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1 Historical background

Another important technique for proving lower bounds in communication complexity comes from
information theory.

In Information Complexity and the Direct Sum Problem for Simultaneous Message Complexity
(FOCS 2001), Chakrabarti, Shi, Wirth, and Yao introduced the notion of information complex-
ity and used it to prove new lower bounds on the direct sum of the equality function.

Follow-up work by Bar-Yossef, Jayram, Kumar, and Sivakumar (An Information Statistics
Approach to Data Stream and Communication Complexity, FOCS 2002) extended the notion of
information complexity to develop a general method for proving strong lower bounds in communi-
cation complexity.

Recent work by Braverman and Rao (some with collaborators Barak and Chen) has extended
the uses of information theory to obtain communication complexity lower bounds, and attempted
to understand information complexity as its own concept.

Today we’ll look at the paper How to Compress Interactive Communication by Barak, Braver-
man, Chen, and Rao (STOC 2010).

2 Information Theory

An important quantity for this technique and information theory in general is entropy. Throughout
these notes, random variables will be denoted by bold capital letters (X, Y, etc.) and the set of
possible values by calligraphic letters (values of X are drawn from X); lowercase symbols represent
individual items in the set (x ∈ X).

Definition The entropy of a random variable X from some distribution over X is defined:

H(X) = −
∑
x∈X

Pr[x = X] log Pr[x = X] = Ex∈X log
1

Pr[x = X]

The conditional entropy is defined likewise, as the expected entropy of random variable Y condi-
tioned on X’s distribution:

H (Y|X) =
∑
x∈X

Pr[x = X] H (Y|x = X) (1)

=
∑

x∈X,y∈Y
− Pr [x = X,y = Y] log(Pr[y = Y|x = X]) (2)
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The mutual information of two random variables is the amount of information that one contains
about the other, and is defined by the change in entropy.

Definition The mutual information of two random variables X and Y is defined:

I (X; Y) =
∑
x∈X

∑
y∈Y

Pr[x = X,y = Y] log
Pr[x = X,y = Y]

Pr[x = X] Pr [y = Y]
(3)

= H(X)−H(X|Y) (4)

And conditional mutual information is similar:

I(X; Y|Z) = H(X|Z)−H(X|Y,Z)

We’re interested in the information that some protocol π transmits about its inputs X and Y.

Definition Given a distribution µ on inputs X and Y, and protocol π, let π(X,Y) denote the
transcript of the protocol and the randomness used. The information cost of π with respect to
µ is defined as:

ICostπ,µ = I(X,Y ;π(X,Y )) = ICext
µ (π)

The information cost captures the information that an eavesdropper would learn from the
transcript π(X,Y) about the inputs X and Y.

Definition Given a distribution µ on inputs X and Y , and protocol π, let π(X,Y ) be the transcript
of the protocol and the randomness used. The information content of π is defined as:

ICµ(π) = I(X;π(X,Y )|Y ) + I(Y ;π(X,Y )|X) = ICint
µ (π)

The information content is the information that the parties themselves learn from the tran-
script π(X,Y).

For both internal and external information cost/content, we can define ICint
µ,ε(f) as the maximum

over all π (such that ∀x∀y Pr [π(x, y) 6= f(x, y)] ≤ ε) of ICint
µ (pi). The value ICext

µ,ε(f) is defined
similarly.

Lemma 1 Given a distribution µ on inputs X and Y and a randomized protocol π,

ICint
µ (π) ≤ ICext

µ (π) ≤ CC(π)

where CC(π) is the communication complexity of protocol π. Also, for all functions f on X × Y,
for all ε:

ICint
µ,ε(f) ≤ ICext

µ,ε(f) ≤ Rpub
µ,ε (f)

Proof The first inequality holds because an eavesdropper will always learn more than the par-
ticipants themselves. Each participant already knows one of the inputs, so for example Alice can
only learn from the bits that Bob sends, and if her x is correlated with Bob’s y, she may not learn
much from these.

The second inequality holds because an eavesdropper can learn at most one bit per bit of
protocol transcript.
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3 Protocol Compression

Given some communication protocol π, can it be shortened? Our particular goal is to try to shorten
π so that its total communication cost is about the same as its information content – no extraneous
bits are sent. We also want to keep the error rate about the same.

We might try to compress each round of the protocol by some encoding. But this will still
require at least one bit sent per round of π, which may be much bigger than the information
content of π.

Compression is hard.
This paper says: forget about keeping the error small when we compress. How low can we get

the communication complexity? Hopefully near the information content.

Theorem 2 There is a universal constant c such that for every distribution µ, every protocol π,
and every ε > 0, there exist functions πx and πy and a protocol τ such that:

1. |πx(X, τ(X,Y))− π(X,Y)| < ε, that is, function πx closely approximates π,

2. Pr[πx(X, τ(X,Y)) 6= πy(Y, τ(X,Y))] < ε, that is, functions πx and πy agree with high
probability, and

3. CC(τ) ≤ c
√

CC(π) ICµ (π) log(CC(pi)/ε)
ε , that is, protocol τ compresses protocol π.

If the players want to run π, they will instead run τ and use the functions πx and πy to
“reconstruct” the effects of running π. Condition 1 says that πx will sample some leaf of the
protocol tree for π which is “close” (in statistical distance) to one sampled by π. Condition 2
enforces that both players sample the same leaf with high probability.

Protocol 3 (π) For our analysis, it will be helpful to phrase the protocol πr (where r are some
fixed random bits) as follows. Each node v of the protocol tree for πr is either owned by Alice or
Bob.

1. The players begin at the root node.

2. If the players are at some node v a leaf, the computation ends with the protocol output
according to that leaf. Otherwise, the player who owns v sends one bit (after possibly using r
to sample a random number and make a probabilistic choice) to the other player to indicate
which child they should move to.

3. Repeat step 2 until the computation ends.

3.1 Constructing τ , πx, and πy

Both players know the protocol tree for π, and the outcome of τ will be that both players agree on
some path from root to leaf in π’s protocol tree.

The general idea of the protocol τ is that each player will (independently) simulate a transcript
of π using his “best guess” of what the other player will do. The players then use lemma 8 to find
the earliest place where their guessed transcripts differ (with high probability and communication
cost polylog in CC), and fix it. They repeatedly perform this repair until they agree on the
entire transcript. The communication cost of this protocol scales with the expected number of
inconsistencies on the path to a correct leaf, which is bounded by

√
CC · IC.
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Protocol 4 (τ) Fix error parameters β and γ. Protocol τ will simulate π by having Alice and Bob
avoid communication by guessing each others’ samples, then correcting these mistakes.

1. Both players sample r from the publicly available randomness; r will be the random bits used
in π.

2. For each non-leaf node v in the protocol tree for πr, both players use public randomness to
uniformly pick kv ∈ [0, 1].

3. Probabilities at nodes. Each player builds his own “guess” of the protocol transcript from
each node in the tree, as follows. Suppose Alice owns node v. If

kv < Pr[PrAv (1) | x = X and πr(X,Y) reaches node v]

then Alice sets the child cA(v) of v to be 0, and otherwise 1. Bob does likewise, using P̂r
B

v (1)
to set the child cB(v) of v.

4. Sampling transcripts. Each player’s “best guess” of the transcript of πr(X,Y) constructed
in this way will be the unique path from the root to a leaf.

5. Amending transcripts. Players use Lemma 8 to repeatedly find (in communication O(log(n/β)
bits) the earliest place where their paths differ, and fix it. They correct

√
CC(π) · ICµ(π)/γ

errors this way.

3.1.1 Probabilities at nodes

Let v be some node in the protocol tree of π. WLOG at node v, it is player x’s turn to speak
(player x owns v). The x player Alice therefore knows the correct probabilities PrAv (0) and PrAv (1)
of the bit he is about to send (which child node the protocol should continue at). The y player

Bob does not know these probabilities, but can estimate them (P̂r
B

v (0) and P̂r
B

v (1)) based on Y
(according to the probability of seeing an 0 or a 1 conditioned on Y and reaching node v).

3.1.2 Sampling transcripts

For every node v in the protocol tree for π, both players have these probabilities (PrAv (0), PrAv (1),

P̂r
B

v (0) and P̂r
B

v (1)). They used shared randomness to pick a shared random number kv at each
node v. WLOG Alice owns node v.

• If kv < PrAv (1) then Alice sets the child cA(v) of v to be 0, and 1 otherwise.

• If kv < P̂r
B

v (1) then Bob sets the child cB(v) of v to be 0, and 1 otherwise.

This sampling method guarantees that if the players’ guesses are close to the correct distribution,
then the probability that they sample the same bit is high. (If the players guesses are close, that
means that this bit in the transcript of π contains very little information content!)

Let v0, . . . , vCC(π) be the correct path in the tree. The node vCC(π) has the same distribution
as a leaf in π. The players’ goal is to find vCC(π) with very little communication.
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Alice has some sequence of nodes vA0 , . . . , v
A
CC(π), where vi+1 = cA(vi), which is the most likely

transcript according to her guesses and the sampled numbers kv. Similarly, Bob has vB0 , . . . , v
B
CC(π).

Note: If these two sequences agree up to the ith node, then they must be correct up to the
ith node. Thus the protocol τ will have Alice and Bob attempt to rectify their entire sequences.
(Once they agree on all the nodes in the sequence, they have a correct transcript!)

3.1.3 Amending Transcripts

The players now must communicate to find the first i where vAi 6= vBi . Then the owner of node
vi−1 sends the correct bit, and the other player corrects the remainder of their transcript guess
vi, vi+1, . . . vCC(π).

They keep fixing their transcripts in this way. By Lemma 8, this can be done with communi-
cation O(log CC(π)/ε).

The total communication cost of τ is bounded by (the number of mistakes that Alice and Bob
correct) times (the communication cost of finding each mistake):

CC(τβ,γ) = O
(√

CC(π) · ICµ(π)
CC(π)/β

γ

)
3.2 Proof of Theorem 2

Our analysis of the protocol τ defined above will yield Theorem 2.

Lemma 5 Let R be the random variable for the public randomness used in π. Let πr be the
(deterministic) protocol π with random bits fixed to be r.

ICµ(π) = ER[ICµ(πR)]

Proof Let µ be some distribution on X, Y. Let R be the random variable for the randomness
used in protocol π.

ICµ(π) = I(X;π(X,Y)|Y) + I(Y;π(X,Y)|X)

= I(X; R, πR(X,Y)|Y) + I(Y; R, πR(X,Y)|X)

= I(X; R|Y) + I(Y; R|X) + I(X;πR(X,Y)|Y,R) + I(Y;πR(X,Y)|X,R)

= I(X;πR(X,Y)|Y,R) + I(Y;πR(X,Y)|X,R)

= ER[ICµ(πR)]

The key insight is that the randomness R is independent of the distribution µ.

3.2.1 Expected Number of Mistakes

Lemma 6 For any two distributions A and B, D(A||B) ≥ |A−B|2.

Proof: homework.

Lemma 7 The expected number of mistakes in simulating π is bounded by
√

CC(π) · ICµ(πr).

Proof There is a mistake at level i only when PrAv (1) ≤ k < P̂r
B

v (1) (WLOG suppose Alice owns
node v, the node they have both reached at depth i).

Using Lemma 6 and Cauchy-Schwartz yields Lemma 7. See the paper for full details.
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3.2.2 Finding the First Bit where the Transcripts Differ

Lemma 8 There is a randomized public coin protocol τ with communication complexity O(log(k/ε))
such that on input two k-bit strings x and y, it outputs the first index i ∈ [k] such that xi 6= yi with
probability ≥ 1− ε if such i exists.

Proof The two parties use hashing and binary search to locate i.
Defining the tree. Fixing some constant C, define a labelled binary tree of depth C log(k/ε)

as follows. Each node will be labelled with the span of indices which parties think contains the
earliest index i ∈ [k] such that xi 6= yi. The root is labelled with the interval [1, k]. For j from 0 to
log k− 1, every node at depth j labelled [a, b] has two children, each labelled with half the interval:
[a, b − k/2j−1] and [a + k/2j−1, b]. Every node at depth ≥ log k has exactly one child, with the
same label as its parent.

This binary tree will serve as the protocol tree for τ , with one notable modification: since τ is
randomized and may make errors, the players are allowed to walk up the tree, effectively “taking
back” a previous round.

Protocol. Starting at the root of the tree, the protocol τ works as follows:

1. The players are at some node v labelled [a, b] in the tree.

2. The players check whether i ∈ [a, b], that is, whether their previous moves were correct. They
use public randomness to pick hash functions and use these to compare the prefixes of x and
y of length a and b, respectively.

If the tests indicate that i ∈ [1, a] or i 6∈ [1, b], then the players move to the parent of v.

Otherwise, the players again use hash functions to decide which child of v to switch to. If
these tests are inconsistent, the players stay at v.

3. Repeat step two C log(k/ε) times.

4. If the final vertex is labelled [a, a], output a. Otherwise conclude that x = y.

Analysis. Step two takes constant communication and is repeated C log(k/ε) times, giving
the desired communication complexity for protocol τ .

If x = y, then the protocol is always correct.
Suppose x 6= y and i is the first index where they differ. As long as the protocol finishes at

some node labelled [i, i] it will be correct; there are many of these nodes, in a long chain, at the
bottom of the tree. Consider directing the edges of the tree to be pointed towards this chain of
nodes.

Notice that at each step, the players move from v to a node w which is closer to this chain
with probability at least 2/3.1

The protocol succeeds as long as the number of correct steps on the tree is at least log k plus
the number of incorrect steps. Let A be the number of correct, and B the number of incorrect
steps (A+B = C log(k/ε)). We want:

A ≥ B + log k

1Or some other probability > 1/2, depending on how the hash functions are selected.
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The expected value of A is 2
3C log(k/ε). The protocol errs only when A differs from this expectation

by 1
6C log(k/ε) − 1

2 log k. Using Chernoff bounds, we can set C to be large enough that the
probability of erring is at most ε.
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