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CS 2429 - Foundations of Communication Complexity

Lecture #8: 7 November 2012

Lecturer: Lila Fontes

Today we’ll cover some recent results from the paper Lower bounds on information complexity
via zero-communication bounds and applications by Kerenidis, Laplante, Lerays, Roland, and Xiao
(FOCS 2012).

We’ll also recall results covered in past lectures from the papers The partition bound for classical
communication complexity and query complexity by Jain and Klauck (CCC 2010) and How to
compress interactive communication by Barak, Braverman, Chen, and Rao.

1 Terminology

For P and Q distributions over X, the statistical distance of P and Q is:

|P −Q| = max
S⊆X

∣∣ Pr [P (S)]− Pr[Q(S)]
∣∣

The KL divergence of P and Q is:

D(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)

Notice that D(P ||Q) = 0 when P ≡ Q.
For some protocol π : X× Y→ Z and distribution µ on X× Y, the information content is:

ICµ(π) = I(X;π(X,Y)|Y) + I(Y;π(X,Y)|X)

. . . where π(X,Y ) is the transcript of π on X and Y (a random variable) and I(A;B|C) = H(A|C)−
H(A|B,C) is mutual information (see previous lecture).

Definition A zero communication protocol π : X × Y → {⊥} ∪ Z for some function f :
X× Y→ Z works as follows:

• Alice gets x ∈ X. Bob gets y ∈ Y.

• Alice performs some computations. Bob performs some computations. They do not send any
messages to each other. If π has public randomness, they can both see the public random
bits.

• Eventually, Alice outputs some za ∈ Z ∪ {⊥} and Bob outputs some zb ∈ Z ∪ {⊥}.

• If za = ⊥ or zb = ⊥, then they abort, and the protocol’s output is ⊥ (abort). Else, if za = zb,
the protocol’s output is also ⊥ (abort). Otherwise, the output is za.

Of course, our goal in writing zero communication protocols is that when both parties do not
abort, Alice and Bob get the same output (za = zb). (We want to minimize the chance that neither
player aborts, but they disagree on the answer.)
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2 Lower bounds

Recall that the partition bound prtε(f) is the optimal value of the following LP.
primal dual

min :
∑

z

∑
R wz,R

∀(x, y) ∈ f−1 :
∑

R:(x,y)∈R wf(x,y),R ≥ 1− ε
∀(x, y) :

∑
R:(x,y)∈R

∑
z wz,R = 1

∀z∀R : wz,R ≥ 0

max :
∑

(x,y)∈f−1(1− ε)µx,y +
∑

(x,y) φx,y
∀z∀R :

∑
(x,y)∈f−1∩R µx,y +

∑
(x,y)∈R φx,y ≤ 1

∀x∀y : µx,y ≥ 0, φx,y ∈ R

From previous lectures, we know that lower bounds given by other techniques are dominated
by the partition bound:

discrepancy bound ≤ rectangle bound ≤ prtε(f) ≤ 2R
pub
ε (f)

Kerenidis et al. define a new bound, the “relaxed partition bound” prtε(f) which sits just below
the partition bound in this hierarchy:

discrepancy bound ≤ rectangle bound ≤ prtε(f) ≤ prtε(f) ≤ 2R
pub
ε (f)

Thus the relaxed partition bound gives stronger lower bounds than all previous techniques (except
the partition bound itself).

The relaxed partition bound is defined as the maximum, over all input distributions µ, of the
value of the following linear program.

min
η,pR,z

1/η subject to:∑
(x,y)∈f−1

µx,y
∑

R:(x,y)∈R

pR,f(x,y) +
∑

(x,y)6∈f−1

µx,y
∑

z,R:(x,y)∈R

pR,z ≥ (1− ε)η (1)

∀(x, y) ∈ X× Y,
∑

z,R:(x,y)∈R

pR,z ≤ η∑
R,z

pR,z = 1

Solutions to the relaxed partition LP can easily be converted to zero communication protocols.
And zero communication protocols can be converted into solutions of the relaxed partition LP.

The parameter η in the relaxed partition LP corresponds to the efficiency of the protocol; η is
the probability that the protocol does not abort. Ideally we want this to be as large as possible.
Line (1) corresponds to the requirement that the protocol is correct enough (when not aborting).

3 Main theorems

Theorem 1 There exists a positive constant C such that for all f : X × Y → Z, for all ε, δ ∈
(0, 1/2], for all distributions µ on X× Y,

ICµ,ε(f) ≥ δ2

C

(
log prt

µ
ε+3δ(f)− log |Z|

)
− δ
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Thus lower bounds given by the relaxed partition bound — or any weaker technique like discrepancy
or the rectangle method – directly translate to lower bounds on information content.1

Theorem 2 (Compression) There exists a universal constant C such that for all distributions µ
on inputs, for all communication protocols π, for all δ ∈ (0, 1), there exists a zero communication

protocol π′ and real λ ≥ 2−C(
ICmu(π)

δ2
+ 1
δ

) such that:2

1. |(X,Y, π(X,Y))− (X,Y, π′(X,Y)|π′(X,Y) 6= ⊥)| ≤ δ
Conditioned on not aborting, the distribution of outputs of π′ is close to the distribution of
transcripts of π in statistical distance.

3. Prrπ′ ,(x,y)∼µ[π′(x, y) 6= ⊥] ≥ (1− δ)λ The probability that π′ does not abort is not too small.

Note in (1) that we are comparing distances of 3-tuples of inputs and transcripts of π. The
protocol π′ will have outputs transcripts of π; Alice and Bob will be trying to simulate a likely
transcript of π without communicating.

Proof [Theorem 1 using Theorem 2] Let π be a randomized communication protocol achieving
ICµ,ε(f). Take π′ given by Theorem 2. Sample z uniformly from Z using public randomness (this
is where the loss of |Z| in efficiency occurs). Sample rπ, the random bits used in protocol π. Let
R = {x| Alice outputs z} × {y| Bob outputs z}. This gives a distribution over labels (R, z) which
satisfies prt

µ
ε+3δ(f).

The rest of the lecture will be devoted to Theorem 2.

4 How does zero communication protocol π′ work?

In the last lecture, we saw how to compress a communication protocol π to a new protocol π′ so
that:

CC(π′) ∈ O
(√

CC(π) ICµ (π)
log(CC(π)/ε)

ε

)
where the outputs of π′ are within statistical distance ε of the outputs of π.

This time, we’re aiming for CC(π′) = 0 and statistical distance within some arbitrary small
δ. Only the probability of not aborting depends on information content, so somehow this extreme
compression — down to zero bits of communication! — is going to push a lot of probability into
aborting. Protocol π′ will abort a lot, depending on the information content ICµ(π) of the original
protocol π.

4.1 Rejection sampling

In the last lecture, we saw how Alice and Bob could make informed guesses about each other’s
inputs and use these to shorten the amount of communication required. Now they must make very
good guesses indeed.

1Prior to this paper, each new lower bound on information for some particular function was its own publication.
This paper gives a general technique for obtaining lower bounds on information!

2Condition (2) is skipped, and has to do with relating π′ to the relaxed partiton LP; see the paper for details.

3



CS 2429 - Foundations of Communication Complexity Lecture #8: 7 November 2012

Protocol 3 (Sample solitaire/Zero-communication rejection sampling)
Fix π : X × Y → U the universe of transcripts. Fix µ a distribution over X × Y. Let τ be the

distribution of π over U for inputs drawn from µ. There are public random bits available, so also
fix rπ the random bits used in π.

Given x ∈ X, y ∈ Y, and parameter ∆, Alice and Bob would like to sample a transcript
u = π(x, y) according to τ . Neither one knows τ , so they’ll have to approximate this as follows:

Setup: For any u ∈ U,

• Alice knows pA(u) the probability of the “Alice bits” in u (where Alice speaks),

• Bob knows pB(u) the probability of the “Bob bits” in u (where Bob speaks),

and τ(u) = pA(u)pB(u). Alice and Bob don’t know τ , but they can build guesses:

• Alice guesses p̂B(u) = Ey∼µPr[π(x, y) = u] and uses this to build her guess of the overall
distribution νA(u) = pA(u)p̂B(u).

• Bob guesses p̂A(u) = Ex∼µ Pr [π(x, y) = u] and uses this to build his guess of the overall
distribution νA(u) = p̂A(u)pB(u).

Draw: They use public coins to sample u← U and α, β ← [0, 1].

Reject: Alice accepts if α ≤ pA(u)/2∆ and β ≤ p̂B(u). Otherwise she rejects (⊥).

Bob accepts if α ≤ p̂A(u) and β ≤ pB(u)/2∆. Otherwise he rejects (⊥).

Note: The adjustment of 2∆ essentially means that Alice is allowing for Bob to overestimate
pA by 2∆, and Bob is allowing Alice to overestimate pB by 2∆.

What can go wrong? There may be some “bad” transcripts where νA or νB is far from τ
(that is, p̂B or p̂A is far from pB or pA, respectively).

B∆(τ) = {u ∈ U | 2∆νA(u) < τ(u) or 2∆νB(u) < τ(u)}

So for the “good” transcripts u 6∈ B∆(τ), both 2∆p̂B(u) ≥ pB(u) and 2∆p̂A(u) ≥ pA(u).

Lemma 4 Let γ = τ(B∆(τ)) be the probability mass of bad transcripts.

1. Pr[Alice accepts] = Pr[Bob accepts] = 1
|U|2∆

2. 1−γ
|U|22∆ ≤ Pr[both accept] ≤ 1

|U|22∆

3. Let τ ′ be the distribution of transcripts yielded by protocol 3 conditional on both players
accepting. Then |τ − τ ′| ≤ γ.

4. ∀τ,∆, ε : τ(B∆(τ)) ≤ D(τ ||νA)+D(τ ||νB)+2
∆

Proof

1. Pr[Alice 6= ⊥] =
∑

u∈U
1
|U| ·

pA(u)
2∆ · p̂B(u) =

∑
u∈U

νA(u)
|U|2∆ = 1

|U|2∆ and similarly for Bob.
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2. If u 6∈ B∆(τ) then 2∆p̂B(u) ≥ pB(u) and 2∆p̂A(u) ≥ pA(u). So if α passes Alice’s check, it
passes Bob’s check too, and similarly for β.

Pr [both accept u] =
1

|U|
· pA(u)

2∆
· pB(u)

2∆
=

τ(u)

|U|22∆
(2)

This gives an easy lower bound on the probability they both accept.

Pr[both accept] =
∑
u∈U

Pr[both accept u] ≥
∑

u6∈B∆(τ)

Pr[both accept u] =
1− γ
|U|22∆

We can also find an upper bound better than just squaring the probability from the first part
of the lemma, since Alice and Bob are not acting entirely independently.

Pr[both accept] =
∑
u∈U

Pr[both accept u]

=
∑
u∈U

1

|U|22∆
·min(pA(u)/2∆, p̂A(u)) ·min(pB(u)/2∆, p̂B(u))

≤
∑
u∈U

τ(u)

|U|22∆
=

1

|U|22∆

3. Let Pr[both accept] = η ∈ [ 1−γ
|U|22∆ ,

1
|U|22∆ ]. We want that ∀S ⊆ U, τ(S)− τ ′(S) ≤ γ.

τ(S)− τ ′(S) = τ(S ∩B∆(τ))− τ ′(S ∩B∆(τ)) + τ(S ∩B∆(τ))− τ ′(S ∩B∆(τ))

≤ γ − 0 + τ(S ∩B∆(τ))− τ ′(S ∩B∆(τ))

= γ + τ(S ∩B∆(τ))− τ(S ∩B∆(τ)

|U|22∆η
by equation (2) above

= γ + τ(S ∩B∆(τ))
(
1− 1

|U|22∆η

)
≤ γ because η ≤ 1

|U|22∆

4. Homework. Alternatively, available in Mark Braverman’s Interactive information complexity
(STOC 2012).

4.2 Assembling π′

Is protocol 3 good enough to get our zero-communication protocol? It has good correctness (con-
dition 3) but its efficiency is too small (condition 2).

In particular, we’d like to eliminate the dependence on |U|.
There is some correlation between Alice not aborting and Bob not aborting, so we will have

them repeat protocol 3 many times. Then Alice and Bob (still without communicating!) will try
ty agree on which of the trials to pick.

This ends up being enough to eliminate the dependence on |U|, although it will add some
complication.

(In notes to follow, many extraneous constants have been removed to simplify the reading
experience. Refer to original paper for precise statements.)
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Protocol 5 (Zero communication protocol π′)
Everyone knows the protocol π, µ the distribution on inputs, δ > 0, and ICµ(π) > 0.
Alice gets x ∈ X, Bob gets y ∈ Y. The protocol π′ proceeds as follows:

Setup: Alice builds pA, p̂B as before. Bob builds pB, p̂A.

Set ∆ = I/δ2, T = |U|2∆ ln(1/δ), and k = ∆ + log
( log2(δ)

δ

)
.

Sample: Repeatedly sample transcripts (using protocol 3) T times.

Alice produces a list (a1, a2, . . . , aT ) ∈ (U× {⊥})T , Bob produces a list (b1, b2, . . . , bT ).

(These lists contain many ⊥s, but if ai 6= ⊥ then ai = bi.)

Coordinate: Use public coins to fix h : [T ]→ {0, 1}k and r ∈ {0, 1}k.

Alice finds the smallest i such that ai 6= ⊥. If h(i) = r, Alice outputs ai; otherwise she aborts.

Bob finds the smallest j such that bj 6= ⊥ and h(j) = r. If there is none, he aborts; otherwise,
he outputs that bj.

Lemma 6 Let D be the event that the inputs have large divergence: D(τ ||ηA) or D(τ ||ηB) > I/δ.
Let C be the event that there is a collision: ∃i 6= j such that h(i) = h(j) = r.

1. Inputs rarely have large divergence: Pr(x,y)∼µ[D] ≤ δ/4

2. Collisions are rare: ∀x∀y Prrπ′ [C] ≤ δ/2k+∆

3. π′ does not abort too much (when the divergence is good):

∀x∀y if ¬D then Prrπ′ [π
′(x, y) 6= ⊥] ≥ 1−δ

2k+∆ .

5. ∀π∀µ∀δ, π′ satisfies: ∀x∀y such that ¬D, let π′6⊥(X,Y) be the distribution of π′(X,Y) con-
ditioned on not aborting. Then:

|π(X,Y)− π′6⊥(X,Y)| ≤ 3δ/4

For proof of Lemma 6 (and its omitted parts), see the paper.

The zero communication protocol π′ given by protocol 5 is sufficient to prove the compression
theorem.

Proof [Theorem 2 using Lemma 6]

1. Part 1 follows from parts 1 and 5 of the lemma.

3. Part 3 follows from parts 1 and 3 of the lemma.
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