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1 Dynamic Problems

In the setting of dynamic problems we are given some initial state of the data and have to support
different operations on it. Operations are either updates to or queries on the data and we are
interested in giving lower bounds for the operations, assuming we had some time to pre-process
the initial data. Some examples of dynamic problems are:

• Dynamic Shortest Path

– Given a directed graph G.

– Updates consist of insertions and deletions of edges.

– Queries ask for the shortest path between two given nodes u and v.

• Maximum Matrix Element

– Given an integer matrix M .

– Updates increment either a whole row or a whole column of M by one.

– Queries ask for the maximum element of M .

Attempts for lower bounds often looked at the cell-probe model, where we assume computation
is free and are only interested in the number of memory cells accessed. Clearly every lower bound
in the cell-probe model also holds in the Word RAM-model.

Let N be the size of the inputs to the problems (i.e. the size of the graph or the size of
the matrix, in the problems above), then we do not have solutions with pre-processing time O(N ·
poly log(N)) and time per operation of O(poly log(N)). Neither do we have matching lower bounds
and especially in the cell-probe model, the best we can do is Ω(log(N)) per operation.

Since the search for direct lower bounds of dynamic problems was rather slow, it is worth
exploring other paths. We define a dynamic version of the set-disjointness problem, and will use it
as a proxy and show that lower bounds for it would translate to many dynamic problems. While
we cannot actually prove the necessary lower bounds for this new problem either, we have reason
to believe that they hold since we can show that they are implied by a well accepted conjecture.

1.1 The Multiphase Problem

Definition [Pǎtraşcu] The multiphase problem consists of three phases and is a dynamic version
of set-disjointness. In each phase we have access to all the memory written in the previous phases.

Phase I : Given k sets S1, . . . , Sk ⊆ [n] and time O(nk · τ) to process them.
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Phase II : Given another set T ⊆ [n] and time O(n · τ) to process it.

Phase III : Given i ∈ [k], decide whether Si ∩ T = ∅ in time O(τ).

Note that τ serves as a proportionality factor w.r.t the input size of each phase. Clearly the
only interesting cases are τ < n, otherwise the computation in phase III can just compare every
element in Si and T . The following conjecture about the hardness of the multiphase problem is
currently open.

Conjecture 1 (Pǎtraşcu) There exist γ > 1, δ > 0 such that for k = Ω(nγ) any solution to the
multiphase problem has τ = Ω(nδ) (in the Word RAM Model).

The conjecture says that for k big enough but still polynomial in n, we cannot solve the multiphase
problem in poly log(n) time.

1.2 Reductions to dynamic problems

Theorem 2 (Pǎtraşcu) The dynamic shortest path problem does not have a O(Npoly log(N))
pre-processing time and O(poly log(N)) time per operation solution under the multiphase hardness
conjecture (Conj. 1), where N denotes the size of the input graph.

Proof We assume for contradiction that we have a solution for the dynamic shortest path problem
with pre-processing time O(Npoly log(N)) and time per operation O(poly log(N)) and show how
to solve the multiphase problem efficiently (τ = O(poly log(n)).

Phase I : Given S1, . . . , Sk ⊆ [n], create the graph in Fig. 1 in O(nk · poly log(nk)) time (N = nk).

Phase II : Given set T ⊆ [n], add the edges depicted in Fig. 2. Taking time O(n · poly log(nk)).

Phase III : Given i ∈ [k], test if the shortest path from Si to T is 2 and answer yes. Otherwise answer
no. This takes time O(poly log(nk)).

In the resulting graph there is a path from Si to T iff Si ∩ T 6= ∅. We get for k = Ω(nγ) a value of
τ = O(poly log(nk)) = O(poly log(n)), contradicting τ = Ω(nδ).

Theorem 3 (Pǎtraşcu) The maximum matrix element problem does not have a O(Npoly log(N))
pre-processing time and O(poly log(N)) time per operation solution (N being the size of the input
matrix) under the multiphase hardness conjecture (Conj. 1).

Proof We again assume that we have an efficient solution for the maximum matrix element
problem with pre-processing time O(Npoly log(N)) and time per operation O(poly log(N)), and
construct an efficient solution for the multiphase problem.

Phase I : Given S1, . . . , Sk ⊆ [n], construct a matrix M ∈ {0, 1}k×n (note N = nk) where M [i][j] = 1
iff j ∈ Si. This takes time O(nk · poly log(nk)).

Phase II : Given set T ⊆ [n], increment the columns in T . Taking time O(n · poly log(nk)).

Phase III : Given i ∈ [k], increment the i-th row and then test if the maximum element is 3 and answer
yes if it is. Answer no otherwise. Taking time O(poly log(nk)).

The resulting maximum element is either 2, if Si ∩ T = ∅ or 3, if Si ∩ T 6= ∅. We again get
τ = O(poly log(n)) for k = Ω(nγ).
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Figure 1: Graph G = (V,E) after Phase I
V = {S1, . . . , Sk, 1, . . . , n, T},
E = {(Si, j)|j ∈ Si}. All edges weight 1.
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Figure 2: Graph after Phase II.
Add edges (j, T ) for each j ∈ T .
All edges weight 1.

1.3 Supporting the Multiphase Hardness Conjecture

One reason we believe the multiphase hardness conjecture is because we can show that it holds, if
the well known 3-SUM problem has a Ω(n2) lower bound.

Definition [Erickson’95] 3-SUM problem

• Input: A set of numbers S of size n = |S|.

• Output: A triple si, sj , sk ∈ S, such that si + sj + sk = 0.

Theorem 4 3-SUM is solvable in O(n2).

Proof The following algorithm solves 3-SUM in time O(n2).

3-SUM(S)

1 Sort s1 ≤ s2 ≤ · · · ≤ sn in increasing order.
2 for i = 1, . . . , n

// Looking for triples si + sj + sk = 0, with i ≤ j ≤ k.
3 j = i.
4 k = n.
5 while k ≥ j
6 if si + sj + sk = 0
7 return 1.
8 if si + sj + sk > 0
9 k−−.

10 else
11 j++.
12 return 0.

The algorithm clearly runs in time O(n2) (O(n log(n)) for sorting and O(n) for each i). Moreover
before each step of the inner while loop, the invariant holds that there are no solutions including
elements si and sl for l 6∈ {j, . . . , k}.
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Conjecture 5 (Gajentaan,Anka’95) 3-SUM has a Ω(n2) lower bound.

Theorem 6 (Pǎtraşcu) Under the 3-SUM lower bound conjecture (Conj. 5) the multiphase prob-
lem with k = Ω(n2.5) requires τ ≥ n0.5−o(1) in the Word RAM model.

Proof [Outline] The proof first transforms a lower bound for 3-SUM to a lower bound for a version
of 3-SUM called Convolution-3-SUM. From there it transforms the lower bound to the triangle
reporting problem in a graph. Finally it shows how triangle reporting can be implemented using
the multiphase problem, proving τ ≥ n0.5−o(1) as long as k = Ω(n2.5).

2 The Advice Model

While the multiphase problem is a dynamic version of set-disjointness, we can also formulate set-
disjointness in a special version of the three player number on forehead model, which we will call
advice model.

Definition [Pǎtraşcu] The advice model:
Given a function f : X × Y → {0, 1} we define SELk×1f : [k]×X k × Y → {0, 1} as

SELk×1f (i, x1, . . . , xk, y) = f(xi, y).

In the advice model, we have three players Alice, Bob and Carmen, who get the following infor-
mation:

• Alice: x1, . . . , xk, y.

• Bob: i, y

• Carmen: i, x1, . . . , xk.

A protocol in the advice model then describes how Alice first sends some advice privately to
Bob. After that Alice remains silent and Bob (knowing Alice’s advice) and Carmen engage in a
two-player protocol until they have computed the answer. The last bit send between Bob and
Carmen is assumed to be the result SELk×1f (i, x1, . . . , xk, y) = f(xi, y).

We will denote for a protocol π by CCA,B(π) and CCB,C(π) the total amount of advice given
by Alice to Bob and the number of bits exchanged in the two player protocol between Bob and
Carmen, respectively. Any non-trivial protocol π will adhere CCA,B < k, as otherwise Alice could
just send a bit-string of length k with the answers for every possible i. We therefore will usually
assume CCA,B = o(k)

The advice model is visualized in Fig. 3.

2.1 Connection to the multiphase problem

We will now look at the set-disjointness function DISJ in the advice model. The function DISJ(x, y)
takes 0 if x ∈ {0, 1}n and y ∈ {0, 1}n (when viewed as subsets of [n]) are disjoint and 1 otherwise.
Formally

DISJ(x, y) =

{
1, if ∃j : xj = yj = 1

0, otherwise
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CCAB(π) = o(k)
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x1, . . . , xk, y i, y

i, x1, . . . , xk

Figure 3: Visualization of a protocol π in the advice model. Alice first sends her advice privately
to Bob, who then uses the advice and initiates a two-player communication protocol with Carmen
to determine the answer f(xi, y).

Comparing SELk×1DISJ to the multiphase problem (that is comparing set-disjointness in the advice
model and as a dynamic problem), one notices a lot of similarities. In the multiphase problem we
are given sets x1, . . . , xk and y in the first two phases, respectively. This is exactly the input, which
Alice gets in SELk×1DISJ. Then in Phase III the query i is revealed, corresponding to Bob and Carmen
knowing i.

We make this notion precise by conjecturing a lower bound on SELk×1DISJ and showing that it
implies the hardness conjecture of the multiphase problem.

Conjecture 7 (Pǎtraşcu) Let π be a protocol in the advice-model solving SELk×1DISJ and having
complexity

• CCAB(π) = n ·M

• CCBC(π) = M

for some M . Then there are constants γ > 1, δ > 0 such that for k = Θ(nγ) it holds that
M = Ω(nδ).

Theorem 8 (Pǎtraşcu) The SELk×1DISJ hardness conjecture (Conj. 7) implies the multiphase prob-
lem hardness conjecture (Conj. 1).

Proof The proof works in the Word RAM, as well as the stronger cell-probe model. Let in the
following ω = O(log(n)) be the size of a cell. We describe a protocol π in the advice model solving
DISJ and using a solution to the multiphase problem for some τ .

Alice gets x1, . . . , xk, y and can therefore simulate phases I and II of the solution for the multiphase
problem. Alice sends a list of all the cells she changed during phase II to Bob, together with
their new value. Since phase II can only take time O(n · τ), the message Alice sent as advice
is O(ω · n · τ).

Bob after receiving the advice from Alice and knowing i, starts executing the calculations of phase
III. Whenever the calculation accesses a cell, Bob checks if he already knows the value of the
cell from the message he got from Alice (that happens whenever the cell was accessed during
phase II). Otherwise, Bob asks Carmen for help by sending her the address of the cell he
wants to know (ω bits). Carmen knows x1, . . . , xk and can therefore simulate the whole first
phase and thus answer all of Bob’s questions about cells after the first phase.
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The communication between Alice and Bob was CCAB(π) = O(ω · n · τ) = O(n1+ε · τ) (for any
ε). Phase III takes O(τ) time and even if Bob has to ask Carmen for every single cell, the
communication between Bob and Carmen will not exceed O(τ · ω) = O(nε · τ). If we then have
a lower bound for M = nε · τ = Ω(nδ) for SELk×1DISJ then we directly get a lower bound of τ =
Ω(nδ−ε) = Ω(nδ

′
) for the multiphase problem.

At this point we can summarize the relationship between the problems discussed so far. The
newly defined multiphase problem allows easy reductions to many dynamic problems, such as the
dynamic shortest path or maximum matrix element problem. There is an open conjecture for the
hardness of the multiphase problem and while we can neither prove nor refute it, there is some
evidence that it holds since it is implied by two other hardness conjectures: the hardness of 3-SUM
and the lower bound conjectures for set-disjointness in the advice model. We refer to Fig. 4 for an
overview.

3-SUM

Multiphase

Dyn. Shortest Path, Dyn. Graph Connectivity, . . .

SELk×1Disj

Figure 4: Relationship between 3-SUM, dynamic problems, the multiphase problem and set-
disjointness in the advice model. An edge from A to B indicates that the hardness of A, as
conjectured, implies the hardness of B.

2.2 Connections between the advice model and two-player communication com-
plexity

Generalizing the argument from the hardness conjecture of SELk×1DISJ to other functions, we might
develop the intuition that, whenever Alice only gives advice o(k), then for a large portion of the
input-cases x1, . . . , xk she does not give any advice at all. Bob and Carmen then basically end up
with no advice and have to execute a normal two-player protocol from scratch.

More formally, we might think that for every function f , for every protocol π solving SELk×1f

in the advice model, it holds that

CCA,B(π) = o(k)⇒ CCB,C(π) = Ω (CC(f))

where CC(f) is the two-player communication complexity of f .
Surprisingly, this intuition does not hold. Neither for deterministic nor for randomized proto-

cols.
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2.2.1 EQ in the deterministic case

A counter example to the above intuition in the deterministic case is equality. That is, the problem
EQ, defined as

EQ(x, y) =

{
1, if x = y

0, otherwise

we know that the two-player communication complexity is Ω(n) in the deterministic setting. In the
following we describe an easy deterministic advice model protocol for SELk×1EQ with only O(log(k))
communication cost.

Alice gets x1, . . . , xk, y and determines the smallest integer j, such that xj = y. If there is no such
j, set j = 0. Alice then sends j privately to Bob.

Bob passes the advice he gets from Alice on to Carmen.

Carmen receives the advice j. If it is j = 0, then she can answer 0 directly as none of the xi are equal
to y. Otherwise, she looks up the corresponding xj and now knows y = xj . Carmen can then
test if xi = xj holds. If yes she answers 1 and 0 otherwise.

The protocol is deterministic and the number of bits sent is CCA,B = CCB,C = log(k) and therefore
CCB,C � CC for k = O(poly(n)).

2.2.2 Derandomization

A more general attack on our intuition is provided by the following derandomization theorem.

Theorem 9 (Chattopadhyay, Edmonds, Ellen, Pitassi) If there is a randomized protocol πR

with error ε in the the advice model, then we can construct a deterministic advice model protocol
πD calculating the same function with

CCA,B(πD) = O
(

log(k)

ε2
·
(
CCA,B(πR) + log(kn)

))
CCB,C(πD) = O

(
log(k)

ε2
·
(
CCB,C(πR) + log(kn)

))
Proof [Outline] The proof works in two steps. It first shows that the number of random-bits used
by πR cannot be too large (O(log(nk))) and then shows that there is a particular set of random
strings, such that the majority answer over them is correct for all inputs.

The theorem says that for any constant ε and values of k not too big (k = O(poly(n), for
example) we can derandomize at the cost of a factor of log(n). This directly implies, that all
problems which are easy in the two-player randomized setting will also be easy in the deterministic
advice model.
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2.2.3 Hard randomized functions

The question remains whether there are also functions which are hard in the two-player randomized
setting but easy in the advice model. It turns out that there are such functions, as stated by the
following theorem.

Theorem 10 (Chattopadhyay, Edmonds, Ellen, Pitassi) There exists a boolean function f
with two-player randomized communication complexity Ω(n) such that SELk×1f has a deterministic
advice model protocol π with

CCA,B(π) = CCB,C(π) = O(log2(n))

for k = O(poly(n)).

Proof [Outline] In the proof we first build a randomized protocol in the advice model and then
derandomize it. The randomized protocol implements a learning algorithm. That is, Alice tries to
teach y to Bob by sending him a set of samples (j, f(xj , y)). Results from learning theory relate the
number of samples needed to the Vapnik-Chervonenkis dimension of the function-matrix of f and
it is known that there are functions f with high randomized two-player communication complexity
but constant Vapnik-Chervonenkis dimension.

2.3 Upper bounds for set-disjointness in the advice model

The following advice model protocol π upper bounds the complexity of SELk×1DISJ by

CCA,B(π) = CCA,B(π) = O
(√
n log(k)

)
Note that for k = O(poly(n)), the complexity is almost O(

√
n). That is for k = O(poly(n)) we get

CCA,B(π) = CCA,B(π) = O
(
n0.501

)
.

Alice gets x1, . . . , xk, y and executes the following algorithm

Alice(x1, . . . , xk, y)

1 S = ∅.
2 for j = 1, . . . , k

// Loop-Invariant: S ∩ y = ∅.
3 if xj ∩ y = ∅ ∧ |([n] \ S) ∩ xj | ≥

√
n

4 Send index j to Bob.
5 S = S ∪ xj

Bob forwards the advice he gets from Alice to Carmen.

Carmen gets the advice from Bob and knowing x1, . . . , xk she can reconstruct the set S for any step
j. Let M ⊆ [k] be all the indices sent as an advice by Alice. Carmen then proceeds with the
following algorithm
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Carmen(x1, . . . , xk, i,M)

1 if i ∈M
// xi ∩ y = ∅ must hold as i was added to M .

2 return 0
else

// Determine the set S when i was processed.
3 S =

⋃
j∈M∩[i] xj .

4 if |([n] \ S) ∩ xi| <
√
n

// It holds that S ∩ y = ∅, thus xi ∩ y = (([n] \ S) ∩ xi) ∩ y.
// Brute force over the elements in ([n] \ S) ∩ xi.

5 for j ∈ ([n] \ S) ∩ xi
6 Ask Bob whether j ∈ y.
7 if Yes
8 return 1.
9 return 0.

10 else
// It must hold that xi ∩ y 6= ∅, since |([n] \ Si) ∩ xi| ≥

√
n yet i is not in M .

11 return 1.

Analyzing the amount of advice given by Alice, we note that each index j sent by Alice is of
length log(k) and whenever it is sent, then the size of S increases by at least

√
n. The total number

of times lines 4 and 5 are executed in Alice is therefore bounded by n√
n

=
√
n and the total advice

given by Alice amounts to CCA,B = O(
√
n · log(k)).

The interaction between Bob and Carmen consists of Bob forwarding the advice from Alice and
Carmen asking Bob for help in line 6 of Carmen. Each such query involves Carmen sending the
index j of size log(k) and Bob answering with one bit. The total amount of queries is bounded by
|([n] \ S) ∩ xi| ≤

√
n and we get CCB,C = O(

√
n · log(k)).

3 Restricted Advice Models

Looking at the above protocol for SELk×1DISJ one sees that the protocol does not actually use the full
power of the advice model. On one hand, the advice sent by Alice is less than the o(k) she is entitled
to. On the other hand, the interaction between Bob and Carmen is quite limited. That is, Carmen
could just have combined all her

√
n queries and sent them in one message of size O(

√
n log(n)) to

Bob. Bob would not have had to actually answer the queries but could have computed the answer
himself and terminated the protocol.

Those two attributes of the protocol give rise to study two different restricted versions of the
advice model.

3.1 Lower bounds via Direct Product Theorems

We first explore the restricted setting when limiting the advice Alice can give.

Theorem 11 (Klauck) Set-disjointness has a strong direct product theorem. That is there ex-
ist constants 0 < β < 1 and α > 0 such that every randomized protocol computing DISJk with
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DISJk(x1, . . . , xk, y1, . . . , yk) = (DISJ(x1, y1), . . . ,DISJ(xk, yk)) using at most βkn bits of commu-
nication has worst case success probability less than 2−αk.

The theorem carries over to the advice model:

Theorem 12 (Chattopadhyay, Edmonds, Ellen, Pitassi) There exist constants 0 < β < 1

and α > 0 such that for every deterministic protocol π computing SEL
√
n×1

DISJ it holds that

CCA,B ≤ α
√
n⇒ CCB,C ≥ β

√
n

Proof [Outline] The proof works by contradiction, assuming that there is such an efficient, deter-

ministic protocol for SEL
√
n×1

DISJ . From that, one can build a deterministic protocol for DISJk for
every distribution µ over the inputs. Applying Yao’s min-max principle then gives a contradiction
to the direct product theorem for set-disjointness.

It is worth noting that the upper bound for SELk×1DISJ described in section 2.3 with k = Θ(
√
n)

matches this lower bound up to a factor of log(n).

3.2 Limited Rounds

For the second variant of restricting the advice model, we define a 1.5 round protocols.

Definition [Chattopadhyay, Edmonds, Ellen, Pitassi] A 1.5 round (m, l, q)-protocol π is a protocol
where

Alice sends a message A of size CCA,B(π) = m = o(k) privately to Bob.

Bob, without looking at i, sends a message B = B(A, y) of length l to Carmen.

Carmen sends a message C of length q back to Bob.

Bob knowing i, y, A,C calculates the result.

Since Bob does not look at i when sending his message to Carmen, we say that he only participates
in half a round. Note that Alice could calculate the message B as well and we can think of the
message B as just being a substring of A of length l.

We note that the protocol realizing the upper bound for SELk×1DISJ from section 2.3 is a 1.5 round
(O(n0.501, n0.501, n0.501)-protocol (for k = O(poly(n))).

The following two theorems describe lower bounds for the set-disjointness and inner product
functions in the 1.5 round advice mode. Both proves work by giving a compression argument, lower
bounding the communication complexity between Bob and Carmen.

Theorem 13 (Chattopadhyay, Edmonds, Ellen, Pitassi) For every 1.5 round (m, l, q)-protocol
computing SELk×1DISJ, we have l · q ≥ n

35 provided k ≥ 300n(n+m).

Theorem 14 (Chattopadhyay, Edmonds, Ellen, Pitassi) Let α > 2 be some constant. For

every 1.5 round (m, l, q)-protocol computing SELk×1IP , we have (l+ q) ≥ n(α−2)
α provided k ≥ α(n+

m).
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