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1 Additive Combinatorics and Log Rank

Given any Boolean function f : {0, 1}n × {0, 1}n ⇒ {0, 1}, it is well known that:

log rank(Mf ) ≤ CC(f) ≤ rank(Mf )

In [6], it was conjectured by Lovász and Saks that the upper bound is much tighter, namely that
CC(f) = logO(1) rank(Mf ). This famous conjecture, known as the Log Rank conjecture is one
of the biggest open questions in Communication Complexity. And until recently, the best known
bounds in terms of the rank were:

log rank log3 6(Mf ) ≈ log rank 1.63(Mf ) ≤ CC(f) ≤ 0.415 rank (Mf )

where the lower bound is due to Kushilevitz [unpublished, 1995] and the upper bound due to
Kotlov in [5].

In 2012, Ben Sasson, Lovett and Zewi gave a conditional improvement on the upper bound

[2], namely O

(
rank(Mf )

log rank(Mf )

)
assuming the well-known conjecture in Additive Combinatorics: The

Polynomial Freiman-Ruzsa Conjecture. In this lecture, we cover the proof of [2]. However it is
worth mentioning this more recent and stronger improvement by Lovett [7]:

Theorem 1 For any Boolean function f, CC(f) ≤ O(
√

rank(Mf ) · log rank(Mf )).

Although the gap between the upper and lower bound is still exponential, Lovett’s upper bound
is unconditional and much stronger. He also uses more traditional combinatorial methods, namely
the discrepancy of low rank matrices. Using Fourier Analysis, Tsang et al. gave a similar bound
for Boolean functions of the form f(x, y) = F (x⊕ y) [10]. Gavinsky and Lovett also showed [3] the
following relationship between deterministic and randomized protocol:

Theorem 2 If f has a randomized protocol of communication cost c and Mf of rank r, then f
has a deterministic protocol of cost O(c2 log2 r).

We present the proof of Ben Sasson, Lovett and Zewi theorem, which states:

1



CS 2429 - Comm Complexity: Applications and New Directions Lecture #11a: Fall, 2014

Theorem 3 Assuming the Polynomial Freiman Rusza conjecture over Fn2 , for any Boolean func-
tion f :

CC(f) ≤ O
(

rank(Mf ))

log rank(Mf )

)
We will present the proof in a bottom up manner, that is we prove the Communication Complexity
results and introduce Additive Combinatorics tools as needed. We start by proving this powerful
result from [8], by Nisan and Wigderson, which shows that the existence of large monochromatic
rectangles is enough to get efficient deterministic protocols.

Theorem 4 Let f be a Boolean function, and suppose Mf has rank r and a monochromatic subma-
trix of size at least 2−O(r/ log r)|Mf |, then f can be computed using O(r/ log r) bits of communication.

Proof Pick R to be a monochromatic submatrix of Mf of size at least 2−O
(
r/ log r

)
|Mf |, and

partition Mf as follows: [
R S

P Q

]
Now pick rS = rank(S) rows whose restriction to S are linearly independent, and similarly for
rP = rank(P ) and P . Notice that if R is mono-chromatically 0 then the rows of Mf picked from
S and P are linearly independents, and if R is mono-chromatically 1, then the rows picked from S
and P are linearly independent, unless P has a row of all 1’s (i.e., a row whose restriction to P is
the all 1 vector), then this reduces the number of linearly independent vectors by at most 1, and
thus: rS + rP ≤ r + 1. Suppose without loss of generality that rS ≤ r + 1. The protocol goes as
follows:

• For the first move, the row player (say Alive) sends Bob a bit encoding whether her input
is in the first |R| rows or not, and the protocol proceeds recursively with a protocol for the
sub-matrices [R S] or [P Q].

• If Alice’s input x is in the first R rows, then the rank of the new matrix is rR + rS ≤ r/2.

• Otherwise x is in [P Q] which might not have smaller rank but we know has size at most
(1− 2−O(r/ log r))|Mf |.

Consider the tree corresponding to this protocol and let L(m, r) denote the number of leaves in
the protocol starting with a matrix of size at most m and rank at most r. We get the following
recurrence:

L(m, r) ≤ L(m,
r

2
) + L(m((1− 2−O(r/ log r))|Mf |), r)

Unwinding the recurrence gives us

L(m, r) ≤ 22cr/ log r+O(log2 r)

≤ 2O(r log r)

And now it suffices to use this classical result in CC:
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Theorem 5 If f can be computed by a protocol with k leaves, then it can be computed by a protocol
with O(log k) bits of communication.

to conclude that f can be computed using O(r log r) bits.

Therefore to prove Theorem 2, we just need to show that every Mf contains a monochromatic
submatrix M ′ of size at least 2−O(r/ log r)|Mf |. Notice that this was implicitly used in the proof
above, namely when the protocol recurses on [R S] or [P Q], it already assumes these sub-matrices
also have monochromatic sub-matrices of proper sizes. Assuming the Polynomial Freiman Ruzsa
conjecture (PFR), Ben Sasson, Lovett and Zewi showed that such sub-matrices exist. In particular
they switch from R to F2 to exploit the simple structure of F2 and prove the following theorem:

Theorem 6 Assuming the PFR conjecture over Fn2 , every 0, 1-matrix M , with no identical rows
or columns has a monochromatic submatrix of size at least 2−O(rank(M)/ log rank(M)|M |.

To prove Theorem 6, we introduce the notion of duality and approximate duality:

Definition For any A,B ⊆ Fn2 , The duality measure of A,B is:

D(A,B) =

∣∣∣∣Ea∈A,b∈B[(−1)<a,b>]

∣∣∣∣
where the inner product < a, b > is done in F2. Notice that this definition of duality can be
formulated to capture the discrepancy of the inner product function on the rectangle A×B up to
normalization:

D(A,B) =

∣∣∣∣Pra∈A,b∈B[< a, b >= 1]− Pra,b∈B[< a, b >= 0]

∣∣∣∣
In particular, for any matrix M with rank decomposition A,B over F2 and discrepancy δ(M),
δ(M) = D(A,B). We say that A,B are dual if D(A,B) = 1. Notice that if Mf is a 0, 1 matrix
with rank r = rankF2(Mf ), and ATB is the rank factorization of Mf , then D(A,B) = 1 implies
Mf is monochromatic.
The proof of Theorem 6 follows from the following lemma:

Lemma 7 (Main Technical Lemma) Suppose A,B ⊆ Fn2 satisfy D(A,B) ≥ 2−
√
n. Then as-

suming the PFR Conjecture, there exists subsets A′ ⊆ A,B′ ⊆ B such that D(A′, B′) = 1 and
|A′| ≥ 2−cn/ logn|A|, |B′| ≥ 2−cn/ logn|B| for some absolute constant c.

and in particular, it follows from Lemma 8, a consequence of the Main Technical Lemma:

Lemma 8 Let M be a 0, 1-matrix of rank at most r over F2 and of discrepancy at least 2−
√
r.

Assuming the PFR conjecture, there exists a monochromatic submatrix M ′ of M of size at least
2−cr/ log r|M | for some absolute constant c.

Proof Let s denote the number of rows in M and t the number of columns in M . We know that
rank(M) over a field F is r iff M can be written as the sum of r rank one matrices over F. Since
rankF2(M) ≤ r, then there must exist subsets A,B ⊆ Fr2 A = {a1, a2, ..., as} and B = {b1, b2, ..., bt}
such that Mi,j =< ai, bj >2 for all i ∈ [s], j ∈ [t].
The main technical lemma implies the existence of A′ ⊆ A, B′ ⊆ B such that |A′| ≥ 2−cr/ log r|A|
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and |B′| ≥ 2−cr/ log r|B| and D(A′, B′) = 1.
Let M ′ be the submatrix of M whose rows and columns correspond to the indices in A′ and B′,
then:

D(A′, B′) = 1 =⇒ Mi,j =< ai, bj >2

= constant ∀i, j

Therefore M ′ is monochromatic and satisfies

|M ′| = |A′||B′|
≥ 2−2cr/ log r|A||B|
= 2−2cr/ log r|M |

In order to prove Theorem 6, we use Lemma 8 and the following result of Nissan and Wigderson
[8]

Theorem 9 Every 0, 1,matrix M , with r = rank(M), has submatrix M ′ of size at least |M ′| ≥
r−3/2|M | and δ(M ′) ≥ r−3/2.

Proof [of Theorem 6] Let r = rank(M). Theorem 9 guarantees the existence of a submatrix M ′

of M such that |M ′| ≥ r−3/2|M | and δ(M ′) ≥ r−3/2. And Lemma 8 guarantees the existence of
a monochromatic submatrix M ′′ of M ′ of size at least |M ′′| ≥ 2−cr/ log r|M ′| for some absolute
constant c. So we have:

|M ′′| ≥ 2−cr/ log r|M ′|
≥ 2−cr/ log rr−3/2|M |
= 2O(r/ log r)|M |

Notice that all the inequalities hold because rankF2(M ′) ≤ rank(M ′) ≤ rank(M) = r.

This concludes the proof of Theorem 6, which in turns concludes the proof of the main result.
For the sake of completeness, we give a sketch of the Main Technical Lemma, this is where the
heavy tools of additive combinatorics come into play. We first list the tools we need, namely
the Polynomial Freiman-Ruzsa Conjecture, the Balog-Szemeredi-Gowers Theorem [1, 4], and the
Approximate-Duality Lemma [11]

Conjecture 1 (The Polynomial Freiman-Ruzsa Conjecture) There exists an absolute con-
stant r, such that if A ⊂ Fn2 has |A+A| ≤ K|A|, then there exists a subset A′ ⊆ A of size at least
K−r|A| such that |span (A′)| ≤ |A|.

Theorem 10 (The Balog-Szemeredi-Gowers Theorem) There exist fixed polynomials f(x, y), g(x, y)
such that the following holds for every subset A of an Abelian additive group. If A satisfies
Pra,a′∈A[a + 1′ ∈ S] ≥ 1/K for |S| ≤ C|A|, then one can find a subset A′ ⊆ A such that
|A′| ≥ |A|/f(K,C), and |A′ +A′| ≤ g(K,C)|A|.

Definition : Given a set B ⊆ Fn2 and α ∈ [0, 1], let the α-spectrum of B be the set :

Specα(B) = {x ∈ Fn2 | |Eb∈B[(−1)<x,b>2 ]| ≥ α}
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Lemma 11 (The Approximate-Duality for sets with small span) . If D(A,B) ≥ α, then

there exists subsets A′ ⊆ A,B′B where |A′| ≥ α
4 |A|, B

′ ≥ α2

4
|A|

|span(A)| |B|, such that D(A′, B′) = 1.

If A ⊆ Specα(B) then we have |A′| ≥ |A|/2 and |B′| ≥ α2 |A|
|span(A)| |B| in the statement above.

Sketch of the Main Technical Lemma: The main idea is given the two sets A and B, we keep
generating new subsets A′ ⊆ A,B′ ⊆ B until we find a pair of subsets that have relatively large
size and satisfy D(A′, B′) = 1.

By definition, A ⊆ Specα(B) =⇒ D(A,B) ≥ α. In the other direction, D(A,B) ≥ α =⇒
∃A′ ⊆ A, |A′| ≥ α

2 using Markov’s inequality and A′ ⊆ Specα/2(B). To prove the main lemma, we
start with A1 = A′ and α1 = α/2 and construct a sequence of sets as follows:

A2 ⊆ A1 +A1

A3 ⊆ A2 +A2

...

Where each Ai is in the Specαi(B) and αi = α2
i−1.

Each Ai has size at most 2n, and since the Ai sequence is infinite but the Ai’s are subsets of
Fn2 , there must exist an index i such that i ≤ n logK, K > 1 for which |Ai+1| ≤ K|Ai|. Pick the
smallest index t satisfying this, and use the PFR conjecture and Theorem 10 to show that

|At+1| ≤ K|At| =⇒ ∃A′′
t ⊆ At that has small span over F2.

By construction A
′′
t satisfies D(A

′′
t , B) ≥ αt since A

′′
t ⊆ Specαt

(B) and A
′′
t is a relatively large frac-

tion of its span. Using the Approximate Duality Lemma (Lemma 11), we conclude that A
′′
t and B

contain relatively large subsets A′t, B
′
t such that D(A′t, B

′
t) = 1, i.e. A

′′
t and B contain dual large

subsets A′t, B
′
t. Again by construction A′t ⊆ At−1+At−1, then At−1 also contains a large subset A

′
t−1

dual to a large subset B′t−1 ⊆ B′t, D(A
′
t−1, B

′
t−1) = 1. We keep finding these dual pairs for values

t−2, t−3, ..., 1 upon which we have found a dual pair of subsets of A and B with relatively large size.

Conclusion: As already stated, the result by Lovett is much stronger and tighter. In [9],
Rothvoss presented a different proof to Lovett’s upper bound. However these results still leave
an exponential gap between an upper and lower bound, thus leaving much work to be done. An
interesting direction is to see if the combination of these approaches (additive combinatorics, Fourier
analysis and discrepancy of low-rank matrices) can help improve the gap.
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