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Applications of Communication Complexity for Game Theory

Lecturers: Jaiganesh Balasundaram and Tyrone Strangway

This document is divided into two sections. The first section deals with the communication
complexity of reaching Nash equilibrium. The second section focuses on the applications of com-
munication complexity to algorithmic mechanism design.

1 Nash Equilibrium

1.1 Introduction

1.1.1 An example of a 2 player game

Imagine the following scenario. Two prisoners, prisoner A and prisoner B, who are in the prison
for the same crime, are being interrogated simultaneously in separate rooms. They are each given
2 options: (a) Either cooperate with the other prisoner by staying silent or (b) Betray the other
prisoner by snitching him out. They are each given deals (reduced prison sentences) for betraying
the other prisoner. However, if it turns out that both of them had betrayed each other, then
they will both serve longer sentences than if they had both stayed silent. So, there are four
possible scenarios: (a) Both stay silent (b) Both betray each other (c) Prisoner A remains silent
and prisoner B betrays and (d) Prisoner B remains silent and prisoner A betrays. Below is a
matrix representing the “payoffs” for each prisoner for the four different scenarios (By “payoffs”,
we mean the quantification of preferences for different scenarios, depending on the prison sentences
they each get for each scenario).

Cooperate Betray

Cooperate 3,3 0,5

Betray 5,0 2,2

The first entries of the matrix represent the payoffs for prisoner A, and the second entries of the
matrix represent the payoffs for prisoner B. Lower numbers should be interpreted as higher prison
sentences and higher numbers as reduced prison sentences. Now, both prisoners are better off by
both staying silent, than by both betraying each other (because in the first case both get a payoff
of 3, whereas in the latter case both get a payoff of 2). However, the scenario where both prisoners
betray each other is called the equilibrium point for this 2 person game because of the following
reason. In this scenario, both of them have no incentive to deviate from their actions because,
for each prisoner, deviating from his action while the other person doesn’t (that is, choosing to
cooperate while the other person still betrays) puts him in a worse position. It is easy to see that
the same cannot be said for the remaining three scenarios. This is actually a quite famous example
called the “Prisoners’ Dilemma”. The two prisoners are the players of this game, where each player
has 2 possible actions or strategies forming their action set: {cooperate, betray}. Each of the 4
possible scenario is termed as a joint action. The entries of the matrix form the payoff or utility
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function for each player, which as we mentioned earlier, is nothing but the quantification of their
preferences for the different possible scenarios. Finally, the joint action (betray,betray), which we
described above as the equilibrium point of this game, is formally termed the “Nash equilibrium”
of the game. We will be formalizing these notions in the next section.

1.1.2 The Problem

In this paper, we will be discussing the problem of complexity of reaching equilibrium. More specif-
ically, we will be looking at the communication model (which we will be formally defining in the
next section), in which players initially only know their own payoff functions 1, and analyse how
much information must be transferred between them to jointly compute the equilibrium point. We
will also assume that the players follow a predetermined protocol, that is, we abstract away the
incentives of each player and are only concerned about the amount of information that needs to
be transferred between them to attain equilibrium. The motivation for this model has been well
studied [3].

We will be discussing results from two papers. First, we will be discussing results from the paper
“How long to equilibrium? The communication complexity of uncoupled equilibrium procedures”
by Hart and Mansour [8], where will be looking at the communication complexity lower bounds
for reaching pure Nash equilibrium. Then, we will be discussing results from the paper “On the
communication complexity of approximate Nash equilibria” by Goldberg and Pastink [6], where
we will be discussing the communication complexity results for mixed Nash equilibrium.

Now, we present some of the results regarding reaching pure Nash equilibrium. We will be using
the notations and definitions of [8].

1.2 The Setting for Pure Action Games

There are n ≥ 2 players. Each player i, 1 ≤ i ≤ n, has a finite set of actions (or strategies) Ai, with
|Ai| ≥ 2. For the analysis of pure action games, we will be only considering binary action games,
that is, for each i, Ai = {0, 1}. Let A =

∏n
i=1Ai denote the joint action space (for binary action

games, A = {0, 1}n, the set of all n− bit strings). Each player has a private payoff (or utility)
function ui : A→ {0, 1}n (For simplicity we are assuming that the utilities are finitely represented,
that is, are rational numbers with n− bit numerator and denominator). Let’s denote the game by
G = (n, {Ai}, {ui}).

For a joint action a = (a1, ..., an) ∈ A (for binary action games, a joint action is an n− bit
binary string), let a−i denote the joint action of all players except player i. For each player
i (with utility function ui), the best response to a joint action a−i, denoted by BR(a−i, ui) is
argmaxai∈Aiui(ai, a

−i). A joint action a ∈ A is a Pure Nash Equilibrium if ui(a) ≥ ui(bi, a−i)
for every player i and any action bi ∈ Ai (equivalently, ai ∈ BR(a−i, ui) for every i).

1This is usually called the “uncoupled” setting.
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1.3 The Communication Model: Pure Nash Equilibrium Procedures

A Pure Nash Equilibrium Procedure is a dynamic process by which the players reach a Pure Nash
Equilibrium of the game (if one exists). Recall that a game is denoted by G = (n, {Ai}, {ui}).
Fix n and the action spaces, so a game is identified by its payoff function set (u1, ..., un). Let G
be a family of games to which the procedure should apply. The input to the procedure is a game
G = (u1, ..., un) in the family G. Initially, each player i has access only to his own payoff function
ui. In each round t = 1, 2, ..., every player outputs a bit (say writes the bit on a blackboard). This
bit is a function of the the player’s payoff function and what he has seen so far in the procedure.
At the end of round t, all the players observe the joint output.

In a Pure Nash Equilibrium Procedure Π for a game G, the “output” of player i is either

• a pure action ai ∈ Ai (which is a bit) or

• a declaration of “no pure nash equilibrium”

In the first case, the joint output (a1, ..., an) ∈ A is a pure Nash equilibrium of G. In the second
case, G has no pure Nash equilibrium.

The communication complexity of a Pure Nash equilibrium procedure Π applied to a game G,
denoted by CC(Π, G), is the number of bits communicated until Π terminates when the input
is G. Given a family of games G, the communication complexity of a Pure Nash equilibrium
procedure Π for a family G, denoted by CC(Π,G), is the worst case communication complexity of
Π over all games G ∈ G, that is, CC(Π,G) = maxG∈GCC(Π, G). The communication complexity
of pure Nash equilibrium procedures for a family of games G, denoted by CC(G), is the minimal
communication complexity of any Pure Nash equilibrium procedure Π for the family G, that is,
CC(G) = minΠCC(Π,G). Finally, when the games in G are chosen according to a probability
distribution P, then the expected communication complexity of Pure Nash Equilibrium Procedures
for the family G is minΠE[CC(Π,G)], where the expectation is taken with respect to P.

1.4 Communication Complexity of Pure Nash Equilibrium Procedures

We are interested in the asymptotic behaviour of the communication complexity of Nash equilib-
rium procedures as the number of player n increases, while the size of the action sets is fixed.
Specifically, let Γn2 be the family of all n− person binary action games. We prove the following
theorem.

Theorem 1 Any Nash equilibrium procedure for the family Γn2 has communication complexity
Ω(2n). That is,

CC(Γn2 ) = Ω(2n)

Note that since the communication complexity is defined as the worst case over all games, Ω(2n)
is also a lower bound for the communication complexity of any Nash equilibrium procedure for the
family Γns for every s ≥ 2.

Proof We give a simple reduction from set disjointness. Say n is even and divide the player
set {1, 2, ..., n} into two sets T1 and T2, each of size n/2, where T1 = {1, ..., n/2} and T2 =
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{n/2 + 1, ..., n}. Also for notational convenience, each player in set Tl is referred to as player (l, i)
where l ∈ {1, 2} and i ∈ {1, 2, ..., n/2} 2. Using similar notations, let us denote a n− bit joint
action a as (a11, ..., a1n/2, a21, ..., a2n/2), where each ali, l ∈ {1, 2} and i ∈ {1, 2, ..., n/2}, is a bit.

Let S = {0, 1}n, the set of all n− bit strings 3. For any two sets S1, S2 ⊆ S, the input to the set
disjointness problem, we define a binary action game G in Γn2 , such that S1 ∩ S2 6= ∅ iff G has
a pure Nash equilibrium, and for every a ∈ A, the value of the payoff function of player (l, i) on
a, that is, ul,i(a), is computable, by a finite algorithm, from a, Sl, i. So, we will have that if the
players reach a pure Nash equilibrium in G, then the sets S1 and S2 are not disjoint, and if they
do not reach a pure Nash equilibrium then the sets are disjoint. Given a pure Nash equilibrium
procedure ΠNE , we will be able to generate a protocol ΠD for the set disjointness problem, with
the same communication complexity 4.

Now we define the payoff function for each player (l, i) where l ∈ {1, 2} and i ∈ {1, 2, ..., n/2}. The
idea is that, for each player (l, i) and each joint action a ∈ A, the the payoff ul,i(a) will be “high” if
a lies in the set Sl and “low” if it doesn’t. Also, the payoff functions for players i ≥ 3 in both sets
T1, T2 would be identical, and for players i = 1, 2 in both sets T1, T2, the payoff functions would
be slightly different than the rest of the players. The reason we are singling out these 4 players
(1, 1), (1, 2), (2, 1) and (2, 2) is because, we would like to show that if the sets are disjoint, then
there exists a player (among these four) who would benefit by deviating on any joint action set
(and hence we would show that there is no pure Nash equilibrium for the game).

Formally, for l = 1, 2 and i ≥ 3, the payoff functions are

ul,i(a) =

{
2, if a ∈ Sl
0, if a /∈ Sl

That is, for a player (l, i) where l = 1, 2 and i ≥ 3, the value of ul,i(a) is just a function of whether
a lies in Sl or not.

We give the payoff functions for players (1, 1) and (1, 2). The payoff functions for players (2, 1) and
(2, 2) are similar 5 (Recall that the n− bit joint action is represented as a = (a11, ..., a1n/2, a21, ..., a2n/2)).

u1,1(a) =


2, if a ∈ S1

1, if a /∈ S1 and a11 = a12

0, if a /∈ S1 and a11 6= a12

u1,2(a) =


2, if a ∈ S1

1, if a /∈ S1 and a11 6= a12

0, if a /∈ S1 and a11 = a12

2So for example, the first player in T1 is referred to as player (1, 1), and last player in T2 is referred to as player
(2, n/2)

3Equivalently a 2n bit string with all 1s. So any subset of S is also a set of strings (or equivalently a 2n bit string
with 1s representing the strings in the subset).

4More specifically, we will have Alice simulate all players in T1 and Bob simulate all players in T2.
5Just replace S1 by S2, a11 by a21, and a12 by a22.
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For player (1, 1), the value u1,1(a) is not just a function of whether a lies in S1, but is also a func-
tion of what the first two bits of a are (Similar thing holds for the other three players). Now, we
prove that S1 and S2 are disjoint if and only if the game G = {ul,i}l,i has no pure Nash equilibrium.

Say S1 and S2 are not disjoint. Let a ∈ S1∩S2. We claim that a is indeed a pure Nash equilibrium
for the game G. This is because, since a ∈ S1 ∩ S2, by definition, the payoff for each player on a is
2, which is the maximal payoff. So no player has any reason to deviate from the joint action a.

Say S1 and S2 are disjoint. For every a ∈ A, if a /∈ Sl for some l ∈ {1, 2}, then either (l, 1) or (l, 2)
benefits by deviating. To see this, consider the case that a ∈ S2, but a /∈ S1. Now since a ∈ S2, by
definition, the payoff of all the players in the set T2 on the joint action a is 2. Also, since a /∈ S1,
by definition, the payoff of every player in the set T1, except players (1, 1) and (1, 2), is zero on
the joint action a. Now the payoff of players (1, 1) and (1, 2) depends on the the first two bits of
a, namely a11, a12

6. There are two cases. If a11 = a12, the the payoff of player (1, 1) is 1 and the
payoff of player (1, 2) is zero. In this case, a is not a pure Nash equilibrium because player (1, 2)
benefits by negating his action, since for this modified joint action say a′ (which is a, but with
the second bit negated), the player (1, 2) gets a payoff of at least 7 1 (since a′11 6= a′12). A similar
argument can be made for the case a11 6= a12. So, we have proved that if S1 and S2 are disjoint,
then no pure Nash equilibrium exists for the game G. This completes the proof of the theorem.

�

1.5 Average Case Communication Complexity of Pure Nash Equilibrium Pro-
cedures

While the communication complexity of Pure Nash Equilibrium procedures is exponential (in the
number of players) in the worst case, it is possible that the expected communication complexity
(when the games are chosen according to a probability distribution) will be smaller. However,
we will show a simple probability distribution over Γn2 , such that the expected communication
complexity of pure Nash equilibrium procedures (where the expectation is over the choice of games
in Γn2 according to the probability distribution) is also exponential in the number of players. More
specifically, we will prove the following theorem.

Theorem 2 There exists a probability distribution P over Γn2 such that

minΠE(CC(Π,Γn2 )) = Ω(2n)

Note that Theorem 2 implies Theorem 1. We will provide a direct proof here, rather than applying
a reduction. Before proceeding with the proof, we will define what we mean by a combinatorial
rectangle in this setting.

Definition [Combinatorial Rectangle] A combinatorial rectangle is a set U = U1 × ...× Un where
each Ui is a set of payoff functions of player i.

6For this case, we can think of players (1, 1) and (1, 2) as playing the “matching pennies game”, which is the
binary action equivalent of the popular “Rocks, Papers and Scissors” game, where the two pennies are represented
by the bits a11 and a12. Indeed, [8] term this reduction as the “matching pennies reduction”.

7We say “at least” because a′ might now be in S1 and not S2, in which case, the payoff will be 2.
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Let Vi represent the set of all possible payoff functions of player i. Then, we have that a com-
binatorial rectangle is a set U ⊆ V1 × ... × Vn 8, such that U = U1 × ... × Un, where for each i,
Ui ⊆ Vi.
Definition [Monochromatic Combinatorial Rectangle] A monochromatic rectangle is labelled by
either

• a pure joint action a ∈ A, where a is the pure Nash Equilibrium for every game (u1, ..., un) ∈ U
or

• “No pure Nash equilibrium” (when no game (u1, ..., un) ∈ U has a pure Nash equilibrium)

Now, we proceed to prove Theorem 2.

Proof The outline of the proof is as follows. The idea is that it will be “hard” for the players
to agree that there is no pure Nash equilibrium. Specifically, we will construct a probability
distribution over Γn2 such that

• The probability that there is no pure Nash equilibrium is bounded away from 0 as n increases.

• Any combinatorial rectangle that is labelled “No pure Nash equilibrium” has a low probability.

Now, we give the simple probability distribution P, over Γn2 . The payoff function ui of player i is
selected randomly as follows. For each a−i ∈ {0, 1}n−1 (recall that a−i denotes the joint action
of all players except player i), we toss a fair coin. Let c be the outcome of the coin toss. We let
ui(0, a

−i) = c and ui(1, a
−i) = 1 − c. The coin tosses are independent over all a−i and over all i.

More formally, for every a−i ∈ {0, 1}n−1, with probability 1/2 we let
ui(0, a

−i) = 0 and
ui(1, a

−i) = 1,
and with probability 1/2 we let
ui(0, a

−i) = 1 and
ui(1, a

−i) = 0,
These choices are made independently over all a−i and over all i. It is easy to that, for all
a ∈ {0, 1}n, for all i, we have that

Pr[ui : ai ∈ BR(a−i, ui)] = Pr[ui : ai /∈ BR(a−i, ui)] = 1/2

where ai is the action of player i (which is a bit). Also, recall that for each player i with utility ui,
BR(a−i, ui) is the best response to a joint action a−i, and is argmaxai∈Aiui(ai, a

−i).

Suppose we sample from the set Γn2 according to the distribution P. Let (u1, ..., un) represent the
corresponding random variable.

Now we proceed to prove that the probability that there is no pure Nash equilibrium for (u1, ..., un)
is bounded away from 0 as n increases. Formally,

Lemma 3 There exists a constant α > 0 such that

Pr[(u1, ..., un) has no pure Nash equilibira] ≥ α
for all n ≥ 2.

8This is actually Γn2 .
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Proof of Lemma 3 Let N be the random variable representing the number of pure Nash equi-
libria for (u1, ..., un). We have to prove that the probability Pr[N = 0] is bounded away from zero.
To this end, we calculate the expectation of the random variable N . First, it is easy to see that, for
every joint action a ∈ {0, 1}n, the probability that a is a pure Nash equilibrium for G is 1/2n. This
is because, for a joint action a to be a pure Nash equilibrium, we should have that for each i, the
payoff function ui is such that ai ∈ BR(a−i, ui). As we saw above, this happens with probability
1/2, independently, for each player i. So, the probability that a is a pure Nash equilibrium is 1/2n.
So, we have that, each joint action a ∈ {0, 1}n is a pure Nash equilibria with probability 1/2n, and
since there are 2n possible joint actions, we have that E(N) = 1.

Now since E(N) =
∑

k≥1 kPr[N = k], we get that

E[N ] ≥ Pr[N = 1] + 2Pr[N ≥ 2]

= (1− Pr(N = 0)− Pr(N ≥ 2)) + 2Pr(N ≥ 2)

= 1− Pr(N = 0) + Pr(N ≥ 2)

Since we have that E(N) = 1, we get

Pr[N = 0] ≥ Pr[N ≥ 2]

≥ Pr[N = 2]

So, we just need a lower bound on the probability that the (u1, ..., un) has exactly 2 pure Nash
equilibria. It turns out that this probability is tricky to calculate. The reason is as follows. Con-
sider the joint actions a = 1n and b = 1n−10. The probability that a is a pure Nash equilibrium
is 1/2n. However, given that a is a pure Nash equilibrium, that probability that b is a pure Nash
equilibrium is 0. This is because of the definition of the probability distribution P. So, we have
that for every pair of distinct strings a, b in {0, 1}n, it is not necessarily the case that the event
that a is a pure Nash equilibrium is independent of the event that b is a pure Nash equilibrium.
We would like to get around this problem.

To this end, consider the set Z = {a ∈ {0, 1}n : a has an even number of 1s}. Now, we claim
that for every pair of distinct strings a, b ∈ Z, it is the case that the event that a is a pure Nash
equilibrium is independent of the event that b is a pure Nash equilibrium. To see this, consider
two arbitrary but distinct strings a, b ∈ Z. It must be the case that a, b must differ in at least two
different positions. This is because, if they differ in only one position, then one of the two strings
would end up containing an odd number of 1s, which is a contradiction, since a, b ∈ Z. Hence, for
each player i, we have that a−i 6= b−i (Note that this wouldn’t have been necessarily true, if a, b
were arbitrary but distinct strings from {0, 1}n). Now it is easy to calculate the probability γ, that
exactly 2 elements of Z are pure Nash equilibria for (u1, ..., un). Since the size of Z is 2n−1, we
have that

γ =

(
2n−1

2

)
(1/2n)2(1− 1/2n)2n−1−2

which is positive for all n ≥ 2. Moreover, we have that γ → (1/8)e−1/2 > 0 as n → ∞. Since,
Z ⊂ {0, 1}n, we have that Pr[N = 0] ≥ Pr[N = 2] ≥ γ. Hence we conclude that the probability
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that there is no pure Nash equilibrium for (u1, ..., un) is bounded away from 0. This completes the
proof of the lemma.

�

Now we proceed to prove that the probability that (u1, .., un) belongs to a rectangle labelled “no
pure Nash equilibrium” is small. Formally,

Lemma 4 Let U = U1 × ... × Un be a monochromatic combinatorial rectangle labelled “no pure
Nash equilibria”. Then,

Pr[(u1, ..., un) ∈ U ] ≤ 2−2n−1

Proof of Lemma 4 First, we claim that for every a ∈ {0, 1}n, there exists a player i such that,
ai /∈ BR(a−i, ui) for every ui ∈ Ui. To see this, let us assume this is not the case. That is, there
exists an a ∈ {0, 1}n such that, for every player i, ai ∈ BR(a−i, u′i), for some u′i ∈ Ui. Then this
would mean that a is a pure Nash equilibrium of the game (u′1, ..., u

′
n), where (u′1, ..., u

′
n) ∈ U . But

this is a contradiction, since U is a monochromatic combinatorial rectangle labelled “no pure Nash
equilibrium”.

Now let us consider the set Z = {a ∈ {0, 1}n : a has an even number of 1s} (for a similar reason
which will be clear shortly). Since for every a ∈ {0, 1}n, there exists a player i such that, ai /∈
BR(a−i, ui) for every ui ∈ Ui, the same is true for every a ∈ Z. Let us divide the set Z based on i.
That is, Zi will contain all the a ∈ Z such that ai /∈ BR(a−i, ui) for all ui ∈ Ui. More formally, let

Zi = {a ∈ Z : ai /∈ BR(a−i, ui) ∀ui ∈ Ui}

We have that Z = ∪ni=1Zi (Note that a single a ∈ {0, 1}n can be in multiple Zis). Now consider
the following set

{ui : ai /∈ BR(a−i, ui) ∀a ∈ Zi}

That is, this set is the set of all payoff functions ui of player i such that, for every a ∈ Zi, we
have that ai /∈ BR(a−i, ui). But since the definition of the set Zi is the set of all a ∈ Z such that
ai /∈ BR(a−i, ui) for all ui ∈ Ui, it is not difficult to see that

Ui ⊆ {ui : ai /∈ BR(a−i, ui) ∀a ∈ Zi}

So, we have that if a payoff function of player i, ui ∈ Ui, then ui ∈ {ui : ai /∈ BR(a−i, ui) ∀a ∈ Zi}.
Now, for every i, for every distinct pair (a, b) ∈ Zi, we have that the event {ui : ai /∈ BR(a−i, ui)}
is independent of the event that {ui : bi /∈ BR(b−i, ui)} (for the same reason as discussed in the
previous lemma) and each event has a probability of 1/2. So, it is easy to see that

Pr[ui ∈ Ui] ≤
∏
a∈Zi

Pr[ui : ai /∈ BR(a−i, ui)] = 1/2|Zi|

So, since the coin tosses for choosing ui are independent over i, we have that

Pr[(u1, ..., un) ∈ U ] ≤
n∏
i=1

Pr[ui ∈ Ui] ≤ 1/2
∑n
i=1 |Zi|
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Since we have that Z = ∪ni=1Zi, it follows that
∑n

i=1 |Zi| ≥ |Z| = 2n−1. Hence, we have that,

Pr[(u1, ..., un) ∈ U ] ≤ 1/22n−1

This completes the proof of the lemma.
�

Now we complete the proof of Theorem 2 as follows. By Lemma 3 we have that the probability that
(u1, ..., un) has no pure Nash equilibrium is bounded from below by α > 0. However, by Lemma 4,
we have that the probability that (u1, ..., un) belongs to a monochromatic combinatorial rectangle
labelled “no pure Nash equilibrium” is small, namely at most 1/22n−1

. So the number of such
monochromatic rectangles should be ≥ α22n−1

. This gives us a lower bound of log(α22n−1
) = Ω(2n)

on the expected communication complexity. This completes the proof of Theorem 2.
�

1.6 Approximate Nash Equilibrium

1.6.1 Setup

Here we will present some results from [6]. The setup to this problem is slightly different from the
previous section.
We will only focus on the case of two agents, let us call them Row and Column. Furthermore each
agent will have a strategy set of n actions, because of this we can represent the payoffs to Row
and Column as n by n matrices R and C respectively. Assume that all the entries of R and C are
normalised to lie in [0,1]. As before Row and Column know their own payoff functions but not the
other players payoff functions.
The communication protocol proceeds as follows, Row will send a message, based on R, to Column.
Column sends a message based on C and Rows message back to Row. They alternate in this fashion,
each player sending a message based on his matrix and the previous messages, until each player
knows a strategy he wishes to play. At this point they will each play their strategy on the payoff
matrix [R,C], where [R,C]i,j = (Ri,j , Ci,j) . We stress that the player only need to know the
strategy they wish to play and not the strategy his counterpart wishes to play.
We start by showing deciding if a pure Nash equilibrium exists in our setup is still hard, this proof
can also be found on Noam Nissan’s blog [11].

Theorem 5 The communication complexity of finding a pure Nash equilibrium for two players
with large strategy sets is near maximal (in terms of the size of their strategy sets). This is true
even if the payoffs are binary.

Proof We will show this via a set disjointness reduction. Say Row has input string x and Column
y, each of length n. Assume that n is a perfect square, if it is not we can just add 0’s to the end of
x and y until they are of appropriate length. We will form payoff matrices X, from x and Y, from
y, such that dim(X)=dim(Y)=(

√
n+ 2,

√
n+ 2), We will be playing our game on the matrix [X,Y].

Here we show [X,Y] for n=4.
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(x1, y1) (x2, y2) (0, 1) (0, 1)
(x3, y3) (x4, y4) (0, 1) (0, 1)
(1, 0) (1, 0) (0, 1) (1, 0)
(1, 0) (1, 0) (1, 0) (0, 1)


The bits of x and y constitute the elements of the first

√
n columns and rows of [X,Y] in order. If x

and y do intersect about some bit i we see the corresponding element in the matrix must be (1,1)
a Nash equilibrium since each player is receiving maximum payoff. The reason the last 2 rows and
columns include items of the form (0,1) and (1,0) is to ensure if there is no intersection there will
be no Nash equilibrium. Observe if we are currently in a position where Row has 0 payoff he can
deviate to one of the last two Rows and get 1 payoff. Column has a similar option. Thus if x and
y do not intersect, there is no (1,1) element in the matrix, so the players will never converge to
equilibrium. So we require Ω(n) communication where the player inputs are of size (

√
n+ 2)2.

�

1.6.2 Mixed Strategies

We can think of a mixed strategy for a player as a probability distribution over his action set. We
can represent a mixed strategy as a length n vector.

Definition A mixed strategy is a vector [p1, ..., pn], s.t.
∑

i pi = 1. The intuition is we play
strategy i with probability pi.

Definition The utility of a mixed strategy pair x played by Row and y played by Column under
payoff matrix [R,C], are xTRy to Row and xTCy to Column. That is they aim to maximise their
expected payoff.

Nash proved that any game has a mixed strategy Nash equilibrium. Still finding one, in the setting
of several agents with binary strategy sets, requires near maximal communication [8].

1.6.3 ε-Nash Equilibrium

We will now weaken the requirements of finding an equilibrium by only requiring we find an
approximate equilibrium. We say an agent will only deviate if by doing so he can gain a factor of
at least ε (0 ≤ ε ≤ 1) to his expected utility. We need the following definitions.

Definition If Column is playing strategy y, the best response of Row is a strategy ebest such that
for any strategy x, eTbestRy ≥ xTRy. We can define the best response of Column similarly. It is
easy to see that a best response is always a pure strategy.

Definition The regret of Row playing x and Column playing y is the difference between between his
expected utility and the expected utility of his best response. That is Row’s regret is eTbestRy−xTRy.
We can define Column’s regret in a similar way.

Definition If both Column and Row have regret of at most ε we say they are at a ε-Nash
Equilibrium.

10
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1.6.4 Mini-Max

We will often use the Mini-Max result in our proofs. This result was first proven by Von-Neumann.

Theorem 6 Consider the zero sum game [A,-A] for some square matrix A. Say [A,-A] has a Nash
equilibrium strategy pair (x,y) for Row and Column, and expected payoff of v for Row and -v for
column.

By playing y Column limits Rows payoffs to at most v, equivalently Column guarantees himself
a payment of at least -v. Similarly by playing x Row limits Columns payoffs to at most -v, and
guarantees himself a payoff of at least v.

The Mini-Max name comes from fact players try to minimise the maximum payment given to the
other player, equivalently they minimise their maximum losses.

1.6.5 No communication

Theorem 7 It is possible to achieve a 0.75-Nash Equilibrium using no communication.

Proof For Row let his i’th strategy be the best response to Column taking column 1 of C. For
Column let his j’th strategy be the best response to Row taking row 1 of R.
Row will now play row 1 with probability 0.5 and row i with probability 0.5. Column is defined
similarly for column 1 and j.
Let us now look at the regret of Row. Let his best response to Column be row b.
Regret of Row is:
(1

2Rb,1 + 1
2Rb,j)− (1

4R1,1 + 1
4R1,j + 1

4Ri,1 + 1
4Ri,j)

Since i is Row’s best response to Column taking 1 it must be that Rb,1 ≤ Ri,1, we get the above
value must be at most:
(1

4Rb,1 + 1
2Rb,j)− (1

4R1,1 + 1
4R1,j + 1

4Ri,j)
Furthermore since each of the entries of R is in [0,1] the term on the right of the difference can’t
be negative. Also the term on the left is maximised when each of the matrix entries is 1. Thus we
get it must be at most:

(1
41 + 1

21) = 3
4 , which completes the proof.

�

Theorem 8 ∀δ > 0 it is impossible to achieve a (0.5-δ)-Nash Equilibrium using no communication.

Proof The reader is referred to [6] for the proof.

1.6.6 0.438-Nash Equilibrium using little communication

Theorem 9 There is a protocol using O(log2(n)) 2-way communication that finds a 0.438-Nash
Equilibrium.

Proof
We will first show how to find an α-equilibrium and later see the minimum value of α is 0.438.
First Row will find a solution (x∗r , y

∗
r ) to the zero sum game [R,-R]. Column will find a solution

(x∗c , y
∗
c ) to [-C,C], also a zero sum game. Let us say the values specified by mini-max to these games

are vr and vc for Row and Column respectively. We have 2 cases to consider.

11
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Case 1 If vr, vc ≤ α:

Row will communicate to Column y∗r , Column will communicate to Row x∗c . We will now play the
game with strategy pair (x∗c , y

∗
r ). We will show how to communicate these strategies in the next

section.
The intuition is each player is playing a strategy that mini-max guarantees will limit his counterpart
to a payoff of most vr or vc which are both less than α. Since they can’t get better than an α
payoff their regret must also be at most α. Thus we are at an α-NE

Case 2 If at least one of vr, vc > α (Say w.l.o.g. vr > α):

Row sends to Column x∗r . Column will send back to Row his best response, a pure strategy, ec to
x∗r . If we were to play the game using (x∗r ,ec), we see that Column would have no regret since he
is playing his best response. Row may have regret larger than α so we need to modify his strategy
a bit.
Say that Row’s best response to ec is eb with payoff β. Take 1

2α probability from the pure strategy
that has the worst payoff and give it to eb. If the worst payoff strategy did not have enough
probability repeat the process until we shift enough probability. The intuition is we are still
getting at least (1− 1

2α)α payoff from Row’s non best response strategies and (1
2α)β more payoff

from his best response.
At worst the regret of column is now α. This is because Row shifting 1

2α probability at most
made his current strategy appear 1

2α worse and some other strategy appear at most 1
2α better. It

turns out the minimum α where we can guarantee Row will not deviate is α=1
2(5−

√
17), which is

roughly 0.438.
�

1.6.7 How to communicate information for the algorithm

By sending one bit each we can identify which of the two cases we are in. To communicate a pure
strategy we can just send log(n) bits as the index for the pure strategy. Instead of communicating
a mixed strategy we will instead communicate an approximation of it with some nice properties.
We will get a 0.438+δ approximation for any δ > 0.
Let k= ln(n)

δ2
Let’s say that we wish to send mixed strategy x. Let A be a multiset of pure strategies

formed by sampling from x k times according to the probability distribution x. Now we will
approximate x with x′. For each pure strategy in our action set let us play it with probability c

k
where c is the number of times that pure strategy appears in A.
We want the expected utility of x′ to be not too far from x. Let us consider any mixed strategy y
and payoff matrix R. Let the event φ = {|x′TRy − xTRy| ≤ δ}. As in [10] using some probability
theory, and applying a tail inequality, we get Pr[φ] ≥ 1− 1

2n . Thus if our estimation is too far off
we can just re-sample until we succeed.
To send x′ we can just send every element of A to our counterpart and let him reconstruct x′. Each
element takes log(n) bits to specify and |A| ∈ O(log(n)). Thus we need to use O(log2(n)) bits.
In the first case where each zero sum game had a solution value of at most 0.438, when we
communicate our limiting strategy to our counterpart at worst this strategy limits us to a payoff
of 0.438+δ. Thus our regret is at most 0.438+δ. In the second case where Row’s expected payoff
was greater than 0.438 we still achieve a 0.438 equilibrium. This is because we just relied on Row
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playing x∗r having a guaranteed expected payoff of at least 0.438, so we can always find an x′ such
that it gets at least 0.438 payoff by taking a small enough δ.

1.6.8 Nash Equilibrium Conclusion

In the approximate Nash equilibrium setting the biggest open question is how good are the factors
of ε. In the communication free setting it would be interesting to see if one could increase the 0.5
lower bound or find a protocol that beats 0.75. As for the 2-way communication model no known
lower bounds exist.

The 0.438 upper bound is inspired by an algorithm for the uncoupled model that starts with a
solution to the zero sum game [R-C,C-R]. Here it is possible to achieve a 0.36395 approximation [1]
in polynomial time. It would be interesting to see if a algorithm that is not based on a polynomial
time algorithm could achieve a better ε than 0.438.

2 Algorithmic Mechanism Design

Before we talk about algorithmic mechanism design it will be helpful to introduce a problem we
wish to study, so our first section will focus on the combinatorial auctions problem.

2.1 Combinatorial Auctions

In the Combinatorial Auctions problem there is a set of m items M , and n agents N . There is
also a valuation profile v = (v1, ..., vn) where agent i is given valuation function vi which is only
known to him. Here for each i, 1 ≤ i ≤ n, vi : 2[m] → R≥0. We require that vi is submodular and
monotone (see definition below). Also, we assume that for every i ≤ n, vi(∅) = 0. We restrict our
attention to submodular functions since they are widely studied in economics and they capture the
notion of diminishing marginal returns.
We wish to pick a partition A = A1, ..., An of M (which we call an allocation) s.t.

∑
i vi(Ai) is

maximised, that is, we think of Ai as a set of items allocated to agent i, and our goal is to maximize
the social welfare

∑
i vi(Ai).

Definition A valuation function vi : 2[m] → R≥0 is submodular if ∀S, T ⊆ M such that S ⊆ T ,
and all x ∈ M\T , vi(x ∪ T ) − vi(T ) ≤ vi(x ∪ S) − vi(S). It is monotone if vi(S) ≤ vi(T ), for all
S, T ⊆M such that S ⊆ T .

2.2 The Mechanism

For a Combinatorial Auction problem with item set M , agent set N , and valuation profile v =
(v1, ..., vn), we would like to design a centralized algorithm, with certain properties (which we will
state shortly). This algorithm, called the mechanism M, will communicate with the agents over a
series of rounds in an effort to learn about their underlying valuation functions. At the conclusion
of this process, M will pick a partition A = A1, ..., An of M , where agent i is assigned set Ai, in
an effort to maximise

∑
i vi(Ai).

The game theoretic aspect to our problem is each agent i wants to be allocated a subset Ai
s.t. vi(Ai) is maximised. Thus the agents will provide incorrect information to the mechanism,
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regarding their valuation function, if they will receive a better subset at the conclusion of the
protocol.
Thus we would like our mechanism to satisfy three criteria, quality of solution, efficient to compute
and incentive compatible (immune to agent manipulation). We formally define these criteria in the
next three sections.

2.3 Quality of Solution

We define the approximation ratio of the mechanism as the ratio between what it returns and the
optimum.

Definition M is a α approximation if ∀ valuation profiles v = (v1, ..., vn) if the mechanism returns

partition A = (A1, ..., An) and the optimal partition is O = (O1, ..., On) then
∑
i vi(Oi)∑
i vi(Ai)

≤ α.

2.4 Efficiency

Our notion of efficiency will be in the communication model, where we place no restrictions on the
computational powers of the mechanism and the agents, and are only interested in the amount of
communication that occurs between them. We will now define the model more formally. Recall
that M is the set of items, N is the set of agents, and each agent, as input, is given a private
valuation function vi as defined previously.
The communication will proceed in a series of rounds. In each round the mechanism is allowed to
query one of the agents for information about vi, we allow the query to be based on the previous
queries and responses to them. We allow the agents’ reply, which will be seen by all other agents
and the mechanism, to be based on the query, his underlying valuation function vi and the previous
queries and responses of any agent.
Formally if agent i is queried in round l his response is some function ri(vi, Ql, Rl−1), where vi is
his valuation function, Ql is the set of queries asked so far (including the current one) and Rl−1 is
the responses to the queries (up to the last one).
At the conclusion of this protocol the mechanism will announce a partition A = A1, ..., An of M ,
based on the responses to his queries, where agent i gets set Ai.

• One of the most common queries that appears in the literature is the valuation query, where
the mechanism asks agent i, the value of vi(S), for some S ⊆M .

• In our lower bound proofs we allow the queries to be anything.

Definition The communication complexity of a mechanism M, with agent set N and item set
M , on valuation profile v = (v1, ..., vn) is the number of bits communicated over the execution of
the protocol. The number of bits is a function of |N | and |M |.
The communication complexity of a mechanism is the maximum number of bits communicated
over all valuation profiles v = (v1, ..., vn).

The goal in algorithmic game theory is to design mechanisms whose communication complexity is
polynomial in |N | and |M |.

14
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One may question why we even study this from a communication standpoint. In fact a divergent
avenue of research assumes the agents, using some succinct representation, hand their entire valu-
ation functions to the mechanism. In this non communication model the mechanism must run in
time poly(|M |, |N |).
There are two main reasons for studying the communication model. First the valuation functions
can be exponentially large in |M |, even if we only consider submodular functions. It would be
unreasonable to assume that the agents must send these large objects to the mechanism. Also the
agents may be fine revealing a bit of their private valuations but not all of it, this is especially
true in settings where knowledge of their valuations could prove advantageous to the mechanism
or other agents in future games.

2.5 Truthfulness

In order to motivate the agents to be honest with their valuations we allow the mechanism to
charge payments to the agents at the end of communication protocol. That is, in addition to
deciding upon an allocation A = (A1, ..., An), the mechanism M will also pick a payment scheme
p = (p1, ..., pn) where agent i is charged pi ∈ R≥0. Each agent now has the goal of maximising his
valuation utility minus his payment, that is agent i wishes to maximise ui(Ai) = vi(Ai)− pi.
Now we will define incentive compatibility, our notion of truthfulness.

Definition A mechanism M is incentive compatible if for each valuation profile v = (v1, ..., vn)
the following holds. For each agent i, his utility (ui) is maximized if he answers all his queries
using his actual valuation function vi.

Intuitively, ifM is incentive compatible, then for any agent, it is in his best interest to respond to
the queries using his true valuation function, regardless of the other agents’ valuation functions.

2.6 VCG, VCG based mechanisms, and MIR algorithms

From the previous sections, it is clear that a mechanism can be thought of as an (allocation al-
gorithm, payment scheme) pair, where the allocation algorithm picks an allocation (which is a
partition of M into n sets) from the set of all possible allocations (by communicating with the
agents), and the payment scheme charges payments to each agent, based on the allocation picked
by the allocation algorithm.

A major achievement in the field of mechanism design was the introduction of a general method of
construction of incentive compatible mechanisms called the Vickrey-Clarke-Groves (VCG) method
[15] [2] [7]. VCG method has a specific payment rule, that when applied to the output of an alloca-
tion algorithm that computes the optimal allocation (allocation which maximizes social welfare),
guarantees incentive compatibility. A little more formally, a VCG mechanism is an (allocation
algorithm, payment scheme) pair, (K,P ), where for every valuation profile v = (v1, ..., vn), the
allocation algorithm K returns the allocation that maximizes the social welfare (that is, for every
v = (v1, ..., vn), K on v returns argmaxA∈O

∑
i vi(Ai), where O is the set of all possible allocations),

and the payment scheme P = (P1, ..., Pn) is as follows: For each i, Pi(v) =
∑

j 6=i vj(Aj) + hi(v−i)
(where A = (A1, ..., An) is the allocation returned by the allocation algorithm K on the valuation
profile v, and hi is an arbitrary function of v−i, where v−i = (v1, ..., vi−1, vi+1, ...vn)). We won’t
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be going into detail about the payment scheme P , but the intuition is that each agent is being
charged the “social cost” of him receiving Ai, that is incurred by the rest of the agents, and it is
not difficult to prove that VCG mechanisms are indeed incentive compatible [7].

However, the problem is apparent when we apply this scheme to combinatorial auctions: The al-
location algorithm of a VCG mechanism is required to compute optimal allocation, and hence is
not efficient, since the range of possible allocations for a combinatorial auction problem is huge,
and we should maximize the social welfare over this huge range (the allocation algorithm is not
efficient in the sense that it is not feasible to compute the optimal allocation with, say polynomial
(in |M |, |N |) communication).

So, a natural idea is to retain the VCG payment scheme and replace the optimal algorithm by
an algorithm that is approximately optimal but efficient (say that requires only polynomial (in
|M |, |N |) communication). This idea was introduced in [12] and they termed such mechanisms
as VCG-based mechanisms. [12] showed that if we replace the optimal algorithm by an arbitrary
sub-optimal (but efficient) algorithm (and apply the VCG payment scheme to the output of this
algorithm), then the resulting mechanism is not necessarily incentive compatible. However, they
proved that the following family of sub optimal allocation algorithms, called the Maximal in Range
(MIR) algorithms, do yield incentive compatible VCG-based mechanisms.

Definition An allocation algorithm is called Maximal In Range (MIR), if there exists a subset
R ⊆ O (where O is the set of all possible allocations), such that for every v = (v1, ..., vn), the
algorithm outputs an allocation that has the maximum social welfare, among all the allocations in
R. That is, for all v = (v1, ..., vn), the algorithm outputs argmaxA∈R

∑
i vi(Ai). R is called the

range of the MIR algorithm.

So, an MIR algorithm maximizes the social welfare over some subset R ⊆ O. It is not difficult
to see that the VCG-based mechanisms where the allocation algorithm is an MIR algorithm, are
indeed incentive compatible [12], however, the main result of [12] is that this is essentially it, no
other VCG-based mechanisms are incentive compatible. Note that the algorithm that outputs
the optimal allocation is an MIR algorithm with range R = O (so the approximation ratio is 1,
however the algorithm is not efficient). The algorithm which always chooses only one allocation,
say the allocation where we allocate all items to agent 1, is also an MIR algorithm, with the range
R containing only that allocation. Though such an algorithm is very efficient, it provides a very
poor approximation ratio.

2.7 Limitations of VCG based Mechanisms

In this section, we will present the results from the paper “Limitations of VCG-based mechanisms”
by Dobzinski and Nisan [4]. The main result of this paper provides a lower bound for the approx-
imation factor that can be achieved by incentive compatible VCG-based mechanisms (that make
a sub-exponential number of queries to the bidders) for combinatorial auctions with submodular
valuations. The best known mechanism for this case is the O(

√
m)-approximation mechanism of

[5]. [4] show that this is almost the best approximation one can get by showing a m1/6 lower bound.
We first state their theorem,
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Theorem 10 Every incentive compatible VCG-based mechanism for approximating the social wel-
fare in combinatorial auctions with submodular bidders that uses a sub-exponential number of
queries to the bidders achieves an approximation factor of Ω(min(n,m1/6)).

The proof proceeds by combinatorially analysing MIR algorithms (this is sufficient because of the
main Theorem of [12]). The main idea is, if the range is “small”, then we get a bad approximation.
So the range should be “large”. However, if the range is “large”, then optimizing over it needs
exponential communication. A little more formally, we define two complexity measures for the range
R of an MIR algorithm A, called cover(R) and intersect(R), and adopt the following outline.

1. Show, using probabilistic method, that if cover(R) is “small”, then there exists an instance
such that A fails to provide a good approximation. Therefore the range must be “large”.

2. Show that if the cover(R) is large, then intersect(R) is exponential.

3. Show that intersect(R) serves as a lower bound to the communication complexity of A.

cover(R) roughly corresponds to the size of the range R 9. We will shortly define what intersect(R)
means. We first state the lemma corresponding to (1) of the proof outline, without the proof.

Lemma 11 Let A be an MIR algorithm with range R. If cover(R) < em/300n, then there is an
instance in which A provides no more than 1.01/n-fraction of the welfare.

The high level idea of this proof is to construct a random instance of combinatorial auctions and
prove that the value of optimal solution in the random instance is exactly m, however with non-
negligible probability, the welfare provided by the MIR algorithm A with range R (with small cover
number), is only 1.01m/n. We direct the readers to [4] for the full proof.

Next, we state the lemma corresponding to (2) of the proof outline, without the proof.

Lemma 12 Let R be a set of allocations with intersect(R) ≤ d. Then, we have that

cover(R) < (8d)m
3n/5

m4m2/5n2

This is a pure combinatorial lemma, which relates the two measures defined on the range R of an
MIR algorithm. This lemma is rather difficult to prove, and we direct the readers to [4] for the proof.

We now proceed to state and prove the lemma corresponding to (3) of the proof outline, which is
the relevant result to us from a communication complexity perspective. Before that, we state some
definitions, including the definition of the intersection number.

Definition We say that a set of allocations R is regular if there exists constants s1, ..., sn such
that for all S ∈ R and for all 1 ≤ i ≤ n, it holds that |Si| = si.

9It is not exactly the size of R. We exclude certain “degenerate” allocations which don’t affect the guaranteed
approximation ration of the MIR algorithm. However, we won’t be formally defining cover(R), so for the purpose of
this document, cover(R) can be thought of as representing the size of the range R
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So, if the allocations are chosen from a set of allocations R which is regular, then no matter what
the allocation is, for each i, agent i ends up getting the same number of items, namely si.

Now, we proceed to define what be mean by an intersection set and the intersection number of a
set of allocations.

Definition A set of allocations D is called an (i, j) intersection set if for each D,D′ ∈ D such
that D 6= D′, it holds that Di ∩D′j 6= ∅.

Definition Define the intersection number of a set of allocations R, denoted by intersect(R) to be
the maximum cardinality regular (i, j) intersecting set which is a subset of R, where the maximum
is taken over all pairs of bidders i and j.

So, for a set of allocations R, we consider the power set of R. From this power set, we only consider
the sets (which are nothing but the subsets of R) which are regular. Out of these, for each distinct
i, j, 1 ≤ i, j ≤ n, we consider the sets (which now are subsets of R that are regular), that are
(i, j) intersection sets, and find the set the has maximum size among these (where the maximum
is taken over all distinct i, j), and the size of this set is the intersection number of R 10.

Now, we proceed to prove that the intersection number of the range of a MIR algorithm serves as
a lower bound to the communication complexity of the algorithm.

Lemma 13 Let A be a MIR algorithm for combinatorial auctions with submodular bidders, with
range R. Let intersect(R) = d. Then the communication complexity of A is Ω(d).

Proof The outline of the proof is as follows. We reduce from set disjointness. Alice and Bob
each hold a d− bit string, a1, ..., ad and b1, .., bd respectively (where d is the intersection number
of the range R of the MIR algorithm A), the input to the set disjointness problem. Given, the
input to the set disjointness problem, we construct a combinatorial auction with m items and n
submodular bidders such that, the MIR algorithm A with range R (with intersection number d)
outputs a specific fixed value (which we will specify shortly) for this auction if there exists k such
that ak = bk = 1 (that is, if the sets represented by the inputs to the set disjointness problem are
not disjoint) and outputs a value strictly less than the specific fixed value if the sets represented
by the inputs to the set disjointness problem are disjoint. More formally,

Let D = {D1, ..., Dd} be an (i, j) intersection set of the range R (we know such a set exists for
some distinct i, j, 1 ≤ i, j ≤ n, since the intersection number of R is d). By definition, D is regular.
So, for each bidder t, there exists a constant st such that |Dt| = st for every D ∈ D.

We will construct a combinatorial auction with m items as follows. Alice will play the role of bidder
i. Bob will play the role of rest of the bidders, especially bidder j. We now define the valuation
functions for each of the bidders. We specify the valuation function of bidder i played by Alice.

vi(S) =


|S|, if |S| ≤ si − 1

si, if |S| ≥ si and ∃k s.t. Dk ⊆ S and ak = 1

si − 1/2|S|−si+1, otherwise

10We acknowledge that this measure looks somewhat artificial, and unlike the cover number, there is no clear
intuition as to what characteristic/property of the range this measure exactly captures.
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The valuation vj is defined in an analogous way. The valuations of the rest of the bidders is zero
on any input.

First, we claim that the valuations are submodular. This is not difficult to see, and we just give
the outline of the proof. To say that vi is submodular, we prove that for every S ⊆ M , and
x1, x2 ∈M\S,

vi(S ∪ {x1, x2}) + vi(S) ≤ vi(S ∪ {x1}) + vi(S ∪ {x2})

We select an arbitrary S, and we do case analysis based on the size of S to show that the above
equation is true for each of the cases 11.

Now we claim that if there exists k such that ak = bk = 1, then the optimal welfare is exactly
si + sj , otherwise the optimal welfare is strictly less than si + sj . To see this, note that if there
exists k such that ak = bk = 1, then the valuation vi on any superset of Dk

i is si and the valuation
vj on any superset of Dk

j is sj . This is by definition of the valuation functions. So, in particular,

the allocation Dk yields the social welfare of si + sj , which is indeed optimal 12.

Now we prove the other direction. Observe that on an allocation, if bidder i gains si (say his
allocation is S1) and bidder j gets sj

13 (say his allocation is S2), then by definition there exists
k, k′ such that Dk

i ⊆ S1 and ak = 1, and Dk′
j ⊆ S2 and bk′ = 1. However since D is an intersection

set, we have that Dk
i ∩Dk′

j 6= ∅. So it must be the case that S1 ∩ S2 6= ∅, so the allocation is not a
valid allocation, and hence k must equal k′.

Finally, by construction, if the optimal welfare is si + sj , then it can be achieved by an allocation
in R. Since A is an MIR algorithm with range R, A must return si + sj in this case (and obviously
A returns value strictly less than si + sj if the optimal welfare is strictly less than si + sj). So, we
will be able to decide if there if there exists k such that ak = bk = 1 based on the value returned
by the MIR algorithm A. Hence, we conclude that the communication complexity of A is at least
as that of the set disjointness problem, which is Ω(d). This concludes the proof of Lemma 13.

�

It is not difficult to see that we can combine Lemmas 11, 12, 13 in a straightforward way to prove
Theorem 10.

2.8 The Combinatorial Public Projects Problem (CPPP)

We now present the main result from [13] showing that no mechanism for the CPPP that satisfies
all three of our criteria exists. The setup to the CPPP is similar to the Combinatorial Auction
problem.
We have a set N of n players, and a set M of m resources with a constant k. We also have a
valuation profile v = (v1, ..., vn), player i is given valuation vi which is only known to him. Here
for each i, vi : 2[m] → R≥0.

11Based on the definition of the vi and the definition of submodularity we chose to use, we can think of four
different cases, |S| < si − 2, |S| = si − 2, |S| = si − 1 , and |S| > si − 1.

12By definition, the maximum value that vi can evaluate to is si, and for vj it is sj and zero for rest of the bidders
13That is, the optimal welfare is si + sj .
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We require that each vi is submodular. That is ∀S, T ⊆ M where S ⊆ T , and for all x ∈ M\T ,
vi(x∪T )−vi(T ) ≤ vi(x∪S)−vi(S). We also require that each vi is monotone, that is vi(S) ≤ vi(T ),
for all S, T ⊆M such that S ⊆ T . Finally we require that each vi is normalized, that is vi(∅) = 0.
The goal of the mechanismM is to pick a set of items A ⊆M s.t. |A| = k and maximise

∑n
i=1 vi(A).

The way to perceive this problem is we have a set of potential resources M, say potential hospital
locations, and the budget to build k of them that will be shared amongst the agents of N . We
wish to maximise the social welfare of the agents, that is the sum of their valuations on the shared
subset of M .
We define the quality of the solution in the same way as before, the ratio between the optimal and
the algorithm for any valuation profile.
The communication model, and our notion of communication complexity, is exactly the same as
in the combinatorial auction setting. That is the mechanism will make a series of queries to the
agents regarding their valuation functions. After some number number of rounds the mechanism
will pick A ⊆M s.t. |A| = k as the solution.
As in the combinatorial auction case to ensure his queries are answered honestly the mechanism
will also create a payment scheme p = (p1, ..., pn) where each agent is charged their corresponding
payment. As before each agent i aims to maximise vi(A)− pi.

Theorem 14 Any incentive compatible mechanism that achieves a m
1
2
−ε approximation for any

ε > 0 requires communication Ω(2m
ε
)14

Proof The proof proceeds in three steps. We will only outline the first two steps since they are
not very interesting from a communication standpoint. See [13] for the full proof. We first need to
define the following two concepts.

Definition The range of a mechanism M is RM={A ⊆ M : |A| = k and ∃ a valuation profile
v = (v1, ..., vn) such that the mechanism M on v outputs A }.

Definition A mechanism M is an affine maximiser if for every valuation profile v = (v1, ..., vn),
it pick argmaxA∈RM(

∑
iwivi(A) + CA).

For 1 ≤ i ≤ n, wi is a non negative constant associated with player i. We require at least one of
them is non zero.
For every A ∈ RM, CA is a non negative constant associated with outcome A. We do not require
at least one of them to be non zero.
The definition of affine maximiser mechanism (as described above) can be seen as a weighted version
of maximal in range algorithms (defined in the Section 2.6).

Lemma 15 (Affine Maximiser) If mechanismM is incentive compatible for CPPP,M is an affine
maximiser.

Proof The proof of the lemma is a modification of the proof of Roberts’ theorem 15, which proved
the same results for general problems and valuation functions.

14There is a simple greedy incentive compatible mechanism that achieves an O(
√
m) approximation for the CPPP,

thus this lower bound is tight [14].
15See [9] for two recent proofs of Roberts’ theorem.

20



CSC 2429 - Comm Complexity: Applications and New Directions Lecture #9: Fall, 2014

Lemma 16 (Large Range) Any affine maximiser that achieves an approximation ratio of m
1
2
−ε

requires a range of size Ω(2m
ε
). For this lemma we will fix k to be

√
m.

Proof This will be done via a probabilistic argument. Informally we construct a set V ⊂ M , by
adding each element a ∈ M to V independently with probability m−

1
2

+ε. We then consider the
game consisting of 1 agent with a valuation function v(S) = |V ∩ S|. Using Chernoff bounds we
get that with high probability no solution contained in RM will serve as a good approximation to
the optimal solution, unless |RM| ∈ Ω(2m

ε
).

Now we can prove that for 2 players we require communication of size Ω(|RM|) via a reduction
from 2 player set disjointness.
Let us say each player has a private set of outcomes he prefers Ri ⊂ RM for i ∈ {1, 2}. Define his
valuation as vi(T ) = βi(

∏
S∈Ri |S| −

∏
S∈Ri(|S| − |S ∩ T |)), where βi is some constant. To show

this function is submodular we can perform induction on |Ri|.
First we note for the affine maximiser can assume that the agent constants w1 = w2 = 1. If this
were not the case we could just scale the βi value of the agents. Furthermore we can assume that
each of the outcome constants Cj is 0 since we can just scale up each βi to make Cj negligible.
For each T ∈ Ri, vi is maximised. This is because the first product is independent of the solution
set T so it is just a constant for the game. On the other hand since |T ∩ T | = |S| the second
product, a non positive value, will become 0. If T /∈ Ri we note the value to agent i must be
smaller. Again because in the second product all of the item in it will have value at least 1, thus
it must be negative.
Thus if |R1 ∩R2| > 0 the set the affine maximiser picks must lie in the intersection of the two, and
the sum of the 2 utilities must be k|R1|+ k|R2| where k is the number of elements we activate (each
S is of size k since it is an outcome).
Now the reduction from set disjointness is obvious. If Alice gets x and Bob gets y each of size
|RM|. They form sets R1 where we include the ith outcome iff x has a 1 in the ith bit, and do the
same for R2 and y. They both simulate the mechanism asking the queries it would ask of each
other until they find a solution. If both Alice and Bob have achieved an optimal value for their
set functions they conclude that their sets must intersect, otherwise they conclude they must not
intersect.
Thus we see we need Ω(|RM|) communication. Assuming M achieves an approximation ratio of

m
1
2
−ε we require Ω(2m

ε
) communication.

�

2.8.1 Mechanism Design Conclusion

The biggest open question now is are the techniques of [13] applicable to different problems. It
would be interesting to see if we can use similar arguments to get strong lower bounds on incentive
compatible mechanisms for the combinatorial auctions problem, not just VCG based ones.
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