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1 Applications of Communication Complexity: Extended Formu-
lations of Linear Programs

Linear programming is a very powerful tool for attacking hard combinatorial optimization prob-
lems. Methods such as the ellipsoid algorithm have shown that linear programming is solvable
in polynomial time. Linear programming also plays a central role in the design of approximation
algorithms. In fact, it is known that linear programming is P-complete, and this implies that if
NP = P then for every problem in NP , given an instance, it is possible (in polytime) to solve it
via a polynomial-sized LP.

A large class of linear programs were identified by Yannakakis, and referred to as extended
formulations. We emphasize that extended formulations of LPs to not capture all LPs for solving
a given NP-hard problems, but nonetheless, they capture a large and useful family of LPs.

We will define extended formulations, and then prove that lower bounds on extended formula-
tions follow from communication complexity lower bounds.

2 Definitions and Background

For a matrix A, let Aj denote the jth column and Aj the jth row. For any combinatorial optimiza-
tion problem, we can encode its set of possible solutions as a set of points X ⊆ {0, 1}n such that
optimizing an instance of the problem becomes the problem of optimizing a linear objective func-
tion, f(X) over the convex hull of these points. This convex hull, P = conv(X) defines a polytope
in n dimensional space, whose vertices are the feasible solutions to the problem and whose facets
correspond to the constraints of the problem.

A (convex) polyhedron is a set P ⊆ Rd that is the intersection of a finite collection of closed
halfspaces. (That is, P is the set of solutions of a finite system of linear inequalities.) A face of P
is a subset F = {x ∈ Rd | wTx = δ} of P such that P satisfies the inequality wTx ≤ δ. Note that
face F is again a polyhedron. A vertex is a face of dimension 0. A facet is a face of dimension one
less than P . An inequality wTx ≤ δ is called facet-defining if the face F it defines is a facet. A
polytope is a bounded polyhedron, or equivalently, P is a polytope if and only if P is the convex
hull conv(V ) of a finite set V of points.

This convex hull, P = conv(X) defines a polytope in n dimensional space, whose vertices are
the feasible solutions to the problem and whose facets (or sides) correspond to the constraints of
the problem.

A feasible solution for an optimization problem with constraints Ax ≤ b is any point x ∈ Rn
which satisfies all of the constraints of the problem. The size of a linear program is the number of
constraints it contains.
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2.1 The permutahedron polytope

Examples. Consider the permutahedron consisting of the convex hull of all permutations of [1, .., n].
It is not too hard to see that it is defined by exponentially many constraints. (For all S ⊆ [n] we
have

∑
i∈S xi ≥ 1+2+ . . .+ |S| = |S|(|S|+1)/2. However, it is possible to introduce new variables,

and to write a new set of constraints over the original variables plus the new variables that is
polynomial size, and such that the projection of this higher dimensional polytope down to the
original variables is the permutahedron! That is, it is possible to rewrite the constraints (using
more variables) in order to obtain a polynomial size extended formulation for the permutahedron
LP.

To do this, Goemans showed that we can take any switching network that sorts x1, . . . , xn.
A switching network has n inputs, x1, . . . , xn. It is visualized as a set of n horizontal wires. It
also has a set of ordered comparator gates that connect pairs of wires. A comparator gate from
wire i to wire j is drawn as a vertical arrow originating at wire i and pointing to wire j. There
are two outputs to a comparator gate, the OR output (the start of the arrow) computes the OR
of the two inputs, and the AND output (the end of the arrow) computes the AND of the two
inputs. The effect of this gate is to sort i and j. Goeman’s showed that if we have a comparator
network for x1, . . . , xn with m gates, then we can introduce 2m new variables, xn+1, . . . , xn+2m,
corresponding to all possible subfunctions computed by the network, and a set of inequalities over
the variables x1, . . . , xn+2m such that the projection of this polytope back to the original variables
is the permutahedron. The inequalities express the fact that the output gates are 1, 2, .., n, and
that each intermediate gate is computing correctly. If the circuit has k comparators, we have

(1) for all i ∈ [n], x2k+i = i

(2) for any comparator gate with inputs xi, xj and outputs xk = min(xi, xj), and xl = max(xi, xj)
we have xi + xj = xk + xl, xk ≤ xi, xk ≤ xj .

It is not hard to see (although we will not prove it here) that Projn(Q) = P and the size of Q
is polynomial.

Intuitively, if it is a legal comparator circuit, then when we feed it some permutation of [1, .., n],
it will output the values in sorted order, and conversely, if the circuit outputs the values in sorted
order and all of the intermediate variables are defined correctly, then the input must be a permu-
tation of [1, .., n].

(DRAW PICTURE)

2.2 Extended Formulations

Definition An extended formulation (EF) of a polytope P ⊂ Rn defined by Ax ≤ b is a linear
system:

Ex+ Fy = g, y ≥ 0

in the variables (x, y) ∈ Rn+r where E,F are real matrices with n, r columns respectively and such
that x ∈ P (satisfies Ax ≤ b) if and only if there exists y such that Ex+ Fy = g, y ≥ 0 holds.

The size of an extended formulation is the number of y variables, or equivalently the number
of inequalities. The extension complexity of a polytope P , xc(P ), is the minimum number of
inequalities in any extended formulation for P .
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By using extended formulations, we can sometimes reduce the number of facets exponentially.
When this can be done, we can run a standard LP algorithm to get a polynomial time algorithm.
This is one of the most common approaches attempting to show that P equalsNP . For example, the
TSP polytope is the set of vectors corresponding to tours of Kn. A polysize extended formulation
for the TSP polytope implies P = NP ! We note that EFs do not characterize *all* linear programs
for a given problem. The restriction is that the polytope must be independent of the instance, so
the instance only shows up in the objective function. Thus lower bounds for EFs rules out a large
family of polytime LP algorithms but does not rule out all of them. (Since linear programming is
P-complete, ruling out all LPs would essentially be showing that P 6= NP .)

2.3 Brief History

(1) Yannakakis in 1990 showed that any symmetric EF for TSP or matching has exponential
size. He also established the connection between EFs and communication complexity. He
also established the equivalence between EF and nonnegative rank.

(2) Fiorini-et-al, 2012 showed that any EF for clique and TSP has exponential size. This is a
reduction to set disjointness.

(3) Braun-et-al, 2012 extended the EF setup for approximation algorithms, and showed that any
EF for approximating clique within n1/2−ε has exponential size.

(4) Braverman, Moitra 2013, and Braun-Pakutta, 2013 showed that any EF approximating clique
within n1−ε has exponential size. These papers use information complexity techniques; the
latter paper uses the notion of common information.

(5) Chan-et-al, 2013 showed that any EF that approximates Maxcut within (2−ε) has quasipoly-
nomial size. This paper is a reduction to Sherali-Adams lower bounds via Fourier analysis.
This is the only paper that I am aware of that looks at instances that are ”natural”. They
also extend the EF setup to the SDP setting and prove lower bounds for symmetric EFs of
SDPs.

(6) Rothvoss, 2013 showed that any EF for perfect matching has exponential size. This is par-
ticularly interesting since we do have LPs for solving perfect matching. This is a corruption
lower bound.

All of the above results with the exception of (5) use communication complexity.

3 Lower Bounds on Extension Complexity

3.1 Yannakakis’ Factorization Theorem

Yannakakis shows that the notion of EF which is a geometric parameter is equivalent to nonnegative
rank of the associated slack matrix, which is algebraic parameter.

Definition Consider a polytope defined by the convex hull of a set of vertices, P = conv(V ),
and dually defined by a set of facets Q = {x ∈ Rd | Ax ≤ b}. We refer to P as the ”inner”
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description of the polytope and Q as the outer description. Note that there can be more than one
outer description of P .

The slack matrix, SP,Q for P,Q is a matrix with v rows and f facets, where v is the number of
vertices of P , and f is the number of facets (inequalities) in Q. The entry [i, j] is equal to bi−Aixj ,
or the distance from the ith facet to the jth vertex.

Definition The nonnegative rank, rank+(M) of a matrix M is the smallest r ∈ N such that M
can be expressed as M = FV where F, V are nonnegative matrices with intermediate dimension r.

In Yannakakis’ seminal paper, he gave a factorization theorem which is the backbone for most
of our extended formulation lower bounds. It shows that the nonnegative rank of the slack matrix
SP,Q is equivalent to the extension complexity of P .

Theorem 1 Consider a polytope defined by the convex hull of a set of points, P = conv(V ), and
also defined by a set of facets Q = {Ax ≤ b}. Let SP,Q denote the slack matrix of the polytope with
respect to P,Q. Then the nonnegative rank of SP,Q is equal to xc(P ).

We note that this is actually an equivalence, but here we will just prove the direction that we
need in order to prove lower bounds on extension complexity.

Let Q = {Ax ≤ b}, and let Ex + Fy = g, y ≥ b be an extended formulation of Q. Consider
the following ”extended” slack matrix, M . The first set of rows will correspond to each equation
eix + f iy = gi; the second set of rows will correspond to each equation yi ≥ bi. And the last
set of rows will be one for each inequality from Q, Aix ≤ bi. For each u ∈ conv(V ), consider a
corresponding pair (u,w) such that Eu + Fw = g, w ≥ b. (Such a pair exists since Ex + Fy =
g, y ≥ b is an extended formulation of Ax ≤ b. The columns of M are labelled with all such pairs
(u,w) where u ∈ conv(V ). The entry (i, j) of M where i corresponds to an inequality (or equality)
and j corresponds to a pair (u,w) will give the slack – the distance between the point (u,w) in
the extended polytope to the inequality. Note that the entire first set of columns contains all 0’s
– since these are equalities. Since Ax ≤ b follows from Ex + Fy = g, y ≥ b (in the sense that
any assignment satisfying the latter inequalities also satisfies the inequality Ax ≤ b), by Farkas’
Lemma, Ax ≤ b can be written as a nonnegative linear combination of Ex+ Fy = g, y ≥ b. Thus
the third group of rows of M can be written as a nonnegative linear combination of the top two
rows of M . Since the very top row is all 0’s, the third group of rows of M can be written as a
nonnegative linear combination of the rows yi ≥ bi. Thus the nonnegative rank of M is no greater
than the number of rows in the second group, or in other words, the number of y variables.

Since the slack matrix SP,Q is a subset of the matrix M , it follows that the nonnegative rank
of SP,Q is also at most the number of y variables.

Notice that the same argument works for any set of inequalities Q′ that are implied by Q. That
is, let P = conv(V ) be a polytope, and let Q′ be a set of linear inequalities such that every point
in P satisfies all linear inequalities of Q′. (So the polytope defined by Q′ contains the polytope
defined by P = Q.) Then a lower bound on the nonnegative rank of SP,Q′ implies the same lower
bound on the extension complexity of P .

3.2 The Clique Polytope

The clique polytope (for graphs with n vertices) is the convex hull of the following set of 2n vectors:
all vectors v ∈ {0, 1}n2

that describe a clique on some subset S ⊆ [n] (and have no other edges).
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Given a graph G = (V,E) over V ⊆ [n], w(G) is defined as follows.

(1) ei,i = 1 if i ∈ V and 0 otherwise

(2) ei,j = 0 if i, j ∈ V and (i, j) ∈ E;

(3) ei,j = −1 if i, j ∈ V and i, j) 6∈ E;

(4) otherwise ei,j = 0.

It is not too hard to see that for each graph G, < w(G), x >≤ cliquenum(G′) and the vector x
achieving equality corresponds to a maximal clique in G.

For a graph G, the linear program (with exponentially many constraints) for clique has variables
xi,j , i, j ∈ [n]. We want to maximize < w(G), x > subject to the following constraints: For each
graph G′, < w(G′), x >≤ cliquenum(G′). Note that the x achieving the max value will be a
maximal clique in G.

Let Qall be the polytope defined by the above inequalities. Clearly P ⊆ Qall. We want to show
that there is no polysize EF for Qall. Given Qall defined by Ax ≤ b as described above, an EF is
Ex+ Fy = b′, y ≥ 0 such that the projection to x is Qall.

By the factorization theorem, it suffices to prove lower bounds on the nonnegative rank of
SM(P,Qall).

4 Nonnegative Rank and Communication Complexity

Let M be our slack matrix, and suppose that it has rank r. Then it can be written as the sum
of r rank one, nonnegative matrices, M1 + . . . + Mr. The support of each Mi is a combinatorial
rectangle. Thus the nonnegative rank of M is at least the number of rectangles needed to cover
the support of S. Thus, it suffices to show that M has high nondeterministic communication
complexity.

Now consider a simple subset of all graphs, SIMPLE = {Ga | a ⊂ [n]} where Ga = (Va, Ea),
Va = a and Ea = ∅. That is, the vertices of Ga are the vertices in a, and Ga has no edges.

Let Q′ be the set of inequalities < w(Ga, x >≤ cliquenum(Ga) for all Ga ∈ SIMPLE. Note
that the clique number of Ga is 1 for all Ga ∈ SIMPLE.

We will show that UDISJ is embedded in SM(P,Q′) and therefore embedded in SM(P,Qall).
Let Cliqueb be a graph consisting of a clique on all vertices in b and no other edges.
Consider Ga ∈ SIMPLE and Clique(b). That is, Ga has no edges and the vertex set is a, and

Clique(b) is a clique over the vertices in b. If a ∩ b is empty, then < w(Ga), Clique(b) >= 0 and if
a ∩ b has size 1, then < w(Ga), Clique(b) >= 1.

Thus, we see that UDISJ is embedded in SM(P,Q′) and therefore the nonnegative For any
pair (a, b) with the promise that either a, b are disjoint or they intersect in exactly one element,

4.1 Extended Formulations for Approximate Linear Programs

We can generalize the above setup for extended formulations of linear programs that produce
approximate solutions.

A linear encoding of a combinatorial optimization problem is a pair (L,O). L ⊆ {0, 1}∗ is a
set of feasible solutions, and O ⊆ R∗ is a set of admissible objective functions. An instance is a
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pair (d,w) where d is a nonnegative integer and w ∈ O ∩ Rd. To solve the instance we want to
find x ∈ L ∩ {0, 1}d such that wTx is maximized. (Or in the case of a minimization problem, is
minimzed.)

(L,O) defines a pair of nested convex sets P ⊆ Q, where P = conv(x | x ∈ L ∩ {0, 1}d) and
Q = {x ∈ Rd | ∀w ∈ O ∩Rd, wTx ≤ max{wTx | x ∈ P}}.

A ρ-approximate EF is Ex+ Fy = g, y ≥ 0 such that

max{wTx | Ex+ Fy = g, y ≥ 0} ≥ max{wTx | x ∈ P} ∀w ∈ Rd

and
max{wTx | Ex+ Fy = g, y ≥ 0} ≤ ρmax{wTx | x ∈ P} ∀w ∈ O ∩Rd

Letting K = {x ∈ Rd | ∃y ∈ Rrs.t.Ex+ Fy = g, y ≥ 0}, this is equivalent to saying that there is
an extended formulation whose projection is K, where P ⊆ K ⊆ ρQ.

With this more general setup, it is not hard to see that we can again define a slack matrix SP,ρQ,
corresponding to P,Q, and the same argument as before essentially shows that the nonnegative
rank of the slack matrix is equal to the ρ-approximate extension complexity of clique.

Going back to our clique problem, let us consider the same instances that we did before. Now
whenever a is disjoint from b, the entry corresponding to (a, b) will have value ρ if a∩b has size 1, and
will have value ρ− 1 if a∩ b has size 0. Thus we cannot appeal to nondeterministic communication
complexity of the support of the slack matrix since these entries are never 0. Nonetheless, the
nonnegative rank (for this specific submatrix) can be lower bounded by a discrepancy argument,
and also by an information complexity argument. This leads to a stronger result, showing that
clique cannot be ρ approximated by a subexponential-size extended formulation, for ρ linear in n.

we see that a ρ-approximate Extende

4.2 An Equivalent Communication Complexity Problem

Above we saw lower bounds on the nonnegative rank of SP,Q (and hence exponential lower bounds
on the extension complexity) by lower bounding the nondeterministic communication complexity
of SP,Q.

Here we will give a communication complexity model that is actually equivalent to nonnegative
rank.

Recall that the problem is: Alice is given a vertex v and Bob is given a face Aix ≤ bi and then
want to determine the distance of v from the inequality. The minimum complexity of a protocol
for solving this problem in expectation equals log(rank+(SP,Q)) +O(1).
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