
CS 2429 - Communication Complexity: Applications and New Directions Lecture #10b Fall 2014

Asymmetric Communication Complexity and Data Structure

Lower Bounds

Yuanhao Wei

11 November 2014

1 Introduction

This lecture will be mostly based off of Miltersen’s paper Cell Probe Complexity - a Survey that was
publisehd in the year 2000.

1.1 The Cell Probe Model

You can think of the cell probe model as having a CPU and some random access memory (RAM). The
state of your data structure is encoded in the memory cells of the RAM and the CPU must answer
some query by accessing certain memory cells. For the rest of the lecture s will denote the number
of memory cells and w will denote the number of bits in each memory cell. The only thing you are
charged for is the number of memory cells accessed or modified. When answering a query, the CPU
decides what cell to ask for next by looking at the query as well as all the previous cells that it has
accessed.

The cell probe model was first introduced by Yao in 1981. This is the main model for proving
data structure lower bounds because its nice and clean, and its the strongest possible model for lower
bounds. This means that lower bounds in the cell probe model imply lower bounds in all other models
of computation. Also upper bounds in other models imply upper bounds in the cell probe model.

Definition A static data structure problem is where you are given a map f : Q × D → A where
D is a finite set of possible data, Q is a finite set of possible queries, and f(q, d) is the answer to query
q about data d. A would be the set of answers.

Definition A solution to the static problem in the cell probe model with parameters s, w and t,
is a method of encoding any data d ∈ D in the memory of a random access machine, using s memory
cells, each containing w bits, so that to answer any query in Q we need to probe at most t memory cells.

Example The static predecessor problem: Given an ordered universe U = {1, ...,m} and a subset
S of U of size n, we want to encode S in such a way that we can efficiently find the predecessor of x
in S for any x ∈ U .

n typically denotes the number of elements in the universe U that is in each element of D. m
typically denotes the size of U . In this lecture, I will prove lower bounds on t for the case where
s ∈ nO(1). w is usually assumed to be Θ(max(logm, log s)) because that allows each cell in memory
to store an element of the universe or a pointer to a location in memory.

Definition Dynamic data structure problems are similar to static data structure problems except
that you must also be able to update the data in the data structure efficiently.

Page 1

CS 2429 - Communication Complexity: Applications and New Directions Lecture #10b Fall 2014

Example The dynamic polynomial evaluation problem: Given a finite field F of m elements, let
(a0, ..., an) ∈ Fn+1 be the coefficients of a polynomial f . The goal is to efficiently maintain the coeffi-
cients (a0, ..., an) ∈ Fn+1 under CHANGE(i, b) which sets ai = b and EV ALUATE(x) which returns
f(x).

For dynamic problems, the amount of space used by the data structure is usually ignored however
adding the weak assumption that s ∈ nO(1) makes lower bounds easier to prove. Again w is assumed
to be Θ(max(logm, log s)).

1.2 Asymmetric Communication Complexity vs. Cell Probe Complexity

For this lecture we will only need to deal with deterministic communication complexity. You can get a
communication game from any static data structure problem in the intuitive way: Alice gets a query
q ∈ Q and Bob gets the data d ∈ D and they want to compute the joint function h(q, d). However
there as a few difference between this communication game and what we have seen in class. First of
all, for most natural data structure problems, the size of the data will be much greater than the size of
the query so the communication game is asymmetric. Also only Alice needs to know the answer at the
end. Furthermore the communication complexity of this game must be measured in a different way.
Alice will choose her messages from {1, ..., s} and Bob will choose his messages from {0, ..., 2w − 1}.
The complexity of a protocol is the maximum number of rounds of messages sent between Alice and
Bob. This way Alice can request a memory cell in one message and Bob can tell Alice the contents of
that cell in one message. Formally:

Definition We say that a protocol, P , is a [t, a, w]A-protocol for a joint function h if each of Al-
ice’s messages in the protocol contains at most a bits and each of Bob’s messages in the protocol
contains at most b bits and at most t rounds of messages are sent, with Alice sending the first mes-
sage. A [t, a, w]B-protocol is defined similarly where Bob sends the first message.

In general the communication game might have a exponentially shorter protocol than the original
static data structure problem. This is due to the fact that Alice can send Bob her entire input and
Bob can compute the answer which is not possible in the cell probe model. Also in the cell probe
model, the CPU is forced to query memory cells, whereas, Alice and Bob can sent whatever messages
they want. However, the following lemma shows that a lower bound for the communication game
implies a lower bound for the corresponding static data structure problem.

Lemma 1 If there is a cell probe solution using s memory cells and at most t probes for the static data
structure problem, then there is a [t, log s, w]A-protocol for the communication problem corresponding
to the static problem.

Proof The protocol basically simulates the solution to the static data structure problem. Bob encodes
his input in a data structure using s space. Each time the solution queries a memory cell, Alice sends
log s bits indicating the address of the cell she wants to read and Bob replies with the w bits stored at
that location. Afterwards, Alice uses the cells she has read and the cell probe solution to compute the
answer. Since the cell probe solution requires at most t queries, the protocol sends at most t rounds
of messages.

Note that log s ∈ O(log n) by our assumptions. So to prove a lower bound of Ω(f) on the static
problem we just need to show that there is no [o(f), O(log n), w]A-protocol for the communication
problem.

Now we will show that static data structure problems can be reduced to a corresponding dynamic
data structure problem. In this reduction we have to be a little bit careful with the size bounds on
the data structure.

Page 2

CS 2429 - Communication Complexity: Applications and New Directions Lecture #10b Fall 2014

Definition The static data structure problem f corresponding to a dynamic data structure prob-
lem g is defined as follows: for some parameter d, f : D×Q→ A where Q is the set of queries in the
dynamic problem, and D is the set of states that are reachable from the initial state by performing
at most d update operations in the dynamic problem.

Lemma 2 If there is a cell probe solution using nO(1) memory cells and t probes for the dynamic
problem g then the corresponding static problem f has a solution using O(dt) memory cells and O(t)
probes.

Proof The static solution basically simulates the dynamic solution. Assume that the data struc-
ture for the dynamic solution is encoded in memory in such a way that the initial state is encoded
to all zeros. In the static solution, instead of storing the values of all the memory cells used by the
dynamic solution, we map the cells that have changed to their final values. Since at most dt cells
can be changed, using the FKS dictionary structure, this can be done in O(dt) space. Each time the
dynamic solution wants to query a cell, we check if that cell is in the dictionary. If it is then return
the value that it is mapped to. Otherwise return 0. Each query takes O(1) time and we make at most
t queries so this solution to the static data structure problem takes O(t) query time.

Therefore we have shown that lower bounds for a communication game implies a lower bound for
a static data structure problem which implies a lower bound for a dynamic data structure problem.

Since Alice can always just send her entire input to Bob, the best possible lower bound we can

prove using this kind of communication complexity reduction is t = Ω(log |Q|
log s). If the number of

queries is polynomial in n, this lower bounds is just a constant so for the rest of the lecture we will
only consider problems where the number of queries are at least exponential in n. There are many
natural problems that satisfy this criteria and this allows us to prove lower bounds up to Ω(n

logn).

2 Proving Lower Bounds

The main techniques for proving lower bounds in the cell probe model via communication complexity
are round elimination, richness technique, greedy communication complexity technique and reduction
to set disjointness. I will be presenting the greedy and round elimination techniques. You can read
about the richness technique in Miltersen, Nisan, Safra and Wigderson’s paper On data structures and
asymmetric communication complexity and reductions to set disjointness in Patrascu’s paper Unifying
the Landscape of Cell Probe Lower Bounds.

2.1 Greedy Communication Complexity Technique

Monochromatic Row Condition Consider a function h : A×B → C. A′ ⊆ A and B′ ⊆ B satisfy
the monochromatic row condition if:

∀x ∈ A′ ∀y, z ∈ B′ : h(x, y) = h(x, z).

The idea behind the Greedy Communication Technique is to look at the communication matrix
between Alice and Bob and show that all rectangles, A′ and B′ that satisfy the monochromatic row
condition must be small then apply the Greedy Communication Lemma to get a lower bound on
the number of rounds of the protocol. I will refer to rectangles that satisfy the monochromatic row
condition as nice rectangles.

Consider a general communication problem h : A × B → C, where Alice is given a ∈ A and Bob
is given b ∈ B and Alice needs to compute h(a, b). Alice will choose her messages from {1, ..., s} and
Bob will choose his from {1, ..., k}.

Page 3

CS 2429 - Communication Complexity: Applications and New Directions Lecture #10b Fall 2014

Greedy Communication Lemma If h has a t round protocol, then there is A′ ⊆ A and B′ ⊆ B
such that |A′| ≥ |A|/st and |B′| ≥ |B|/kt and A′, B′ satisfy the monochromatic row condition.

Proof Proceed by induction on t. For t = 0, the lemma holds because we can take A′ = A and
B′ = B. This satisfies the monochromatic row condition because this problem requires 0 rounds
of communication so the answer only depends on Alice’s input. For the inductive step, suppose
this lemma holds for t. Given any communication problem h with a t + 1 round protocol P . For
a ∈ {1, ..., s}, define Aa to be the inputs x ∈ A for which Alice would send a as her first messages. By
the pidgeonhole principle, we can fix a so that |Aa| ≥ |A|/s. Similarly for b ∈ {1, ..., k}, define Bb be
the inputs y ∈ B for which Bob would send b as his first messages if he recieved the message a from
Alice. Again fix b so that |Bb| ≥ |B|/k. There is a t round protocol P ′ for the communication problem
restricted to Aa × Bb. P ′ just simulates P from the second round onwards assuming that Alice sent
a and Bob sent b in the first round. By the inductive hypothesis, we can find A′a and B′b such that
they statify the monochromatic row condition and |A′a| ≥ |Aa|/st and |B′b| ≥ |Bb|/kt. So we can take
A′ = A′a and B′ = B′b then they statisfy the monochromatic row condition and |A′| ≥ |A|/st+1 and
|B′| ≥ |B|/kt+1 as required.

Example Ω(n) lower bound for the dynamic polynomial evaluation problem.

Recall the dynamic polynomial evaluation problem defined in the introduction. Clearly there is a
trivial t ∈ O(n) solution for the problem where we store each of the coefficients in a memory cell and
for each call to EV ALUATE(x) we read all n+ 1 memory cells and evaluate it at x. For each call to
CHANGE(i, b) we just update the value at the corresponding memory cell. In this example we will
show that this trivial solution is in fact optimal.

Definition Define the static version of this problem as: Store (a0, ..., an−1) ∈ Fn, the coefficients
of f , in a data structure using s = O(n2) memory cells, so that f(x) can be computed efficiently.

By Lemma 2, a lower bound of Ω(n) for this problem implies a lower bound of Ω(n) for the dynamic
polynomial evaluation problem where s ∈ nO(1). We can pick s = O(n2) in the static problem because
any polynomial can be achieved from the initial state by at most n + 1 CHANGE operations and
each operation can modify at most O(n) memory cells.

From the static polynomial evaluation problem we can get the corresponding communication game
where Bob gets a n degree polynomial, f , which is represented by some y ∈ Fn+1 and Alice gets x ∈ F .
The goal is to compute f(x). Also Alice sends messages from {1, ..., s} and Bob sends messages from
{1, .., |F |}. Consider the case where F ≥ 2n logn.

Now we use a nice property of polynomials to show that all nice rectangles in the communication
matrix of this problem must be small. Suppose A′ × B′ is a nice rectangle. Two different n degree
polynomials can agree on at most n different points. Therefore |A′| ≤ n or |B′| ≤ 1. Next we apply
the greedy communication lemma.

If |A′| ≤ n, then by the greedy communication lemma, n ≥ |F |/st so t ≥ log |F |−logn
log s ∈ Ω(n). If

|B′| ≤ 1, then by the greedy communication lemma, 1 ≥ |F |
n+1

|F |t so t ≥ n + 1. Therefore t ∈ Ω(n) as

required.

2.2 Round Elimination Technique

Definition Given a communication problem f : X × Y → {0, 1}. We define the augmented problem,
f (r), by: Alice gets r elements of X, labeled, x1, ..., xr. Bob gets y ∈ Y , an integer i ∈ {1, ..., r} and
x1, ..., xi−1 from Alice’s input. The goal is to compute f(xi, y). The reverse augmented problem, (r)f ,
is defined symmetrically switching the roles of Bob and Alice.

Page 4

CS 2429 - Communication Complexity: Applications and New Directions Lecture #10b Fall 2014

Round Elimination Lemma There exists c, a universal constant, so that for any communica-
tion problem f , if there is a [t, a, w]A-protocol for f (ca) then there is a [t− 1, ca, cw]B-protocol for f .
Symmetrically, if there is a [t, a, w]B-protocol for (ca)f then there is a [t− 1, ca, cw]A-protocol for f .

Proof The proof for this lemma is quite long and it can be found in Miltersen, Nisan, Safra and
Wigderson’s paper On data structures and asymmetric communication complexity. The intuition is
that since Alice doesn’t know which of her inputs is important, she cannot give much information to
Bob about the important xi in her first message.

The lemma says the you can convert a solution to the augmented version into a solution to the
original problem which requires one less round of communication.

The general round elimination technique works as follows. Given a protocol for the original prob-
lem, try to convert it into a protocol for the augmented version of the problem with smaller problem
size and the same number of rounds. Once you have accomplished this, you will be able to go back
and forth between the the augmented version and the non-augmented version and each time you will
shave off one round of communication. The second step is to find a general formula for the size of the
problem after T rounds of communication have been elminated. Finally substitute T (n) ∈ Θ(f) into
the general formula and arrive at a contradiction. This gives a lower bound of Ω(f).

Example Ω(log1/3 n) lower bound for the static predecessor search problem.

The upper bound for this problem is t ∈ O(
√

logn
log logn) for s ∈ O(n) and the tight lower bound is

t ∈ Ω(
√

logn
log logn) for s ∈ nO(1). Both these results were proven by Beame and Fich in their 1999 paper,

Optimal bounds for the predecessor problem. Although the proof of the tight lower bound involves
round elimination, there is much more going on in that proof so I will only give the proof for the
weaker Ω(log1/3 n) lower bound.

First, we will consider a different problem.

Definition The predecessor color problem is where you are given a universe U = {0, ...,m − 1}
and you want to store a subset S of U of size at most n where each element of S is assigned a color
from {red, blue} so that you can efficiently find the color of the predecessor of x for any x ∈ U .

This clearly reduces to the predecessor search problem because to solve the new problem you can
just find the predecessor and read its color from a lookup table. Therefore we just need to prove a
lower bound on this new problem. Define col[b, n] to be the communication problem where Alice gets
a ∈ U = {0, ..., 2b − 1} and Bob gets a subset S of U where each element of S is colored either red or
blue. Alice has to solve the predecessor color problem on this input.

The following lemma shows that a solution to the predecessor color problem can be converted into
a solution to the augmented version with smaller problem size.

Lemma 3 If there is a [t, a, w]A-protocol for col[b, n] then there is a [t, a, w]A-protocol for col[b
ca , n](ca).

Proof Suppose we have a [t, a, w]A-protocol for col[b, n]. Given a col[b
ca , n](ca) problem, we know

that Alice gets xa, ..., xca, each containing b
ca bits, and Bob gets S, i, x1, ..., xi−1. Alice can compute

x′ = x1 ◦ x2 ◦ ... ◦ xca where ◦ indicates concatenation. Bob can compute S′ = {x1 ◦ x2 ◦ ... ◦ xi−1 ◦
y ◦ 0b−

b
ca i|y ∈ S}, where each element in S′ inherits the color of y. Then they execute the [t, a, w]A-

protocol for col[n, b] using x′ and S′ as inputs. The anwser to col[b
ca , n](ca) is the same as the answer

to col[n, b] on x′ and S′.

The following lemma serves a similar purpose but in the case where Bob communicates first.

Page 5

CS 2429 - Communication Complexity: Applications and New Directions Lecture #10b Fall 2014

Lemma 4 If there is a [t, a, w]B-protocol for col[b, n] then there is a [t, a, w]B-protocol for (cw)col[b−
log (cw), n

cw].

Proof Suppose we have a [t, a, w]B-protocol for col[b, n]. Given the problem (cw)col[b− log (cw), n
cw].

Alice gets x and i and Bob gets S0, ..., Scw−1 as input. Alice can compute x′ = i ◦ x and Bob can
compute S′ =

⋃cw−1
j=0 {j ◦ y|y ∈ S} which inherits its color from y. Then they execute the [t, a, w]B-

protocol for col[b, n] using x′ and S′ as inputs. The anwser to (cw)col[b− log (cw), n
cw] is the same as

the answer to col[n, b] on x′ and S′.

Now we use these lemmas to create a chain of conversions. A [t, a, w]A-protocol for col[b, n] can
be converted into a [t, a, w]A-protocol for col[b

ca , n](ca) by lemma 3. This can be converted into a

[t − 1, ca, cw]B-protocol for col[b
ca , n] by the round elimination lemma. Again, this can be converted

into a [t−1, ca, cw]B-protocol for (c2w)col[b
ca−log (c2w), n

c2w] by lemma 4. This in turn can be converted

into a [t− 2, c2a, c2w]A-protocol for col[b
ca − log (c2w), n

c2w] by the round elimination lemma with the
roles of Alice and Bob switched. Let C be a constant so that C ≥ 2c2 and we only consider the setting
where log(c2w) ≤ b

2ca . Then the previous protocol is a [t− 2, Ca, Cw]A-protocol for col[b
Ca ,

n
Cw].

After repeating these steps T = t/2 times, we can convert a [t, a, w]A-protocol for col[b, n] into a

[0, CTa,CTw]-protocol for col[bc−T (T+1)/2a−T , nc−T (T+1)/2w−T] which also works for col[bc−T
2

a−T , nc−T
2

w−T].
The final step is to plug in the lower bound that we want to prove to get a contradiction.

Consider a [T,O(log n), w]A protocol for col[w, n] with b = 2(logw)3/2 and T =
√
logw

10
√
log c

. We have

picked T ∈ Θ(log1/3 n). Since n and w are both size parameters of col[w, n], we can fix n in
terms of w. After eliminating all the rounds of communication we get a zero round protocol for
col[w99/100−o(1), n9/10−o(1)]. However this problem clearly requires some communication to solve so
we get a contradiction. Since the resulting problem size increases as T decreases, if we picked any
T ∈ o(log1/3 n) then we would arrive at the same contradiction. Therefore T ∈ Ω(log1/3 n) which is

the lower bound we wanted. Also, if we picked T to grow faster than log1/3 n then the predecessor
color problem will become trivial after T rounds of elimination and we would be unable to arrive at
a contradiction.

Page 6

