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The Gap Hamming Distance Problem
The gap Hamming distance problem is a partial function

GHDn(x, y) :=

{
−1 if ⟨x, y⟩ ≤ −

√
n,

+1 if ⟨x, y⟩ ≥ +
√
n.

where x, y ∈ {−1,+1}n.

Linear lower bound

Theorem 1.
Dµ(GHDn) = Ω(n).

We’ll present the proof from [1].

Corruption bound

Fix f : X×Y
(partial)−−−−−→ {−1,+1} and µ a distribution on X×Y . We say a rectangle R ⊆ X×Y

is ε-corrupt if
µ(R ∩ f−1(+1)) > εµ(R ∩ f−1(−1)).

Theorem 2 (Corruption Bound). If every rectangle R with µ(R) > δ is ε-corrupt, then

2D
µ
ξ (f) ≥ 1

δ

(
µ(f−1(−1))− ξ

ε

)
.

Plan
We’ll use the corruption bound to prove the Ω(n) lower bound.
Fix µ to be the uniform distribution.
Let R = A×B be a rectangle that’s not ε-corrupt. Then

Pr
x∈A,y∈B

[f(x, y) = +1] ≤ |R ∩ f−1(+1)|
|R ∩ f−1(−1)|

< ε. (1)

We’ll show (1) implies that R must be small, i.e.

µ(R) = 4−n|A||B| ≤ δ = 2−Ω(n).

Then by the corruption bound, have

Dµ
ξ (fn) ≥ Ω(n) log

(
µ(f−1(−1))− ξ

ε

)
.
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Gap orthogonality
However, GHD does have a large uncorrupted rectangle.
Instead of working on GHD directly, we’ll use a similar function called gap orthogonality :

fn(x, y) =

{
−1 if |⟨x, y⟩| ≤

√
n/8,

+1 if |⟨x, y⟩| ≥
√
n/4.

Observe that fn(x, y) can be computed using 2 calls to the GHD function, so lower bound f is
also a lower bound for GHD.

Theorem 3
Corruption bound requires proving the following:

Theorem 3. Let R = A×B s.t. Prx∈A,y∈B[|⟨x, y⟩| ≤
√
n
4 ] ≥ 1− ε. Then 4−n|A||B| ≤ exp(−Ω(n)).

Proof of theorem 3
The goal is to show that 4−n|A||B| ≤ exp(−Ω(n)).
If |A| is small enoungh by it self, e.g. 2−n|A| ≤ 2 · 2−αn for some constant α, then we’re done.
Therefore, we’ll assume that |A| > 2 · 2(1−α)n, and show

2−n|B| ≤ e−Ω(n).

.

Proof of theorem 3
Recall that we have

Pr
x∈A,y∈B

[|⟨x, y⟩| ≤
√
n

4
] ≥ 1− ε.

We may further assume that for every x ∈ A,

Pr
y∈B

[|⟨x, y⟩| ≤
√
n

4
] ≥ 1− 2ε (2)

by discarding violating elements.
This decreases the size of A by at most half, so now |A| > 2(1−α)n.

Proof of theorem 3
Next, we’ll show that there’s some x1, . . . , xk ∈ A s.t.

Pr
y∈{−1,+1}n

[
max
i∈[k]

|⟨xi, y⟩| ≤
√
n

4

]
≤ e−Ω(n)

where k = Θ(n).
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Lemma 4
Assume that A is large, then it’s always possible to find k = ⌊n/10⌋ vectors from A that are

“almost orthogonal”.

Lemma 4. Let α be a sufficiently small constant. Fix A ⊆ {−1,+1}n with |A| > 2−αn. Then for
k = ⌊n/10⌋ there exist x1, x2, . . . , xk ∈ A such that for each i,

∥ projspan{x1,x2,...,xi} xi+1∥ ≤
√
n

3
. (3)

Talagrand
Proof of lemma 4 (and lemma 6) relies on the following:

Fact 5 (Talagrand). For every linear subspace V ⊆ Rn and every t > 0, one has

Pr
x∈{−1,+1}n

[∥ projV x∥ −
√
dimV > t] ≤ 4e−ct2,

where c > 0 is an absolute constant.

Proof of lemma 4
The proof is by induction.
Having selected x1, . . . , xi ∈ A, pick xi+1 ∈ {−1,+1}n uniformly random. Then

Pr
xi+1

[xi+1 ∈ A] > 2−αn.

Fact 5 implies that

Pr
xi+1

[
∥ proj{x1,...,xi} xi+1∥ ≤

√
n

3

]
≥ 1− 2−αn.

Hence, there exists xi+1 ∈ A with ∥ proj{x1,...,xi} xi+1∥ ≤
√
n
3 .

Lemma 6
Eq. (3) implies that only a small amount of y ∈ {−1,+1}n can have small inner product with

all xi’s. Formally,

Lemma 6. Fix vectors x1, x2, . . . , xm ∈ {−1,+1}n that obey (3) for all i. Then

Pr
y∈{−1,+1}n

[
max
i∈[m]

|⟨xi, y⟩| ≤
√
n

4

]
≤ e−βm (4)

for some absolute constant β > 0.
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Proof of theorem 3
Let x1, . . . , xk ∈ A be the vectors from lemma 4.
Recall that we have for every xi ∈ A,

Pr
y∈B

[|⟨xi, y⟩| ≤
√
n

4
] ≥ 1− 2ε.

By averaging,

Pr
i∈[k],y∈B

[|⟨xi, y⟩| ≤
√
n

4
] ≥ 1− 2ε.

Again, we may assume that for every y ∈ B,

Pr
i∈[k]

[|⟨xi, y⟩| ≤
√
n

4
] ≥ 1− 3ε,

which decreases the size of B by at most 2/3.

Proof of theorem 3
Then,

Pr
y∈{−1,+1}n

[
Pr
i∈[k]

[|⟨xi, y⟩| ≤
√
n

4
] ≥ 1− 3ε

]
is an upper bound for Pry[y ∈ B] = 2−n|B|.

By union bound, this is bounded by(
k

3εk

)
Pr

y∈{−1,+1}n

[
max

i
|⟨xi, y⟩| ≤

√
n

4

]
,

which, by lemma 6, is bounded by
(

k
3εk

)
e−Ω(n) = e−Ω(n).

Linear lower bound
By theorem 3 and the corruption bound, we have

Dµ
ξ (fn) ≥ Ω(n) log

(
µ(f−1

n (−1))− ξ

ε

)
.

Since µ(f−1
n (−1)) is Θ(1), the above gives a linear lower bound for the gap orthogonality

function.
which also implies a linear lower bound for GHD.
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