
CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

CS 2429 - Comm. Complexity: Applications and New Directions

Distributed Computing and Communication Complexity

Lecturer: Trevor Brown

In these notes, we study the intersection of communication complexity and distributed com-
puting. To understand why distributed computing researchers care about communication com-
plexity tools and results, we briefly turn our attention to distributed computing. In traditional
distributed computing models, local computation is free, and communication between parties is
expensive. Typical complexity measures include the number of messages sent (message complex-
ity), the total number of bits sent (bit complexity), and the total number of rounds of computation
in synchronous models (round complexity). Communication complexity is interested in these same
complexity measures, and the most common communication complexity models are very similar
(in some cases identical) to distributed computing models. In part, this is because communica-
tion complexity emerged from the study of distributed computing, and early interest in its models
was driven by applications in distributed computing. For example, number-on-forehead models,
wherein each player can see only the inputs of other players, were initially considered unrealistic
(and less interesting) because they did not coincide with distributed computing models. In contrast,
number-in-hand models, wherein each player sees only her own input, can be applied immediately
to distributed computing problems, and have been studied extensively.

1 k-party communication complexity models

1.1 Blackboard model

In the blackboard model, players communicate by writing on a shared blackboard. Players take
turns writing a bit, and the protocol decides who goes next. Each player sees everything written
to the blackboard. When there are k players, each bit written to the blackboard is broadcasted to
every player, so this model is very powerful. (In a message passing model, a player might have to
send k messages to simulate writing a single bit in the blackboard model.)

1.2 Point-to-point channel model

A communication graph determines which players can communicate. Each player has a direct com-
munication channel with each neighbour in the communication graph. For simplicity, the commu-
nication graph is usually assumed to be fully connected (meaning each player pi can communicate
directly with each player pj). Figure 1 depicts a 4-party instance of this model.

Synchronous version. The computation is divided into rounds. In each round, each player
sends a message and receives all incoming messages. This model is the same as the synchronous
message passing model in distributed computing.

Asynchronous version. In this model, there are no rounds of communication. Each player
has an inbox that behaves like a FIFO queue. Messages can be delayed for an arbitrarily long time,

1

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

Figure 1: 4-party instance of the point-to-point channel model

Figure 2: k-party instance of the coordinator model

but any message sent will eventually arrive in its recipient’s inbox. This model is the same as the
asynchronous message passing model in distributed computing.

1.3 Coordinator model

The coordinator model is a message passing model in which k players can communicate only with
a special coordinator player C (k + 1 parties in total). This is a special case of the point-to-point
channel model, where the communication graph contains edges only from C to each of the k players.
See Figure 2 for a depiction of the k-party coordinator model.

Synchronous version. In each round, every player sends a message to C, and C sends a
(different) message to each player.

Asynchronous version. One can still think of the computation as being divided into rounds,
but the length of time to complete each round can be different. C acts as a scheduler. A round
consists of C sending a message to some player pi, and pi responding.

See [3] for a more detailed description of the (a)synchronous point-to-point channel and coor-
dinator models, and for results on the communication overhead of having these models simulate
one another.

2 Symmetrization

In 2012, Philips, Verbin and Zhang [4] introduced symmetrization, which is a technique for
obtaining k-party lower bounds from 2-party lower bounds. The high level idea is to perform a
reduction that computes a 2-party function f2(x, y) if we are given a protocol to compute a k-party
function fk(I1, I2, ..., Ik). The goal of the symmetrization technique is to show that computing fk
requires roughly k times as much communication as computing f2. In this section, we focus on the
coordinator model with public coin (shared) randomness.

2

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

Figure 3: 2-party simulation of a k-party protocol in the coordinator model

2.1 The technique

Given a protocol Pk that computes fk, we design a protocol P2 to compute f2. First, we find a
hard input distribution for f2. Then, Alice and Bob use inputs drawn from this hard distribution
to construct symmetric inputs I1, I2, ..., Ik for fk. In this context, a set of k inputs drawn from
a distribution µ is symmetric if players’ inputs can be interchanged without changing the input
distribution. Alice and Bob use the inputs they construct to simulate an execution of Pk, and use
the output of Pk to solve for f2.

Simulating Pk. Alice uniformly chooses a random player pi to simulate. Since randomness is
shared, Bob knows which player Alice will simulate. Bob simulates the other k − 1 players and
coordinator C. This scenario is depicted in Figure 3. Any time pi sends a message to C, Alice
sends a message to Bob. Any time C sends a message to pj , Bob sends a message to Alice. All
other messages sent in Pk are internal to Bob, so he can simulate the transmission and receipt of
the message entirely in his internal state (requiring no communication).

Obtaining a lower bound. We use Cost(P2) to denote the communication used by P2 on input
(x, y). Similarly, Cost(Pk) denotes the communication used by Pk on input (I1, I2, ..., Ik). Since
inputs are symmetric, in expectation, P2 sends at most a 1/k fraction of the bits sent by Pk. To see
why, note that, when Alice uniformly randomly chooses her player pi to simulate, she is effectively
choosing an edge (pi, C). This edge is the only edge out of k edges in the communication graph
for protocol Pk that causes communication between Alice and Bob in P2. Alice is equally likely to
choose any edge between the coordinator and a player so, in expectation, the communication along
the edge she chooses can be at most a 1/k fraction of the total communication over all k edges.
Therefore, E[Cost(P2)] ≤ (1/k)Cost(Pk). Equivalently,

Cost(Pk) ≥ kE[Cost(P2)].

2.2 Preliminaries

Distributional communication complexity Dµ
ε with error ε and input distribution µ is defined as:

Dµ
ε = minP maxx cost(P (x))µ(x),

where cost(P (x)) is the communication needed to run protocol P with input x. In other words,
Dµ
ε worst-case communication performed by the best protocol, which is the protocol that does the

least communication on its worst input.
Since the k-party communication is k times the expected communication for the 2-party protocol,

we need some notion of expected communication complexity. Expected distributional communica-

3

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

tion complexity E[Dµ
ε] (a slight abuse of notation) with error ε and distribution µ is:

E[Dµ
ε] = minP Ex[cost(P (x))µ(x)].

Expected distributional communication complexity is the same as distributional communication
complexity, except that the expected value over all inputs x is taken instead of the maximum over
x. It follows that Dµ

ε ≥ E[Dµ
ε]. Then, from Yao’s minimax theorem we obtain the following.

Rε ≥ Dµ
ε ≥ E[Dµ

ε]

We will use a simple information theoretic lemma from [4] to obtain lower bounds on the
following two sections.

Lemma 1 Suppose Alice and Bob have uniform random n-bit inputs. For Alice to learn Bob’s
input with probability (1− ε), Bob must send (1− ε)n bits, in expectation.

2.3 Easy lower bound: k-XOR w/coordinator

In the coordinate-wise k-XOR problem, k players have inputs I1, I2, ..., Ik, each an n-bit string.
The output is an n-bit string, whose i-th bit is equal to the XOR of the ith bits of I1, I2, ..., Ik. Let
Pk be a protocol that computes k-XOR. Our goal is to use Pk to build a protocol P2 that solves
2-XOR. We can then plug in a lower bound for 2-XOR to get a lower bound on the amount of
communication performed by Pk.

Constructing symmetric inputs for Pk. We start by choosing an input distribution for the
2-party problem that is sufficiently hard to give us a good lower bound on 2-XOR. It turns out
that uniform random inputs are hard enough to get an Ω(n) lower bound for 2-XOR. So, Alice
uniformly randomly chooses a player pi, and sets its input Ii to be her input x. Bob uses his input
y to construct inputs for the rest of the players pj 6= pi. (Recall that the randomness is shared, so
Bob can tell which player pi was chosen by Alice.) Bob constructs his players’ inputs as follows.

{Ij | j 6= i} = a set of independent uniformly random bit strings

subject to constraint: XOR(I1, I2, ..., Ii−1, Ii+1, ..., Ik) = y.

Since Ii = x and XOR(I1, I2, ..., Ii−1, Ii+1, ..., Ik) = y, the output of Pk is exactly 2-XOR(x, y).
To see why the inputs to Pk are symmetric, consider a set of inputs I1, I2, ..., Ik created by Alice

and Bob. Relabel the players, permuting their inputs. The player that now gets Alice’s input x is
equally likely to have been chosen by Alice to receive input x. The rest of the inputs are uniform
and independent, by Bob’s construction. Therefore, permuting the players’ inputs does not change
the input distribution.

Simulating Pk. Alice simulates pi and Bob simulates every other player pj 6= pi, as well as the
coordinator C. Whenever pi sends a message to C in the simulated protocol Pk, Alice sends a
message to Bob, and vice versa. Every other message is internal to Bob, and its transmission and
receipt can be simulated entirely within Bob’s internal state.

Lower bound on communication of Pk. Since inputs are symmetric, the expected communi-
cation between pi and the coordinator is at most a 1/k fraction of the communication performed

4

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

Figure 4: 2-party simulation of a k-party protocol in the blackboard model

by Pk. (To see why, recall: Alice uniformly randomly chooses one of k edges in the communication
graph when she chooses pi, and this is the only edge that causes messages between Alice and Bob in
the 2-party protocol.) So, Cost(P2) ≤ (1/k)E[Cost(Pk)]. Equivalently, Cost(Pk) ≥ kE[Cost(P2)].

We now compute a simple lower bound on E[Cost(P2)]. Given XOR(x, y), Alice can recover y
by computing XOR(x,XOR(x, y)) = y. So, Bob can communicate y to Alice in E[Cost(P2)] bits.
By the information theoretic lemma, E[Cost(P2)] ≥ n. So, we have Cost(Pk) ≥ nk.

This lower bound was for a protocol Pk that does not make any errors. However, if Pk can
err on an ε fraction of inputs, then it is easy to see that the same reduction solves 2-XOR with
error bound ε. Then, the information theoretic lemma says that, in expectation, at least (1− ε)n
bits must be sent to communicate Bob’s input to Alice with error ε, so the lower bound becomes
Cost(Pk) ≥ (1− ε)nk.

2.4 Easy lower bound: k-XOR w/blackboard

We now consider the same problem, but in the blackboard model. The blackboard model changes
the way we construct inputs to Pk and simulate its execution.

Setting up the simulation of pk. Alice and Bob uniformly pick players pi and pj (i 6= j),
respectively, using shared randomness. Alice simulates every player except for pj . Bob simulates
every player except for pi. (So, {p1, ..., pk} \ {pi, pj} are simulated by both Alice and Bob.) This
scenario is depicted in Figure 4.

Constructing symmetric inputs for pk. As in the coordinator model, uniform random inputs
for 2-XOR are sufficiently hard to yield the lower bound we want for k-XOR. Alice sets Ii = x.
Bob sets Ij = y. Alice and Bob each set Im (m 6= i, j) to a uniformly random bit string (using
shared randomness, so they both choose the same bit string).

It is straightforward to see that the inputs I1, ..., Ik are symmetric, since x and y are uniform
independent, and the inputs in {Im | m 6= i, j} are uniform independent.

Running the simulation of pk. Every time pi writes to the board in the k-party protocol, each
of the other k − 1 parties must see what it wrote. However, since Bob does not simulate pi, he
cannot see what pi writes unless Alice also writes to the board in the 2-party protocol. So, each
time pi writes, Alice must write. Similarly, every time pj writes, Bob must write. Every time pm
(m 6= i, j) writes, no communication is needed, since Alice and Bob are both simulating pm (and
both know pm’s input).

Communication complexity of Pk. Since the inputs are symmetric and Alice and Bob write
to the blackboard only when two out of k players (chosen uniformly) write in Pk, the expected
communication for P2 is at most a 2/k fraction of the communication for Pk. So, E[Cost(P2)] ≤

5

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

Figure 5: Example of the type of graph created by the reduction to k-CONN.

(2/k)Cost(Pk). Equivalently, Cost(Pk) ≥ (k/2)E[Cost(P2)]. By the information theoretic lemma,
E[Cost(P2)] = n. So, Cost(Pk) ≥ nk/2.

2.5 Harder lower bound: graph connectivity in the coordinator model

k-party graph connectivity (k-CONN). The edges of an 2n-node graph G are partitioned
amongst k players (so no one knows all of G). Each input Ij is a set of edges. The output of
k-CONN is 1 if G is connected, and 0 otherwise. The lower bound assumes k ≥ 100 log n, which is
reasonable for a large distributed system.
2-party disjointness (2-DISJ). Alice and Bob each receive n-bit inputs that either intersect in
one coordinate or not at all.

High level idea. The lower bound follows from a randomized reduction from 2-DISJ to k-CONN.
This reduction takes input (x, y) for 2-DISJ and produces input (I1, I2, ..., Ik) to k-CONN by
creating a graph G that, with high probability, has two cliques L and R joined by a connector
edge precisely when x and y intersect. A connector edge is any edge with one endpoint in L
and the other endpoint in R. Figure 5 shows an example graph G that could be created by our
reduction.

Constructing a graph G for k-CONN. The first step is to find a hard input distribution
for 2-DISJ that will yield the desired lower bound for k-CONN. It turns out that the following
distribution is sufficiently hard. x and y contain a fixed number m of 1-bits. x and y intersect in
one bit with probability 1/10k, and nowhere with probability 1− 1/10k

Next, we must construct inputs I1, ..., Ik for k-CONN. Recall that, in the coordinator model,
Alice simulates one player (in this case p1) and Bob simulates the other k − 1 players and the
coordinator (as shown in Figure 3). So, Alice will construct I1 and Bob will construct I2, ..., Ik.
Consider the complete graph K2n = (V,E) with 2n vertices labeled 1, 2, ..., 2n. Pick a random
permutation σ of vertices {1, 2, ..., 2n}. This permutation induces a matching, i.e., a set Eσ of n
edges in E. Specifically,

Eσ = {(σ(2i− 1), σ(2i)) | 1 ≤ i ≤ n}.

For example, if n = 4 and σ = 〈3, 4, 7, 1, 8, 2, 5, 6〉, then Eσ = {(3, 4), (7, 1), (8, 2), (5, 6)}. We will
continue to develop this scenario as a running example for the remainder of this section.

Now, we want to turn inputs x and y into sets of edges Ex and Ey, respectively. We can define

6

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

Figure 6: One possible outcome when Bob partitions the nodes in the running example

Ex and Ey as subsets of Eσ, as follows.

Ex = {(σ(2i− 1), σ(2i)) | xi = 1} and Ey = {(σ(2i− 1), σ(2i)) | yi = 1}.

So, Ex and Ey are subsets of Eσ selected by the 1-bits of x and y, respectively. In our example, if
x = 0110 and y = 1010, then Ex = {(7, 1), (8, 2)} and Ey = {(3, 4), (8, 2)}.

Bob uses Ey to split V into two vertex sets VL and VR. For each edge in Ey, Bob puts one
uniform random endpoint into VL and the other into VR. For each edge in (Eσ−Ey), Bob puts both
endpoints into either VL or VR uniformly randomly. To see why VL and VR form a partition of V ,
note that Eσ touches every node in V . To form the cliques L and R, we simply take the complete
graphs on VL and VR, respectively. Let EL and ER be the sets of edges in L and R, respectively.
Figure 6 illustrates one possible outcome when Bob partitions the nodes in our example.

At this point, it is helpful to make a few observations. Note that each edge in Ey has one
endpoint in L and one in R, so it is a connector edge. It follows that, if x and y intersect, their
intersection corresponds to a connector edge. Moreover, Eσ \Ey contains only non-connector edges,
so any edge in Ex that is not in Ey is not a connector edge. We can build some intuition for why
our construction makes sense, so far, by observing that the graph induced by EL ∪ER ∪Ex ∪Ey is
connected if and only if x and y intersect. It remains to divide these edges up amongst k players.

Constructing symmetric inputs for k-CONN. Alice sets I1 = Ex. To construct Ij (2 ≤ j ≤ k),
Bob first chooses a uniform random subset of m (non-connector) edges from EL ∪ ER. With
probability 1/10k, Bob throws out one of those m edges and replaces it with one (connector) edge
from Ey.

We now argue that the inputs I2, ..., Ik come from the same input distribution as I1 (which
immediately implies I1, ..., Ik are symmetric). First, we characterize the input distribution for I1.
Since x contains m 1-bits, I1 contains m edges. Since x and y intersect in one coordinate with
probability 1/10k and nowhere with probability 1− 1/10k, I1 contains one (connector) edge in Ey
with probability 1/10k and no edges in Ey with probability 1 − 1/10k. Recall that edges not in
Ey are not connector edges, so with probability 1 − 1/10k, I1 contains m non-connector edges.
Moreover, EL ∪ ER contains precisely the non-connector edges, so any edge in I1 but not in Ey
is in EL ∪ ER. Therefore, with probability 1/10k, I1 contains one edge in Ey and m − 1 edges in
EL ∪ER, and with probability 1− 1/10k, I1 contains m edges in EL ∪ER. This input distribution
precisely matches Bob’s construction of I2, ..., Ik.

Determining how often the reduction works. This reduction is randomized, so it does not
always give the correct answer for 2-DISJ. We want to find a lower bound on the probability of

7

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

Figure 7: Depiction of GBob|L and GBob|R for our example. GBob|L consists of the red nodes {1, 2,
3, 7} and edges. GBob|R consists of the dark blue nodes {4, 5, 6} and edges.

computing the correct answer. It is helpful to consider the following edge induced graphs.

GBob|L =
k∑
i=2

(Ii ∩ EL) and GBob|R =
k∑
i=2

(Ii ∩ ER)

Intuitively, GBob|L is the graph induced by all edges in the inputs created by Bob, restricted to
the graph L. (GBob|R can be described similarly.) We extend our running example to better
understand GBob|L and GBob|R. Suppose k = 5, I1 = {(1, 3), (2, 8)}, I2 = {(4, 6), (2, 8)}, I3 =
{(3, 2), (5, 6)}, I4 = {(4, 5), (5, 6)}, I5 = {(1, 2), (1, 7)}. Figure 7 depicts GBob|L and GBob|R for our
example.

We define two events that can help us understand when our reduction solves 2-DISJ.

• ζ1 occurs if GBob|L is connected and contains every node in L, and GBob|R is connected and
contains every node in R

• ζ2 occurs if the union of inputs I2, ..., Ik created by Bob does not induce a connected graph

Intuitively, ζ1 says we will have a connected graph if the input I1 created by Alice contains a
connector edge, and ζ2 says that Alice’s edges are needed to connect the graph.

Lemma 2 If ζ1 and ζ2 both hold, then the reduction will compute the correct answer for 2-DISJ.

Proof: Suppose ζ1 holds. Then, GBob|L and GBob|R are each connected and include every node
in L and R, respectively. Suppose ζ2 holds. Then, no input created by Bob contains a connector
edge. Thus, G is connected if and only if I1 contains a connector edge, which happens if and only
if x and y intersect.

It is interesting (but not necessary) to see why the reduction might give the wrong answer for
2-DISJ if ζ1 and ζ2 do not both hold. If ζ1 does not hold, then k-CONN might say the graph is
disconnected even if x intersects y. If ζ1 holds, but ζ2 does not, then k-CONN will say the graph
is connected whether or not x intersects y.

The following lemma is proved in [4]. We simply state the lemma and use it to obtain a lower
bound on the probability that the reduction computes the correct answer for 2-DISJ.

Lemma 3 ζ1 holds with probability at least 1− 1/2n.

8

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

Recall that each input I2, ..., Ik created by Bob contains only non-connector edges with probability
1 − 1/10k. It follows that every input created by Bob contains only non-connector edges with
probability (1− 1/10k)k−1. Of course, if no input created by Bob contains a connector edge, then
the graph induced by these edges cannot be connected. So, if ζ1 holds, ζ2 also holds with probability
(1 − 1/10k)k−1. Therefore, the reduction solves 2-DISJ with probability at least (1 − 1/2n)(1 −
1/10k)k−1, which is greater than 8/9 for large n.

Applying the symmetrization argument. Let Pk be the protocol for k-CONN and P2 be the
2-DISJ protocol that uses Pk as a black box. We denote by Cost(Pk) the amount of communication
used by Pk running with inputs I1, ..., Ik, and by Cost(P2) the amount of communication used by
P2 running with inputs x, y. Recall that Alice simulates one player and Bob simulates the other
k − 1 and the coordinator (as shown in Figure 2). Since inputs are symmetric, in expectation,
P2 sends at most a 1/k fraction of the bits sent by Pk. So, the reduction solves 2-DISJ with
E[Cost(P2)] ≤ (1/k)Cost(Pk) and error bound 1/9. Therefore, Cost(Pk) ≥ kE[Cost(P2)].

It remains to obtain a lower bound on E[Cost(P2)]. The following lemma is stated and proved
in [4]. The proof is not difficult, but it does not inform our discussion, so it is omitted.

Lemma 4 If x and y intersect with probability 1/10k, then any 2-DISJ protocol with error bound
1/1000k has expected communication complexity Ω(n)

To apply this lemma, our reduction must err on at most a 1/1000k fraction of inputs. We reduce
our protocol Pk’s error of 1/9 by running the randomized reduction O(log k) times, simulating Pk
on each resulting input, and then carefully choosing one of the outputs we obtain. Details of this
process can be found in the proof of Lemma 4.3 in [4]. After reducing our error, we can apply
Lemma 4 to obtain D1/4000k(k-CONN) = Ω(nk/ log k). (Note that we lost a multiplicative factor
of O(log k) because the protocol had to be run O(log k) times.)

One weakness of this lower bound is that it says nothing about protocols with error ε > 1/4000k.
It turns out that this error bound can be changed to 1/3 by paying an additional multiplicative
factor of O(log k). Thus, we obtain R1/3(k-CONN) = Ω(nk/ log2 k).

2.5.1 Summary of symmetrization results

Results we covered:

• D(k-XOR) = Ω(nk) blackboard

• Rε(k-XOR) = Ω((1− ε)nk) blackboard

• R1/3(k-CONN) = Ω(nk/ log2 k) coordinator

There were also several more results in [4] that we did not cover, including results for k-party
coordinate-wise OR and for the problem of determining, for each input coordinate, whether a
majority of players has a 1-bit in that coordinate (k-MAJ).

• R1/3(k-OR) = Ω(n log k) blackboard (easy O(n log n) upper bound)

• R1/800(k-OR) = Ω(nk) coordinator

• R1/6(k-MAJ) = Ω(nk) coordinator

9

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

Crucially, the authors of [4] could not apply symmetrization to the k-party set disjointness problem
(k-DISJ), which outputs 1 if all players’ inputs intersect in some coordinate, and 0 otherwise. In
fact, the authors believe that symmetrization cannot be used to obtain an Ω(nk) lower bound for
k-DISJ.

2.6 Tight bounds on k-party set disjointness (k-DISJ)

The symmetrization paper created significant interest in k-DISJ. One of the most fundamental
and well understood functions in 2-party communication complexity had thus far confounded re-
searchers in a k-party setting. Some property of the k-DISJ problem rendered the symmetrization
technique inapplicable, but there was hope that another technique might succeed where sym-
metrization failed. In 2013, Braverman et al. [1] obtained a tight Ω(nk) lower bound on the
communication complexity of k-DISJ in the (asynchronous) coordinator model using information
theoretic techniques.

In the context of a k-party protocol P , information theory studies the amount of information
about the set of inputs x = {x1, x2, ..., xk} that can be learned by observing various subsets of
the total communication between parties. For each execution of P , a transcript π(x) records the
communication between all parties. Two popular measures of the information that can be learned
about the inputs are external information cost and internal information cost.

External information cost (EIC) captures the total amount of information that an external
observer who can see the entire transcript π(x) can learn about the inputs of the players. (In
the coordinator model, EIC corresponds to what the coordinator can learn about the inputs.)
Formally, EIC = I(x;π(x)) is the information about the set x of inputs that can be learned from
the transcript of P running on x.

Internal information cost (IIC) captures the total amount of information that the players (to-
gether) can learn about the inputs, if each is initially given his own input. Let x−p = x \ {xp}, and
πp(x) be the transcript π(x) restricted to contain only communication to and from p. Formally,
IIC =

∑
p I(x−p;πp(x) | xp) is the sum over all players p of the information about the inputs x−p

that can be learned from the restricted transcript πp(x), given p’s input.
In order to obtain an Ω(nk) lower bound, it is necessary to combine IIC and EIC. To see why,

we consider two simple protocols for solving k-DISJ, and determine the IIC and EIC of each.
In the first protocol, each player sends his input to the coordinator. The coordinator computes

k-DISJ and tells each player the answer. This protocol has IIC = 0, since no player learns anything
about the input of any other player. Since there is a k-DISJ protocol with IIC = 0, we cannot
use IIC to obtain a lower bound on the information cost of k-DISJ. However, in this protocol, the
coordinator learns the inputs of every player, so EIC = Ω(nk). Perhaps, then, it is possible to use
EIC to obtain the desired lower bound.

We now describe the second protocol. For each coordinate j, and for each player p, the coordi-
nator asks each player p if xp,j = 0. If a player p ever responds that xp,j = 0, then the coordinator
skips to coordinate j + 1 without asking any player m > p. If, for some coordinate j, every player
has a 1-bit, then the protocol outputs zero (since all inputs intersect in that coordinate). Other-
wise, the protocol outputs one (since there was a zero-bit in each coordinate). It turns out that we
can compress any execution transcript for this protocol to O(n log k) bits since, for each coordinate
j, we can simply write the name of the first player p with xp,j = 0 or write 0 if p does not exist.
Since we can represent the entire transcript using O(n log k) bits, the protocol must reveal at most

10

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

O(n log k) bits of information to the coordinator. Consequently, we obtain EIC ≤ O(n log k). Since
there is a protocol for k-DISJ with EIC ≤ O(n log k), we cannot use EIC to obtain an Ω(nk) lower
bound on the information cost of k-DISJ. However, we can show that the IIC for this protocol
is Ω(nk) for some inputs. Consider the input wherein xp (1 ≤ p < k) contains all 1-bits and xk

contains all 0-bits. When any player p is asked whether xp,j = 0, it learns that xm,j = 1 for all
m < p. So, every time player p is asked if xp,j = 0, it learns p − 1 bits of other players’ inputs.

Summing over all players p and coordinates j, we get IIC ≥
∑k

p

∑n
j (p− 1) = n(k − 1) = Ω(nk).

For these two protocols, we obtain low-IIC/high-EIC and high-IIC/low-EIC, respectively, which
suggests there might be a tradeoff between IIC and EIC when designing a protocol for k-DISJ. It
turns out that this tradeoff is inherent, so IIC and EIC must be used in conjunction to prove an
Ω(nk) lower bound on k-DISJ.

Carefully blending IIC and EIC and finding a hard input distribution represents one of the main
challenges of the work. For simplicity, we avoid discussing the details of the input distribution,
and use InfoCost to denote an appropriate blend of IIC and EIC. At a high level, the proof for
the lower bound begins by showing that InfoCost(n-bit k-DISJ) ≥ n · InfoCost(1-bit k-DISJ),
where 1-bit k-DISJ is the same as k-DISJ except that each player has a 1-bit input. It then
shows that InfoCost(1-bit k-DISJ) ≥ InfoCost(1-bit k-AND), where 1-bit k-AND is the problem
of computing the AND of the 1-bit inputs of k players. Finally, it shows that InfoCost(1-bit
k-AND) ≥ Ω(k).

Results. The authors obtain a tight Ω(nk) lower bound for k-DISJ with k = Ω(log n) in the
asynchronous coordinator model. They also obtain a slightly weaker Ω(nk/ log k) lower bound in
the asynchronous message passing model.

2.7 Communication graph topology dependent lower bounds

The message passing model in which Braverman et al. proved their Ω(nk) lower bound on k-DISJ
assumes a fully connected communication graph (meaning that every player can communicate
directly with every other player). Therefore, this lower bound might leave room for improvement
in other graph topologies, where communication is more restricted, and information must pass
through some bottleneck.

A 2014 paper by Chattopadhyay, Radhakrishnan and Rudha [2] studied lower bounds for several
problems in different graph topologies. They developed techniques for obtaining lower bounds that
are sensitive to the topology of the communication graph. As a consequence, they were able to
obtain ω(nk) (asymptotically greater than nk) lower bounds for several problems. One particularly
interesting discovery to come out of their work was the fact that k-DISJ cannot be used to get
ω(nk) lower bounds. Disjointness is widely used in 2-party lower bounds, partially because it is
natural to reduce many problems to it, and no other 2-party problem is asymptotically harder.
However, it turns out there are much harder functions in a k-party setting for some communication
graph topologies.

To see that k-DISJ cannot be used to obtain ω(nk) lower bounds, observe that the following
protocol computes set intersection (and, hence, disjointness) with communication O(nk) for any
connected communication graph. First, all players (locally) compute the same spanning tree for
the communication graph. Let any arbitrary player proot be the root of the spanning tree. Each
player that is a leaf in the spanning tree sends his input to his parent. For every other player
p, upon receiving n-bit strings s1, s2, ..., sc from all c of his children in the tree, p computes the

11

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

intersection of s1, s2, ..., sc and his own input, and forwards the result to his parent. The spanning
tree contains exactly k − 1 edges, each of which carries n bits over an execution of the protocol,
for a total of (k − 1)n bits. At the end of this protocol, proot knows the intersection of all inputs.
If every player needs to know the intersection, then proot can simply send the intersection to his
children, who relay this information downwards in the tree, doubling the amount of communication
used by the algorithm.

Since k-DISJ is not hard enough to get Ω(nk) lower bounds, we need another problem to study.
The paper describes a number of harder problems. One such problem is the element-distinctness
problem (k-DIST), which requires each player to output one if all inputs are pairwise distinct, and
zero otherwise. There are several hard graph problems wherein k players each have a subgraph of
a graph H as input, and each edge can appear in the inputs of multiple players. In this setting,
hard problems include determining the degree of a vertex in H, and checking whether H is acyclic,
triangle-free, bipartite or connected. For these problems (and others), the paper proves that the
trivial solution of sending all inputs to a designated player who computes the answer is optimal up
to polylog(k) factors. It is not hard to see that, in a graph with diameter d, sending all inputs to
any player takes Ω(nkd) communication (intuitively, since a constant fraction of players need to
send their inputs over a constant fraction of d edges). Of course, when the graph is fully connected,
d = 1, and the lower bound becomes Ω(nk). When the graph diameter is k (as large as possible),
sending all inputs takes Ω(nk2) communication. The paper obtains Ω(nk2) lower bounds on the
randomized communication complexity of many problems, beating previous lower bounds of Ω(nk)
for fully connected communication graphs.

We briefly mention one open problem described in [2]. Currently, very little is known about the
communication complexity of composed functions in arbitrary graph topologies. It is impossible
to obtain non-trivial topology dependent lower bounds for all composed functions. However, it
would be interesting to have broad conditions on the functions being composed that are sufficient
to obtain non-trivial topology dependent lower bounds. Even for the special case where the outer
function is k-AND or k-OR, the authors suspect that the problem is non-trivial.

References

[1] M. Braverman, F. Ellen, R. Oshman, T. Pitassi, and V. Vaikuntanathan, A tight
bound for set disjointness in the message-passing model, in Proceedings of the 54th IEEE
Symposium on Foundations of Computer Science, IEEE, 2013, pp. 668–677.

[2] A. Chattopadhyay, J. Radhakrishnan, and A. Rudra, Topology matters in communi-
cation, in Proceedings of the 55th IEEE Symposium on Foundations of Computer Science (to
appear), IEEE, 2014.

[3] F. Ellen, R. Oshman, T. Pitassi, and V. Vaikuntanathan, Brief announcement: Private
channel models in multi-party communication complexity, in Proceedings of the 27th ACM
Symposium on Distributed Computing, Springer, 2013, p. 575.

[4] J. M. Phillips, E. Verbin, and Q. Zhang, Lower bounds for number-in-hand multiparty
communication complexity, made easy, in Proceedings of the 23rd ACM-SIAM Symposium on
Discrete Algorithms, SIAM, 2012, pp. 486–501.

12

CS 2429 - Comm. Complexity: Applications and New Directions Lecture #10a: Fall, 2014

3 Summary notes

Symmetrization (k ≥ 100 log n)

• k-XOR coordinator, blackboard Ω(nk) CC

• k-CONN coordinator Ω(nk/ log2 k) randomized CC

• No results for k-DISJ

Set disjointness (k = Ω(log n))

• k-DISJ coordinator Θ(nk) CC

• k-DISJ message passing Ω(nk/ log k) CC

• Only for strongly connected communication graphs

Topology matters

• k-DISJ requires O(nk) communication for every connected communication graph

• New hard problems such as element-distinctness yield Ω(nk2) lower bounds

• Open: topology dependent complexity of composed functions

13

