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CS 2429 - Foundations of Communication Complexity

Information Complexity and Set Disjointness

Lecturer: Robert Robere

1 Information Theory

In this section we discuss the information-theoretic notions that we use later. Following much of
the literature on information complexity the calligraphic letters X ,Y,Z, . . . will be used to denote
sets (often supports of distributions), capital letters X,Y, Z, . . . to denote random variables, and
lowercase letters x, y, z, . . . to actual values. Another useful convention is as follows: if we sample
a value using a lower-case letter x from some distribution then we use the corresponding capital
letter X to denote the associated random variable. With this convention in mind we will use
p(x) to denote P [X = x], and other standard probabilistic constructions similarly (i.e. p(x|y) for
Pr[X = x|Y = y], etc.) Furthermore, all distributions that we consider are over finite sets.

The first information-theoretic quantity that we consider is the entropy of a (real-valued) ran-
dom variable X, defined to be

H(X) := E
[
log

1

p(x)

]
=
∑
x

p(x) log
1

p(x)
,

where we take the convention that 0 log 1/0 = 0 (which can be justified for our application since
x log 1/x → 0 as x → 0 from the right). The entropy of a random variable X is a measure of our
uncertainty of the value that X takes: if X has high entropy then we have essentially no ability
to predict the value that X will take. Another, equivalent view says that the entropy measures1

the average number of bits needed to store the result of sampling the random variable X. Under
this interpretation, intuition suggests that the uniform distribution over a finite set [n] should have
maximal entropy, and indeed it does: if X samples from [n] uniformly at random, then

H(X) =
n∑
i=1

n−1 log(n−1) = log n,

which makes sense, since informally we should require dlog ne bits to store a sample of X. If the
distribution is skewed away from uniform, however, then the entropy decreases since we could get
away with encoding the “uncommon” values with longer strings. For example, suppose that X is
a random variable sampled from the following simple distribution on [2n + 1]2: the value 2n + 1
appears with probability 1/2, and for all i ∈ [2n + 1] other than 2n + 1, p(i) = 1/2n+1. This is

1“measures” is an important qualifier here, as it is not exact
2we choose 2n here instead of n to give an actual encoding that matches the entropy.
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certainly a distribution since 2n/2n+1 = 1/2, and so calculating the entropy we get

H(X) =
2n+1∑
i=1

p(i) log p(i)−1 =
1

2
+

1

2n+1
log 2n+1 =

1

2
+
n+ 1

2n+1
.

If we encode 2n + 1 as the string 0, and all other strings i as the binary expansion of i pre-pended
with 1, we get that the average number of bits needed to store the random variable X is exactly
the entropy H(X).

If we consider a joint distribution (X,Y ) for independent random variables then the entropy of
the resulting random variable has the following nice property:

H(X,Y ) = H(X) +H(Y ).

This suggests that there should perhaps exist a conditional entropy, and indeed there is: the
following definition is the “right” one:

H(X|Y ) = E
y
[H(X|Y = y)].

That is, the conditional entropy H(X|Y ) is the average entropy “left” in X after sampling Y .
Much like entropy can be interpreted as the average number of bits needed to store the result of
sampling X, we can interpret the conditional entropy as the average number of bits needed to store
X if we already have a sample of Y . Conditional entropy generalizes the nice property above as
you would expect:

H(X,Y ) = H(X) +H(Y |X), (1)

and this fact is known as the chain rule.
Now, in perfect analogy to Bayes rule, we can write the joint entropy in two different ways:

H(X) +H(Y |X) = H(X,Y ) = H(Y ) +H(X|Y ),

and re-arrange it to obtain

H(X)−H(X|Y ) = H(Y )−H(Y |X).

This quantity is so important that it receives its own name: mutual information, and it is denoted
by

I(X;Y ) := H(X)−H(X|Y ) = H(Y )−H(Y |X). (2)

Intuitively, I(X;Y ) measures how much information is shared by X and Y : or, said another way,
how much uncertainty is removed from X after we have learned the variable Y (on average). We
can similarly define the conditional mutual information, denoted I(X;Y |Z), where

I(X;Y |Z) = H(X|Z)−H(X|Z, Y ) = H(Y |Z)−H(Y |Z,X),

which has a similar interpretation to the mutual information.
The next proposition records a number of properties of these information theoretic quantities:

Proposition 1 Let W,X, Y, Z be random variables.
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1. If X takes on at most s values then H(X) ≤ log s.

2. I(X;Y ) ≥ 0, or equivalently, H(X|Y ) ≤ H(X) (conditioning can only reduce uncertainty).

3. H(X,Y |Z) ≤ H(X|Z) +H(Y |Z) (subadditivity of conditional entropy).

4. I(XY ;Z) = I(X;Z) + I(Y ;Z|X) (chain rule for mutual information).

5. If Y and X are independent given Z and W then

I(XY ;Z|W ) ≥ I(X;Z|W ) + I(Y ;Z|W )

(superadditivity of mutual information).

6. If X and Z are conditionally independent given Y , then I(X;Y |Z) ≤ I(X;Y ) (data-processing
inequality)

So you can see that they are algebraically well-behaved, and also strongly correspond to our
intuition about how the quantities “should” work.

2 Communication Protocols and Information

Fundamentally, communication protocols are about an exchange of information: two parties wish
to communicate the minimum amount of information about their inputs in order to solve the task
at hand. It should therefore be no surprise that information theoretic tools are very useful in this
setting. We focus on randomized and distributional communication complexity: for any δ > 0 and
any function f : X × Y → Z, let Rδ(f) be the randomized communication complexity of f over
protocols that error on at most a δ-fraction of the inputs. Similarly, if µ is a distribution on X ×Y
let Rµδ (f) denote the δ-error distributional communication complexity of f , where the inputs of the
communication protocol are chosen from the distribution µ. If Π is a communication protocol for
f then let Π(x, y) denote the transcript between the two players on input x, y, which is the string
containing the shared random bits used in the protocol and all messages exchanged between the
two players. For any fixed input x, y the communication complexity of the transcript will be the
length of Π(x, y) — denoted |Π(x, y)| — and we denote by CC(Π) the maximum communication
complexity of Π over all inputs.

At the opening of this section it was stated that communication could be thought of as parties
wanting to reveal the minimum amount of information3 about their inputs in order to solve some
pre-determined task. The next definition formalizes this in an information-theoretic sense.

Definition Let f : X × Y → Z be a function, µ a distribution on X × Y and δ > 0. If Π is a
protocol computing f with δ-error on the distribution µ, define the external information complexity
of Π to be

ICextµ,δ (Π) = I(XY ; Π(X,Y )),

where the shared randomness of Π is part of the transcript (note that Π(X,Y ) is a random variable
depending on µ and the shared randomness). Define the internal information complexity to be

ICµ,δ(Π) = I(X; Π(X,Y )|Y ) + I(Y ; Π(X,Y )|X).

3Here things like zero-knowledge proofs is being swept under the rug.
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The two definitions are necessary to capture a certain ambiguity in our statement before the
definition: namely, who are the parties “revealing” their information too? The external information
complexity measures the amount of information revealed about the inputs X,Y to an external
observer who only observes the transcript of the protocol Π(X,Y ); on the other hand, the internal
information complexity measures the amount of information revealed to each player about the other
player’s input: the first term measures how much information is revealed by the protocol Π(X,Y )
about the input X, knowing the value of Y , and vice-versa for the second term. Intuitively both of
these measures should be lower bounds on the communication complexity of the protocol Π, and
once again the intuition about information lines up with what we can prove formally:

Proposition 2 Let f : X ×Y → Z be a function, µ any distribution over X ×Y, and δ > 0 some
real number. Let Π be a deterministic protocol computing f with δ-error on inputs drawn from the
distribution µ. Then CC(Π) ≥ ICextµ,δ(Π) ≥ ICµ,δ(Π).

Proof The first inequality follows from a quick calculation

CC(Π) ≥ max
(x,y)
|Π(x, y)| ≥ H(Π(X,Y )) ≥ I(XY ; Π(X,Y )) = ICextµ,δ(Π).

The second inequality requires a bit (but not much) more work. Intuitively, in each round only a
single player can speak, and so only one player will learn any information about the other player’s
input (in the internal information sense). However an external observer will see all exchanged bits,
and since he does not have either of the player’s inputs he will learn some information in every
round.

For any i ∈ {1, . . . , CC(Π)} let Π(x, y)i be the ith bit exchanged by the protocol on input x, y,
and define Π(x, y)≤i,Π(x, y)<i analogously. Below let us write Π instead of Π(X,Y ) for the sake
of brevity. At step i only one player spoke: assume it is the X player w.l.o.g. Clearly the amount
of information learned by this player about Y is 0 for this round:

I(Y ; Πi|Π<i, X) = 0.

By the chain rule for mutual information, the amount of information learned by an external observer
is at least the maximum amount of information learned by either party:

I(XY ; Πi|Π<i) ≥ max{I(X; Πi|Y,Π<i), I(Y ; Πi|X,Π<i)}.

Combining these two facts proves the second inequality, after applying the chain rule to the tran-
script repeatedly:

ICextµ,δ(Π) = I(XY ; Π) =

CC(Π)∑
i=1

I(XY ; Πi|Π<i)

≥
CC(Π)∑
i=1

max{I(X; Πi|Y,Π<i), I(Y ; Πi|X,Π<i)}

≥
CC(Π)∑
i=1

I(X; Πi|Y,Π<i) + I(Y ; Πi|X,Π<i)

= I(X; Π|Y ) + I(Y ; Π|X) = ICµ,δ(Π),

where the last inequality follows since one of the terms is 0 for each i.
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Now, if f is a function let4

ICµ,δ(f) = inf
protocols Π computing f

ICµ,δ(Π).

Then the previous proposition implies

Rδ(f) ≥ ICµ,δ(f)

after applying Yao’s minimax principle.
So, with information complexity we get a new quantity that lower bounds communication

complexity. What exactly can we get that was out of reach before? There are several answers to
this, and they are each inter-related:

Direct Sum/Direct Product Theorems Informally, a direct-sum question is one of the follow-
ing form: does the complexity of computing n copies of a function f scale as n times the
complexity of computing a single copy of f? Due to its nice algebraic properties, information
complexity admits a direct sum theorem quite easily: the information revealed by a protocol
computing n copies of f is at least n times the information revealed by computing a single
copy of f . This direct sum property of information can be transformed into a direct-sum for
communication.

Communication Lower Bounds Due to the direct-sum property above, information complexity
is quite useful for studying the communication complexity of composed functions: that is,
functions of the form h(x, y) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)). A notable example of
such a function is the disjointness problem: DISJ(x, y) =

∨n
i=1 xi ∧ yi. For example, the

direct-sum property of disjointness reduces the problem of communication lower bounds for
DISJ to information complexity lower bounds on the 2-bit ∧ function. Using information
complexity tools Bar-Yossef et al [2] were able to give a simplified proof of the Ω(n) lower
bound on the randomized communication complexity of disjointness. Later, this was improved
by Braverman, Garg, Pankratov, and Weinstein [4] to give a tight bound on the complexity
of disjointness of the following form: for every ε > 0 there is a δ > 0 such that δ → 0 as
ε→ 0 and

(CDISJ − δ)n ≤ Rε(DISJ) ≤ CDISJ · n+ o(n),

where CDISJ ≈ 0.4827.

Protocol Compression Given a protocol Π with communication complexity C and information
complexity I, does there exist a protocol Π′ computing the same function but with com-
munication complexity O(I)? Or, informally, can we compress an arbitrary communication
protocol down to its information content? It turns out that we can get some non-trivial
compression (although not all the way down to O(I)), and this is used to proved the direct
sum theorem for communication alluded to above.

We will not touch on protocol compression in this lecture, but we will give the full argument
of [2] showing an Ω(n) lower bound on the randomized complexity of disjointness. But first, let us
discuss direct-sum results.

4Yes, that should be an inf and not a min. There can be infinitely many protocol computing f with the same infor-
mation complexity, and actually you can have an infinite sequence of protocols Π1,Π2, . . . such that the information
complexity of the protocols converges to ICµ,δ(f) in the limit.
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3 Direct Sum for Information

Let f : X × Y → Z be a function, let µ be a distribution over X × Y, and let δ > 0 be some error
parameter. Earlier it was stated that information complexity admits a direct-sum property, and
in this section we will make this formal. Let fn be the problem of solving n independent copies of
f : the input to fn is a sequence of inputs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∼ µn, and the output is
f(Xi, Yi) for each i. In [3] the following was proven5:

Theorem 3 (Theorem 4.3 in [3]) Let f be a two-party function, µ any distribution over the
inputs of f , and δ > 0 an error parameter. Then

ICµn,δ(f
n) = n · ICµ,δ(f).

In lieu of proving this, we instead prove a consequence of the above theorem that follows a similar
proof. Working in the restricted setting of the next theorem will allow us to directly argue about
communication protocols and be finished, rather than having to worry about issues related to
convergence and other analytic problems when considering ICµ,δ(f). The next result is important
to digest, so we give two separate arguments: the first is a simple argument when the distribution
µ is restricted to be a product distribution, and the second is a more general argument from [5].

Theorem 4 Let f be a two-party function, µ any distribution over the inputs of f , and δ > 0 an
error parameter. There exists a protocol τ solving f over the distribution µ with at most δ-error
such that

Rδ(f
n) ≥ nICµ,δ(τ)

and the communication complexity of τ is at most Rδ(f
n).

Proof Note again that our protocols may have both public and private randomness. Let Π be
a deterministic protocol computing fn on µn with δ-error that attains communication complexity
Rµ

n

δ (fn). This proof is a subtle, so first let us assume that µ is a product distribution (i.e. when
sampling (X,Y ) according to µ the values of X and Y are independent). The obvious protocol
that springs to mind is the following: given an input (X,Y ) distributed according to µ, Alice and
Bob sample a uniformly random j ∈ [n] using shared randomness and n − 1 inputs of their own
using private randomness:

(X1, Y1), (X2, Y2), . . . , (Xj−1, Yj−1), (Xj+1, Yj+1), . . . , (Xn, Yn).

Note that they can do the second sampling step precisely because µ is assumed to be a product
distribution. Then they simulate the protocol Π on the sampled inputs, with (X,Y ) plugged into
the jth spot. Call this protocol τ ′.

Clearly CC(τ ′) = CC(Π). In the calculations of the remainder of the proof we let Π denote
Π((X1, Y1), (X2, Y2), . . . , (Xn, Yn)) for brevity. By Proposition 2 we have

CC(Π) ≥ I(X1X2 · · ·XnY1Y2 · · ·Yn|Π) ≥
n∑
i=1

I(XiYi; Π) = nI(XJYJ ; Π|J),

5To keep things notationally simple we state a special case of this theorem. In [3] the same statement was proven
for prior-free information complexity.
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where the second-to-last inequality is just the super-additivity of mutual information (Proposition
1) and the last equality is a straightforward calculation (for uniformly random J ∈ [n]). (Note
that super-additivity can be applied here since the coordinates are sampled independently of one
another.) The value of J is independent of the values of XJ and YJ , so we can write

I(XJYJ ; Π|J) = I(XJYJ ; Π|J) + I(XJYJ ; J)

and applying the chain rule for mutual information yields

I(XJYJ ; Π|J) = I(XJYJ ; ΠJ) = I(XY ; ΠJ).

Since Alice and Bob sampled J with their public randomness at the beginning of τ ′ the last term
is just the external information complexity of τ ′. Collecting the inequalities together and applying
Proposition 2 we get

CC(Π) ≥ nI(XJYJ ; Π|J) ≥ nI(XJYJ ; ΠJ) ≥ nIextµ,δ (τ ′) ≥ nIµ,δ(τ ′),

which finishes the proof when µ is a product distribution.
When µ is non-product things get a bit more difficult. The problem is that in the protocol τ ′,

Alice and Bob can no longer sample the inputs (Xi, Yi) for i 6= j on their own. To get around this
we have to be a bit more tricky with public randomness (this proof is due to [5]).

The new protocol τ will be as follows. Alice receives an input x and Bob receives an input y.
Alice and Bob sample j ∈ [n] uniformly at random, like before. But now they use public randomness
to sample X1, X2, . . . Xj−1 and Yj+1, Yj+2, . . . , Yn (say, by sampling n inputs (X,Y ) from µ and
throwing away the half of the sample that is not needed). Then, using private randomness, for
each i = j + 1, j + 2, . . . , n, Alice samples Xi from the distribution µ conditioned on the value of
Yi. Similarly, for each i = 1, 2, . . . , j − 1, Bob samples Yi from µ conditioned on the value of Xi.
Finally, they simulate the protocol Π on their inputs with (x, y) plugged into the jth index. The
information complexity of this protocol is

ICµ,δ(τ) = I(X; τ |Y ) + I(Y ; τ |X), (3)

and note that
τ = JX1X2 . . . Xj−1Yj+1Yj+2 . . . YnΠ.

We upper bound each component of (3) individually. For the first:

I(X; τ |Y ) = I(X; JX1X2 . . . XJ−1YJ+1YJ+2 . . . YnΠ|Y )

≤ I(X; JX1X2 . . . XJ−1Y1 . . . YnΠ|Y ),

where the inequality follows since we can only reveal strictly more information by showing the rest
of Bob’s sampled inputs. By the definition of the sampling in τ , X is conditionally independent of
everything on the right of the mutual information except for Π, so

I(X; JX1 . . . XJ−1Y1 . . . YnΠ|Y ) = I(X; JX1 . . . XJ−1Y1 . . . Yn|Y ) + I(X; Π|JX1 . . . XJ−1Y1 . . . Yn)

= I(X; Π|JX1 . . . XJ−1Y1 . . . Yn).
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The rest of the argument is essentially identical to the case of the product distribution above. Since
X = XJ , expanding the expectation of J yields

I(XJ ; Π|JX1 . . . XJ−1Y1 . . . Yn) =
1

n

n∑
j=1

I(Xj ; Π|X1 . . . Xj−1Y1 . . . Yn)

≤ 1

n
I(X1 . . . Xn; Π|Y1 . . . Yn),

which is one of the terms in the information complexity of ICµn,δ(Π). Applying the argument
symmetrically to I(Y ; τ |X) yields

ICµ,δ(τ) ≤ 1

n
ICµn,δ(Π) ≤ 1

n
Rδ(f

n).

There are a few remarks to be made about the above proof. Notice that we are lower bounding the
randomized communication complexity and not the distributional communication complexity. This
is a subtle point, and will be important later when we give a lower bound on the communication
complexity of set disjointness.

In the product case we were able to get away by proving that Rµ
n

δ (f) ≥ nICextµ,δ(τ), and then use
the fact that the external information greater than the internal information. This is symptomatic
of a deeper phenomenon: namely, that if µ is a product distribution then ICextµ,δ(τ) = ICµ,δ(τ).

It is important to digest this argument before proceeding: in the next section we will modify it
to get a “direct-sum result” for the complexity of disjointness.

4 Lower Bounds for Disjointness

The first result is a new proof of the Ω(n) lower bound for disjointness, which is originally due to
Bar Yossef et al [2]. We closely follow their presentation.

Recall that the disjointness function DISJ(x, y) is defined to be

DISJ(x, y) =

n∨
i=1

(xi ∧ yi). (4)

Our next goal is to get a linear lower bound on the randomized communication complexity of
disjointness by reducing to (a variant of) the direct sum result proven in the previous section. Fol-
lowing an essentially identical argument as in Theorem 4, one can show that for any distribution µ
over {0, 1}, the amount of information revealed in any randomized protocol computing disjointness
on inputs drawn from µn is at least n times the amount of information revealed in any protocol
computing the 1-bit AND function over µ. Then we can exhibit a hard distribution µ, over which
any randomized protocol must reveal at least Ω(1) bits of information when computing AND.

Before we get into the details, however, we should discuss the choice of our prior distribution
µ. It is known [1] that if µ is a product distribution then the distributional complexity of DISJ is
O(
√
n log n), and so we will need to choose µ to be a non-product distribution (and we will therefore

need the full strength of Theorem 4). With this in mind, consider the following distribution µ: flip
an unbiased coin, and if it comes up Heads set Alice’s input to 0 and Bob’s input to a uniformly
random bit, and if it comes up Tails set Bob’s input to 0 and Alice’s input to a uniformly random
bit. We will see later that any randomized protocol that computes AND correctly with probability
1− δ on all inputs must reveal Ω(1) bits of information on inputs sampled from µ.

8
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Definition Let ν be the distribution over {0, 1}2 × {h, t} defined by the following sampling
procedure: first choose D from {h, t} uniformly at random. If D = h then set X = 0 and choose
Y uniformly at random from {0, 1}, and return ((X,Y ), D). If D = t then set Y = 0 and choose
X uniformly at random from {0, 1}, and return ((X,Y ), D). Notice that the marginal distribution
of (X,Y ) defined by ν is exactly the distribution µ defined above, and moreover that X and Y are
conditionally independent given D.

4.1 Reduction to the Information Complexity of AND

The direct sum result in Section 3 is nice, but it does not directly apply (as stated) to DISJ since
DISJ is the OR of n ANDs, rather then computing n copies of AND in parallel. However, it
is possible to show that as long as the distribution µ on the ANDs has a special property (it is
collapsing, using the term coined in [2]) then the direct sum reduction will still go through.

Definition Let σ be a distribution on {0, 1}n×{0, 1}n. For any i ∈ [n], x ∈ {0, 1}n, and a ∈ {0, 1}
let xi←a be the string obtained from x by replacing the ith coordinate in x with a. We say that σ
is collapsing if

DISJ(xi←a, yi←b) = a ∧ b,

for all (x, y) in the support of σ, all i ∈ [n], and all (a, b) ∈ {0, 1}2.

It is easy to see that the distribution µ defined above is collapsing since it only places mass on
0s of DISJ . The next lemma completes the reduction from DISJ to the 1-bit AND over µ.

Lemma 5 Let ((X,Y ), D) be sampled according to ν, and let δ > 0. There exists a randomized
protocol τ computing AND with probability 1− δ on all inputs such that

Rδ(DISJ) ≥ nI(XY ; τ(X,Y )|D).

Proof Let π be a randomized protocol with communication complexity Rδ(DISJ) that outputs
the correct value with probability 1− δ on all inputs. Consider the following protocol τ .

1. Alice and Bob receive input (x, y).

2. Using public randomness, Alice and Bob sample j ∈ [n] uniformly at random, and n − 1
variables d1, . . . , dj−1, dj+1, . . . , dn from {h, t} uniformly at random.

3. Using private randomness, for each i 6= j Alice samples xi from ν conditioned on the value
of di, and sets xj = x.

4. Using private randomness, for each i 6= j Bob samples yi from ν conditioned on the value of
di, and sets yj = y.

5. Alice and Bob simulate the protocol π on (X1, Y1), (X2, Y2), . . . , (Xn, Yn).

Since µ is a collapsing distribution it follows that τ is a protocol for computing AND.
Let ((X,Y),D) be distributed according to νn. The transcript Π(X,Y) and D are condi-

tionally independent given XY, so the data-processing inequality (Proposition 1) combined with
Proposition 2 implies that

Rδ(DISJ) ≥ I(XY; Π) ≥ I(XY; Π|D). (5)

9
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Since the n coordinates are sampled independently, the super-additivity of mutual information
yields

I(X,Y; Π|D) ≥
n∑
j=1

I(XjYj ; Π|D) = nI(XJYJ ; Π|DJ) (6)

where J is sampled uniformly at random from [n].
Let D−J be the random variable D1, . . . , Dj−1, Dj+1, . . . , Dn, and note that XJ , YJ , D

−J , and
J are all independent of one another, even conditioned on DJ . This independence implies that
I(XJYJ ; D−JJ |DJ) = 0, and so

I(XJYJ ; Π|DJ) = I(XJYJ ; Π|DJ) + I(XJYJ ; D−JJ |DJ) = I(XJYJ ; ΠJD−J |DJ).

But ΠJD−J is just the transcript of τ on XJ , YJ , and since XJ , YJ are distributed according to µ
we can write

I(XJYJ ; ΠJD−J |DJ) = I(XY ; τ |D). (7)

Combining (5), (6), and (7) yields

Rδ(DISJ) ≥ nI(XY ; τ |D).

4.2 A Lower Bound on the Information Complexity of AND

The next lemma is the target of this section:

Lemma 6 Let ((X,Y ), D) be distributed according to ν (cf. Definition 4). Let τ be any randomized
protocol computing AND correctly with probability at least 2/3 on all inputs. Then

I(XY ; τ(X,Y )|D) ≥ 2

9
.

Before we begin discussing the proof of this lemma, we will first need to quantify the distance
between two probability distributions.

Definition Let P,Q be two finite probability distributions with the same support S. Then the
Hellinger distance h(P,Q) between the two distributions is defined to be

h(P,Q) =

(
1−

∑
s∈S

√
P (s)Q(s)

)1/2

.

Let h2(P,Q) denote the square of the Hellinger distance.

If we imagine the distributions P,Q as real-valued vectors indexed by elements in S, then the
Hellinger distance is just the normalized `2 distance between the roots of the two vectors:

h(P,Q) =
1√
2
||
√
P −

√
Q||2, (8)

where the square-roots are taken component-wise. This fact will be useful later.

10
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The proof of Lemma 6 follows first by reducing the lower bound on mutual information to a
lower bound on Hellinger distance. Let us first manipulate the term I(XY ; τ(X,Y )|D) a bit to see
this. By directly expanding the expectation implicit in the conditional mutual information, we get

I(XY ; τ(X,Y )|D) =
1

2
(I(XY ; τ(X,Y )|D = 0) + I(XY ; τ(X,Y )|D = 1))

=
1

2
(I(Z; τ(0, Z)) + I(Z; τ(Z, 0)), (9)

where Z is a uniformly random bit on {0, 1}. For xy ∈ {0, 1}2 let τxy represent the distribution of
transcripts of τ on input (x, y). The following is a technical lemma which lower bounds the mutual
information of the terms above by the Hellinger distance of their corresponding distributions.
The proof is technical (and requires introducing more information theoretic terminology), so it is
omitted.

Lemma 7 Let Z be a uniformly random bit and let τ be any randomized protocol that computes
AND correctly with error δ on all inputs. Then

I(Z; τ(0, Z)) ≥ h2(τ00, τ01) and I(Z; τ(Z, 0)) ≥ h2(τ00, τ10).

Proof Omitted. See [2] for a full proof (this lemma follows directly from Lemma 6.2 in that paper,
which is proven as Lemma A.7 in their appendix).

Applying this lemma to (9) yields

I(XY ; τ(X,Y )|D) ≥ 1

2
(I(Z; τ(0, Z)) + I(Z; τ(Z, 0))

≥ 1

2
(h2(τ00, τ01) + h2(τ00, τ10))

≥ 1

4
(h(τ00, τ01) + h(τ00, τ10))2

≥ 1

4
h2(τ10, τ01), (10)

where the third inequality is Cauchy-Schwarz and the final inequality is the triangle inequality
(note that both of these can be applied thanks to (8)). We have reduced the problem of lower
bounding this conditional mutual information term to lower-bounding the Hellinger distance of the
two “diagonal” 0-distributions of τ . Intuitively, of course, this makes sense: if the distribution of
transcripts produced by 00 is “close” to the distribution of transcripts produced by 01 and 10, then
we expect that the two distributions of transcripts 01, 10 are also close.

To finish off the proof of Lemma 6 we will need to exploit the fact that τxy is a probability
distribution over transcripts, and the set of inputs producing that produce a particular transcript
is a combinatorial rectangle. The next lemma is a probabilistic interpretation of this fact:

Lemma 8 (Cut-and-Paste Lemma) Let Π be any randomized protocol computing a 2-party
function f : X × Y → Z. Let x, x′ ∈ X and y, y′ ∈ Y. Then

h(Πxy,Πx′y′) = h(Πx′y,Πxy′).

11
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Proof Let T be a possible transcript of the protocol Π. If Π was a deterministic protocol, then
the collection of inputs that reach T would form a rectangle (a set of the form A × B for some
A ⊆ X ,B ⊆ Y). However, now that Π is probabilistic this is not true in exactly the same sense,
since on an input (u, v) the transcript Π(u, v) may depend on the private random strings of Alice
and Bob which do not appear in the transcript. So, let (u, a), (v, b) be an extension of the input
(u, v) with some strings of private random bits a, b. If we consider Π to depend on (u, a), (v, b)
then the rectangle property can be recovered: the set of inputs that reaches any fixed transcript T
is a rectangle on the set of extended inputs.

Let T be any transcript of Π and let A× B be the rectangle of extended inputs (i.e. inputs of
the form (x, a), (y, b) for (x, y) ∈ X × Y and (a, b) some strings of random bits) that reach T . Let
x ∈ X , and let q1(x, T ) be the probability that that (x, a) ∈ A for a uniformly random string of
coin flips a. Similarly, let q2(y, T ) be the probability that (y, b) ∈ B for a uniformly random string
of coin flips b. It follows from the discussion above that

Pr[Π(x, y) = T ] = q1(x, T )q2(y, T ), (11)

which is a “probabilistic rectangle property”.
From (11) we can prove the lemma by a direct calculation. Namely,

1− h(Πxy,Πx′y′) =
∑
T

√
Pr[Πxy = T ] Pr[Πx′y′ = T ]

=
∑
T

√
q1(x, T )q2(y, T )q1(x′, T ), q2(y′, T )

=
∑
T

√
q1(x, T )q2(y′, T )q1(x′, T ), q2(y, T )

=
∑
T

√
Pr[Πxy′ = T ] Pr[Πx′y = T ]

= 1− h(Πxy′ ,Πx′y).

Applying the cut-and-paste lemma to (10) yields

I(XY ; τ(X,Y )|D) ≥ 1

4
h2(τ00, τ11). (12)

And now we are certainly done (at least intuitively): since the protocol τ correctly computes AND
with high probability, it simply cannot be the case that the distributions τ00 and τ11 are “close”,
since τ11 is the distribution of transcripts of 1s of the function.

In fact it is quite easy to prove that τ00 and τ11 are “distant” under a different form of distance
between probability distributions. For two finite probability distributions P,Q with the same
support S define the total variational distance V to be

V (P,Q) := max
s∈S
|P (s)−Q(s)|.

In fact, as the Hellinger distance is just the `2 distance of the probability distributions, the total
variational distance can be re-written as the `1 distance of the probability distributions:

V (P,Q) =
1

2
||P −Q||1. (13)

12



CS 2429 - Foundations of Communication Complexity Lecture #12: Fall, 2014

Since P,Q are vectors satisfying ||P ||1 = ||Q||1 = 1 we can embed the `1 norm into the `2 norm
with distortion at most

√
2, so

V (P,Q) ≤
√

2h(P,Q). (14)

Finally, the probability that τ11 = τ00 is at least 1 − 2δ over the coin-flips of the protocol. This
implies that V (P,Q) ≥ 1− 2δ. Combining this fact with (12) and (14) implies

I(XY ; τ(X,Y )|D) ≥ 1

4
h2(τ00, τ11) ≥ 1

2
V (P,Q)2 ≥ (1− 1/3)2

2
=

2

9
,

proving Lemma 6 for c = 2/9.
Combining Lemma 6 and Lemma 5 yields

R1/3(DISJ) ≥ Ω(n).
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