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1 Monotone Circuit Depth Lower Bounds

Today we will finish the proof that there are monotone functions that require near linear monotone
circuit depth.

Recall from last class that we will start with the CNF search problem associated with Tseitin,
and lift it to obtain a lifted search problem. From the theorem from last class, this implies that
there is a corresponding monotone function such that the KW communication complexity of this
monotone function is large, if the communication complexity of the lifted Tseitin search problem is
large.

In particular, Tseitin on a graph with n vertices has n constraints, and we will select a gadget
g with c = 2. Thus, our monotone function will have 4n inputs and its monotone depth will be at
least the communication complexity of S(Tseitin(G))ogn.

By using a different family of unsatisfiable CNF formulas, it is also possible to obtain a function
that is in monotone P and that requires monotone circuits of depth

√
n; however we will not do

this here.
For the remainder of the lecture, we will prove that for appropriate graphs G, the communication

complexity of S(Tseitin(G))ogn is large.

2 Block sensitivity, Critical Block Sensitivity, Decision Tree Depth

Define block sensitivity, and critical block sensitivity.
Fix a search problem S ⊆ {0, 1}n ×Q. An assignment α is said to be critical if it has a unique

feasible solution.
Let f ⊂ S be a total function – for each input α, f picks out some feasible solution f(α) for α.
The block sensitivity of f at α, bs(f, α), is the maximal number bs such that there are disjoint

blocks of coordinates B1, . . . , Bbs ⊂ [n] satisfying f(α) 6= f(αBi) for all i. Here, αBi represents the
assignment α where the block of variables Bi has been flipped.

The block sensitivity of f , bs(f) is then the maximal block sensitivity over all assignments α.
The block sensitivity of a search problem S is just the minimum over all total functions f ⊂ S of
the block sensitivity of f .

The critical block sensitivity of S, bscrit(S) is the minimum over all f ⊂ S of the maximum
over all critical assignments α, of bs(f, α). So the critical block sensitivity is just like the block
sensitivity but we only look over critical assignments.

If a search problem has high critical block sensitivity, then it has high block sensitivity, which
in turn implies high decision tree complexity.

It turns out that for the appropriate choice of graph G, that the Tseitin CNF formulas have
very high critical block sensitivity.

Theorem 1. There are bounded-degree graphs Gn such that bscrit(S(Tseitin(Gn)) = Ω(n/ log n).

1



CS 2429 - Foundations of Communication Complexity Lecture #6: Fall, 2014

3 Defining the Gadget

A ”nice” two-party gadget g will have some nice properties. Let f1 and f2 be two-party functions. We
say that f1 reduces to f2, written f1 ≤ f2 if the communication matrix of f1 appears as a submatrix
of f2. This is equivalent to their being functions πA and πB such that f1(x, y) = f2(πA(x), πB(y))
for all x, y. In other words, if f1 reduces to f2, then from a short communication complexity for f2,
Alice and Bob can solve f1. (Furthermore, the reduction is of the simple type where Alice without
communication maps her input x to some x′ and similarly Bob without communication maps y to
y′ and then they run f2 on (x′, y′) and the answer returned will be equal to f(x, y).)

We want our gadget g to have three reducibility properties. First, ¬g is reducible to g. Secondly
the AND function is reducible to g. Thirdly, g is random self reducible. A gadget g satisfying these
three properties will be called versatile.

Lemma 2. The following 2-party function g from X × Y → {0, 1} is versatile. Let X = {0, 1, 2, 3},
Y = {0, 1, 2, 3}. Then g(x, y) = 1 if and only if x+ y(mod4) equals 2 or 3.

4 Communication Complexity Lower Bound for Lifted Tseitin via
Set Disjointness

We first give a warmup reduction that should help to explain the main high level idea. Suppose
that f is a function (not a search problem) with block sensitivity bs and let α be an assignment
that witnesses this block sensitivity. Let the blocks be B1, . . . , Bbs. Now consider fogn where g is
some inner gadget such that both AND and ¬ are reducible to g (that is, both of these functions
occur as subrectangles of the matrix for g).

The players, upon input x, y to set disjointness, |x| = |y| = bs want to solve unique disjointness
with a protocol for fogn. They want to map input xi, yi to values for block Bi. If xi = yi = 1 then
they want to set the ith block to the value specified by α and otherwise (if AND(xi, yi) = 0) then
they want to toggle the values of the ith block. All other indices that are not in a critical block will
take on a value consistent with α. They can do this as long as both AND and ¬ are reducible to g.
Now if x, y are disjoint, then gn will be equal to α, but if x, y are not disjoint and intersect uniquely
at location i, then gn will equal αBi . Since f is sensitive on every block on α, the protocol for fogn

will either output f(α) and this happens whenever x, y are disjoint, or it will output f(αBi) for
some i and this will happen whenever x, y uniquely intersect at location i. Thus Alice and Bob can
determine whether or not x, y intersect from a protocol for fogn.

In this section, S will be the search problem associated with Tseitin formula over a fixed highly
expanding graph on O(n) vertices. By the above theorem, we know that the critical block sensitivity
of S is very large – Ω(n/ log n).

Let Sogn be the lifted search problem, where Alice gets a binary vector x of length 4n, and
similarly Bob gets a binary vector y of length 4n, and their job is to solve the search problem for S
on input z1 = g(x1, y1), . . . , zn = g(xn, yn), where g is the versatile gadget described in the previous
section.

We want to show that if there is a short protocol for Sogn, then there is also a short protocol
for unique set disjointness.

Let Π be the short protocol for Sogn. We will record for each α ∈ {0, 1}n the most likely feasible
output of Π on inputs (x, y) that encode α. That is, for each α, we define µα to be the uniform

2



CS 2429 - Foundations of Communication Complexity Lecture #6: Fall, 2014

distribution on the set of preimages of α, i.e., µα is uniform over all (x, y) such that gn(x, y) = α.
The most likely feasible solution output by Π on inputs from distribution µα is now captured by a
total function f ⊂ S.

Going back to our reduction, we want to show that from the short protocol Π for Sogn described
above (and corresponding total function f ⊂ S described above), that Alice and Bob can solve
unique set disjointness. To this aim, let a = a1, . . . , am be Alice’s input to unique set disjointness,
and let b = b1, . . . , bm be Bob’s input to unique set disjointness. We will eventually be setting m
equal to the block sensitivity of S, so m will be about n/ log n.

Since S has critical block sensitivity Ω(n/ log n), there exists some critical input γ to S that
witnesses this high block sensitivity with respect to f . Let the blocks be denoted by B1, . . . , Bbs ⊂ [n]
be the sensitive blocks with f(αBi) 6= f(α).

Lemma 3. The protocol Π can distinguish between µα and µαBi in the sense that if (x, y) is chosen
randomly from µα, then the probability that Π(x, y) = f(α) is at least 1− ε, but if (x, y) is chosen
randomly from µαBi , then the probability that Π(x, y) = f(α) is at most 1/2.

Proof. Since f(α) is the most likely feasible solution output by Π over inputs consistent with α,
this solution must be correct for these inputs. On the other hand, the inputs consistent with αBi

cannot give this same answer because f is sensitive to Bi at αi. Since the protocol is correct (most
of the time), this means that the protocol better give an answer other than f(α) a lot of the time.

4.1 The Reduction

• On input (a, b) = (a1, . . . , am, b1, . . . , bm) to UDISJm, we first take each pair (ai, bi) through
the reductionAND ≤ g to obtain instances (a′1, b

′
1), . . . , (a′m, b

′
m) of g. Note that if UDISJ(a, b) =

0 then g(a′i, bi) = 0 for all i, and if UDISJ(a, b) = 1 then there is a unique i with g(a′i, b
′
i) = 1.

• Next the instances (a′i, b
′
i) are used to populate a vector (x, y) = (x1, . . . , xn, y1, . . . , yn)

carrying n instances of g as follows. Instance (a′i, b
′
i) is plugged in for the coordinates j ∈ Bi

with the c opies corresponding to αj = 1 flipped. That is, we define for j ∈ Bi:

– if αj = 0 then (xj , yj) = (a′i, b
′
i);

– if αj = 1 then (xj , yj) = (πA(a′i), πB(b′i)) where (πA, πB) is the reduction ¬g ≤ g.

For j not in any of the blocks, we simply fix an arbitrary (xj , yj) ∈ g−1(αj).
We now have that if UDISJ(a, b) = 0, then gn(x, y) = α, and if UDISJ(a, b) = 1 with
ai = bi = 1, then gn(x, y) = αBi .

• Finally, we apply a random self reduction independently for each component (xi, yi) of
(x, y): this maps a z-input (xi, yi) to a uniformly random z-input (xi, yi) from µz. The
result is: if UDISJ(a, b) = 0, then (x, y) is a random vector such that gn(x, y) = α, and if
UDISJ(a, b) = 1 with ai = bi then (x, y) is a random vector such that gn(x, y) = αBi .

By the above lemma, the protocol Π distinguishes between these 2 vectors, and thus Alice
and Bob can determine whether or not (a, b) are disjoint with high probability.
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Figure 1: The reduction mapping (a, b) to a distribution (x, y). In this example bs = 2 and n = 7.
The critical input is α = 1011010 and the two sensitive blocks are B1 = {2, 3, 4} and B2 = {6, 7}.
The input pair (ai, bi), i = 1, 2, is plugged in for the block Bi.
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