrix to its VC dimension.

Theorem 3.1 (Kremer et al. 1999, Thm. 3.2). Let A be a sign matrix. Let ε
be given with 0 < ε 6 1/3. Then

D×
ε (A) = O

(
1

ε
vc(A) log

1

ε

)
.

Moreover, this communication cost can be achieved with a one-way protocol.
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Proof (Kremer et al. 1999). Let X and Y be the finite sets that index the
columns and rows of A, respectively. Let µ = µX × µY be a given product
distribution. Consider the following public-coin randomized one-way protocol
for A. On input (x, y) ∈ X × Y, Alice and Bob use their shared random bits to
pick points

x(1), x(2), . . . , x(m) ∈ X

independently at random, according to µX . Here m is a parameter to be fixed
later. Next, Bob sends Alice the values

A(y, x(1)), A(y, x(2)), . . . , A(y, x(m)).

At this point, Alice identifies any y′ ∈ Y with

A(y′, x(1)) = A(y, x(1)),

A(y′, x(2)) = A(y, x(2)),

...

A(y′, x(m)) = A(y, x(m)),

and announces A(y′, x) as the output of the protocol.
In learning-theoretic terms, the protocol amounts to Alice learning the

unknown row Ay of the matrix A from random labeled examples distributed
according to µX . By the VC Theorem (Theorem 2.9), any row A′

y consistent
with m = O(1

ε
vc(A) log 1

ε
) labeled examples will, with probability > 1 − ε/2,

have ∆µX
(A′

y, Ay) 6 ε/2. In particular, Alice’s answer will be correct with
probability at least 1− ε (with respect to µX and regardless of Bob’s input y).

To summarize, we have obtained a public-coin randomized one-way protocol
for A with cost m and error at most ε over µ = µX×µY . By a standard averaging
argument, there must be a one-way deterministic protocol with the same cost
and error at most ε with respect to µX × µY . �

Our next ingredient is a combinatorial fact about sign matrices.

Definition 3.2 (Zarankiewicz matrices). Let Z (N, c) denote the family of
N ×N matrices with ±1 entries that contain no submatrix of size c × c with
all entries equal to 1.

A classical result due to Bollobás (1978) states that Z (N, c) contains a
considerable fraction of the matrices in {−1, +1}N×N . On the other hand, Alon
et al. (1985) proved that all but a tiny fraction of the matrices in {−1, +1}N×N

have high dimension complexity. These two results were combined in the work
of Ben-David et al. (2003) to the following effect:
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Theorem 3.3 (Ben-David et al. 2003, Thm. 12). Let c > 2 be a fixed integer.
Then all but a vanishing fraction of the matrices in Z (N, c) have dimension

complexity Ω(N1− 2
c ).

A glance at the proof of Ben-David et al. reveals the following somewhat more
delicate result, which is what we will need in this paper.

Theorem 3.4. Let α > 0 be a suitably small absolute constant. Let c be a
given integer with

2 6 c 6 α

√
log N

log log N
.

Then all but a vanishing fraction of the matrices in Z (N, c) have dimension

complexity at least αN1− 2
c .

We are now in a position to prove the main result of this section, which
contains Theorem 1.2 from the Introduction as a special case.

Theorem 3.5. Let ε be given, 0 < ε 6 1
3
. Then there exists a function

f : {0, 1}n × {0, 1}n → {−1, +1} with all of the following properties:

D×
ε (f) 6 Θ

(
1
ε2

log 1
ε

)
,

R1/3(f) > Θ(n),

disc×(f) > εΘ(1/ε2),

disc(f) 6 O
(
2−n( 1

2
−ε)

)
.

Proof. Let α > 0 be the absolute constant from Theorem 3.4. If ε <
4
α

√
log n/n, the theorem holds trivially for the function inner product

modulo 2 (see Propositions 2.2 and 2.8).
In the contrary case, Theorem 3.4 is applicable with c = 2d1/εe and ensures

the existence of A ∈ Z (2n, c) with dc(A) > α2n(1−ε). Then

disc(A) 6
8

mc(A)
by Theorem 2.7

6 O

(√
n

dc(A)

)
by Theorem 2.6

6 Θ
(
2−n( 1

2
−ε)

)
.(3.6)
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By Proposition 2.1, we immediately conclude that

R1/3(A) > Θ(n).(3.7)

Since every matrix in Z (2n, c) has VC dimension at most 2c, it follows from
Theorem 3.1 that

D×
ε (A) 6 Θ

(
1

ε2
log

1

ε

)
.(3.8)

In light of (3.8), Proposition 2.1 shows that

disc×(A) > εΘ(1/ε2).(3.9)

The theorem follows from (3.6)–(3.9). �

Remark 3.10. As mentioned in the proof, the function f in question satisfies
dc(f) > 2Θ(n). This is equivalent to saying that f has communication complex-
ity Θ(n) in the unbounded-error model of Paturi and Simon (1986).

Remark 3.11. The bound D×
ε (f) 6

(
1
ε2

log 1
ε

)
in Theorem 3.5 can be achieved

even by one-way protocols. This is because we bounded D×
ε (f) using Theo-

rem 3.1, which gives a one-way communication protocol for the task.

4. SQ dimension and dimension complexity

The purpose of this section is to exhibit a large gap between the SQ dimension
and dimension complexity of an N ×N sign matrix. We start with a technical
lemma.

Lemma 4.1 (VC and SQ dimensions). Let C be a concept class. Then

sq(C ) 6 2O(vc(C )).

Proof. Let sq(C ) = d > 2. Our goal is to show that vc(C ) = Ω(log d).
By definition of the SQ dimension, there is a distribution µ and and functions
f1, . . . , fd ∈ C such that

∆µ(fi, fj) >
1

2
− 1

2d
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for all i 6= j. In particular, ∆µ(fi, fj) > 1/5. Thus, the information-theoretic
barrier (Proposition 2.10) shows that learning C to accuracy 1/10 and confi-
dence 1/2 requires

m > Ω(log d)

examples. Yet by the VC Theorem (Theorem 2.9), the number of examples
needed is at most

m 6 O(vc(C )).

Comparing these lower and upper bounds on m yields the desired result. �

We are now prepared for the main result of this section:

Theorem 1.3 (Restated from p. 5). Let ε > 0 be an arbitrary constant. Then
there exists a matrix A ∈ {−1, +1}N×N with

sq(A) = O(1),

dc(A) = Ω(N1−ε).

Proof. Let c = 2d1/εe. By Theorem 3.4, there exists a matrix A ∈ Z (N, c)
with dc(A) = Ω(N1−ε). Since every matrix in Z (N, c) has VC dimension at
most 2c, it follows from Lemma 4.1 that sq(A) 6 2O(c) = O(1). �
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Noga Alon, Peter Frankl & Vojtech Rödl (1985). Geometrical Realization
of Set Systems and Probabilistic Communication Complexity. In Proc. of the 26th
Symposium on Foundations of Computer Science (FOCS), 277–280.
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