Communication Complexity

Lecturer: Tsung-Ju Chiang

The Gap Hamming Distance Problem

The gap Hamming distance problem is a partial function

$$
\operatorname{GHD}_{n}(x, y):= \begin{cases}-1 & \text { if }\langle x, y\rangle \leq-\sqrt{n} \\ +1 & \text { if }\langle x, y\rangle \geq+\sqrt{n} .\end{cases}
$$

where $x, y \in\{-1,+1\}^{n}$.

Linear lower bound

Theorem 1.

$$
D^{\mu}\left(\mathrm{GHD}_{n}\right)=\Omega(n)
$$

We'll present the proof from [1].

Corruption bound

Fix $f: X \times Y \xrightarrow{(\text { partial })}\{-1,+1\}$ and μ a distribution on $X \times Y$. We say a rectangle $R \subseteq X \times Y$ is ε-corrupt if

$$
\mu\left(R \cap f^{-1}(+1)\right)>\varepsilon \mu\left(R \cap f^{-1}(-1)\right) .
$$

Theorem 2 (Corruption Bound). If every rectangle R with $\mu(R)>\delta$ is ε-corrupt, then

$$
2^{D_{\xi}^{\mu}(f)} \geq \frac{1}{\delta}\left(\mu\left(f^{-1}(-1)\right)-\frac{\xi}{\varepsilon}\right) .
$$

Plan

We'll use the corruption bound to prove the $\Omega(n)$ lower bound.
Fix μ to be the uniform distribution.
Let $R=A \times B$ be a rectangle that's not ε-corrupt. Then

$$
\begin{equation*}
\operatorname{Pr}_{x \in A, y \in B}[f(x, y)=+1] \leq \frac{\left|R \cap f^{-1}(+1)\right|}{\left|R \cap f^{-1}(-1)\right|}<\varepsilon . \tag{1}
\end{equation*}
$$

We'll show (1) implies that R must be small, i.e.

$$
\mu(R)=4^{-n}|A||B| \leq \delta=2^{-\Omega(n)} .
$$

Then by the corruption bound, have

$$
D_{\xi}^{\mu}\left(f_{n}\right) \geq \Omega(n) \log \left(\mu\left(f^{-1}(-1)\right)-\frac{\xi}{\varepsilon}\right) .
$$

Gap orthogonality

However, GHD does have a large uncorrupted rectangle.
Instead of working on GHD directly, we'll use a similar function called gap orthogonality:

$$
f_{n}(x, y)= \begin{cases}-1 & \text { if }|\langle x, y\rangle| \leq \sqrt{n} / 8 \\ +1 & \text { if }|\langle x, y\rangle| \geq \sqrt{n} / 4\end{cases}
$$

Observe that $f_{n}(x, y)$ can be computed using 2 calls to the GHD function, so lower bound f is also a lower bound for GHD.

Theorem 3

Corruption bound requires proving the following:
Theorem 3. Let $R=A \times B$ s.t. $\operatorname{Pr}_{x \in A, y \in B}\left[|\langle x, y\rangle| \leq \frac{\sqrt{n}}{4}\right] \geq 1-\varepsilon$. Then $4^{-n}|A||B| \leq \exp (-\Omega(n))$.

Proof of theorem 3

The goal is to show that $4^{-n}|A||B| \leq \exp (-\Omega(n))$.
If $|A|$ is small enoungh by it self, e.g. $2^{-n}|A| \leq 2 \cdot 2^{-\alpha n}$ for some constant α, then we're done. Therefore, we'll assume that $|A|>2 \cdot 2^{(1-\alpha) n}$, and show

$$
2^{-n}|B| \leq e^{-\Omega(n)} .
$$

Proof of theorem 3

Recall that we have

$$
\operatorname{Pr}_{x \in A, y \in B}\left[|\langle x, y\rangle| \leq \frac{\sqrt{n}}{4}\right] \geq 1-\varepsilon .
$$

We may further assume that for every $x \in A$,

$$
\begin{equation*}
\operatorname{Pr}_{y \in B}\left[|\langle x, y\rangle| \leq \frac{\sqrt{n}}{4}\right] \geq 1-2 \varepsilon \tag{2}
\end{equation*}
$$

by discarding violating elements.
This decreases the size of A by at most half, so now $|A|>2^{(1-\alpha) n}$.

Proof of theorem 3

Next, we'll show that there's some $x_{1}, \ldots, x_{k} \in A$ s.t.

$$
\operatorname{Pr}_{y \in\{-1,+1\}^{n}}\left[\max _{i \in[k]}\left|\left\langle x_{i}, y\right\rangle\right| \leq \frac{\sqrt{n}}{4}\right] \leq e^{-\Omega(n)}
$$

where $k=\Theta(n)$.

Lemma 4

Assume that A is large, then it's always possible to find $k=\lfloor n / 10\rfloor$ vectors from A that are "almost orthogonal".

Lemma 4. Let α be a sufficiently small constant. Fix $A \subseteq\{-1,+1\}^{n}$ with $|A|>2^{-\alpha n}$. Then for $k=\lfloor n / 10\rfloor$ there exist $x_{1}, x_{2}, \ldots, x_{k} \in A$ such that for each i,

$$
\begin{equation*}
\left\|\operatorname{proj}_{\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{i}\right\}} x_{i+1}\right\| \leq \frac{\sqrt{n}}{3} \tag{3}
\end{equation*}
$$

Talagrand

Proof of lemma 4 (and lemma 6) relies on the following:
Fact 5 (Talagrand). For every linear subspace $V \subseteq R^{n}$ and every $t>0$, one has

$$
\operatorname{Pr}_{x \in\{-1,+1\}^{n}}\left[\left\|\operatorname{proj}_{V} x\right\|-\sqrt{\operatorname{dim} V}>t\right] \leq 4 e^{-c t^{2}}
$$

where $c>0$ is an absolute constant.

Proof of lemma 4

The proof is by induction.
Having selected $x_{1}, \ldots, x_{i} \in A$, pick $x_{i+1} \in\{-1,+1\}^{n}$ uniformly random. Then

$$
\operatorname{Pr}_{x_{i+1}}\left[x_{i+1} \in A\right]>2^{-\alpha n} .
$$

Fact 5 implies that

$$
\operatorname{Pr}_{x_{i+1}}\left[\left\|\operatorname{proj}_{\left\{x_{1}, \ldots, x_{i}\right\}} x_{i+1}\right\| \leq \frac{\sqrt{n}}{3}\right] \geq 1-2^{-\alpha n}
$$

Hence, there exists $x_{i+1} \in A$ with $\left\|\operatorname{proj}_{\left\{x_{1}, \ldots, x_{i}\right\}} x_{i+1}\right\| \leq \frac{\sqrt{n}}{3}$.

Lemma 6

Eq. (3) implies that only a small amount of $y \in\{-1,+1\}^{n}$ can have small inner product with all x_{i} 's. Formally,

Lemma 6. Fix vectors $x_{1}, x_{2}, \ldots, x_{m} \in\{-1,+1\}^{n}$ that obey (3) for all i. Then

$$
\begin{equation*}
\operatorname{Pr}_{y \in\{-1,+1\}^{n}}\left[\max _{i \in[m]}\left|\left\langle x_{i}, y\right\rangle\right| \leq \frac{\sqrt{n}}{4}\right] \leq e^{-\beta m} \tag{4}
\end{equation*}
$$

for some absolute constant $\beta>0$.

Proof of theorem 3

Let $x_{1}, \ldots, x_{k} \in A$ be the vectors from lemma 4 .
Recall that we have for every $x_{i} \in A$,

$$
\operatorname{Pr}_{y \in B}\left[\left|\left\langle x_{i}, y\right\rangle\right| \leq \frac{\sqrt{n}}{4}\right] \geq 1-2 \varepsilon .
$$

By averaging,

$$
\operatorname{Pr}_{i \in[k], y \in B}\left[\left|\left\langle x_{i}, y\right\rangle\right| \leq \frac{\sqrt{n}}{4}\right] \geq 1-2 \varepsilon .
$$

Again, we may assume that for every $y \in B$,

$$
\operatorname{Pr}_{i \in[k]}\left[\left|\left\langle x_{i}, y\right\rangle\right| \leq \frac{\sqrt{n}}{4}\right] \geq 1-3 \varepsilon,
$$

which decreases the size of B by at most $2 / 3$.

Proof of theorem 3

Then,

$$
\operatorname{Pr}_{y \in\{-1,+1\}^{n}}\left[\operatorname{Pr}_{i \in[k]}\left[\left|\left\langle x_{i}, y\right\rangle\right| \leq \frac{\sqrt{n}}{4}\right] \geq 1-3 \varepsilon\right]
$$

is an upper bound for $\operatorname{Pr}_{y}[y \in B]=2^{-n}|B|$.
By union bound, this is bounded by

$$
\binom{k}{3 \varepsilon k} \underset{y \in\{-1,+1\}^{n}}{\operatorname{Pr}}\left[\max _{i}\left|\left\langle x_{i}, y\right\rangle\right| \leq \frac{\sqrt{n}}{4}\right],
$$

which, by lemma 6 , is bounded by $\binom{k}{3 \varepsilon k} e^{-\Omega(n)}=e^{-\Omega(n)}$.

Linear lower bound

By theorem 3 and the corruption bound, we have

$$
D_{\xi}^{\mu}\left(f_{n}\right) \geq \Omega(n) \log \left(\mu\left(f_{n}^{-1}(-1)\right)-\frac{\xi}{\varepsilon}\right) .
$$

Since $\mu\left(f_{n}^{-1}(-1)\right)$ is $\Theta(1)$, the above gives a linear lower bound for the gap orthogonality function.
which also implies a linear lower bound for GHD.

References

[1] A. A. Sherstov, The communication complexity of gap hamming distance, Theory of Computing, 8 (2012), pp. 197-208. 1

