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Communication Complexity of Classification Problems 
 

Lecturer: Matt Lawhon 
 
 

Introduction 
 

In this lecture, we explore the paper “On the Communication Complexity of Classification 
Problems” by Daniel Kane, Roi Livni, Shay Moran, Amir Yehudayoff in 2018. In this paper, they 
introduce a new communication model motivated by Yao’s model, distributed learning, and 
interesting real would problems. They then proceed to derive a number of general results on 
proper/improper, and agnostic/realizable learning, along with some specific results for the 
interesting motivating problems of the model. As of 2022, the paper has been cited 13 times. 
Thus, though the communication model has yet to become widespread, it has been the source 
of inspiration in some subsequent work in learning theory.  

 
Example: Convex Set Disjointness 

• Setup: Alice and Bob are each given n points in ℝ". 
• Problem: Do the convex hulls of their inputs intersect? 
• Problem with solving this in Yao’s model… 

• Transmitting bits doesn’t work because they have infinite domains.  

 
An Extension to Yao’s Model 

The idea here is to extend Yao’s model to allow Alice and Bob to send points in their input or 
bits as one unit of communication. Note that it is important to specify that they cannot send 
points not in their input? In the case of Convex Set Disjointness, this would admit a 2-bit 
solution independent of	𝑑, 𝑛 using an ℝ'" → ℝ bijection. 
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Example: Convex Set Disjointness 
Consider 𝑑 = 1. What is the communication complexity? 

• 𝐶𝐶 = 3. Alice communicate 2 endpoints, Bob publishes the output 
 
Suppose Alice and Bob are each given a subset of	𝑈 ⊂ ℝ"  where	𝑑 ≥ 𝑛 − 1 ≥ 1, 		|𝑈| = 𝑛 

• It is possible that points in 𝑈 are affinely independent. 
• Which implies that 𝐴 ∩ 𝐵 = ∅	 ⟺ 𝑐𝑜𝑛𝑣(𝐴) ∩ 𝑐𝑜𝑛𝑣(𝐵) = ∅ 
• 𝐶𝐶 = Θ(𝑛) because this is just set disjointness.  

 “In this way, Convex Set Disjointness can be seen as a geometric interpolation between Set 
Disjointness (when d ≥ n − 1), and Greater-Than (when d = 1)” – Shay Moran 
 
 
The Model 
 
The setup is usually defined over a given domain and hypothesis space. 

• Let 𝑋 be the domain, and 𝑍 = 𝑋	 × {−1,1} be the examples domain. 
• Alice and Bob are given 𝑆E, 	𝑆F ⊂ 𝑍 and can communicate elements of their inputs or 

bits, for one unit of communication. 
• Typically learning something about a hypothesis ℎ:𝑋 → {−1,1} for a given hypothesis 

class 𝐻. 
Problems we can study  

Decision (about a property – we focus on Realizability): 
• Given 𝑆E, 	𝑆F decide if there exists some ℎ ∈ 𝐻 that is consistent with 𝑆E, 	𝑆F 
• Eg. CSD: 𝑆E labelled 1, 𝑆F labelled 0, 𝐻 the hypothesis class of half-spaces 

Search: 
• Given 𝑆E, 	𝑆F output a hypothesis that makes no-more (or perhaps 𝜖 more) 

mistakes than the best ℎ ∈ 𝐻 
• If we are confined to output some ℎ ∈ 𝐻 as our hypothesis, then we are 

properly learning 
• If the best ℎ ∈ 𝐻 is consistent with 𝑆E, 	𝑆F then we are learning in the 

realizable case, as opposed to the agnostic case 
 
Related work 
 
This communication model can be viewed as yielding distributed sample compression schemes 
in the search problem setting. A Sample Compression Scheme of size 𝑘 < 𝑛 is defined by: 

• Compressor: 𝑐: (𝑥	 × 	𝑦)' → (𝑥	 × 	𝑦)P 
• Reconstructor: 𝑟: (𝑥	 × 	𝑦)P → 𝐻, s.t. ∀(𝑥, 	𝑦), 		𝑟S𝑐(𝑥, 𝑦)T = 𝑦 
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Sample Compression Schemes were introduced by Littlestone and Warmuth who showed 
that compression implies (PAC-)learnability and asked whether learnability implies 
compression. In fact, it is still an open whether every 𝐻 has a SCS of size 𝑂(𝑉𝐶−𝑑𝑖𝑚(𝐻)), and 
the best result is exponential (Yehudayoff et al, 2015). 

We note there is a strict difference in sample complexity for distributed and non-
distributed. For half planes: 

• A trivial SCS of size 𝑑 + 1 using the data as support vectors. 
• A lower bound of Ω(𝑑 log(𝑛/𝑑)) is known in the two-party setting for randomized 

and/or improper learning (Braverman et al, 2019).  
More generally, there are SCS of size only depending on VC-Dimension, but this is not the case 
for DSCS. 
 
 
Main Results 
 
Theorem 1. Let 𝐻 be the class of half-spaces in ℝ", 	𝑑 ≥ 2, 	𝜖 ≤ 1/3. Any Protocol that learns 𝐻 
in the realizable case has sample complexity Ωa(𝑑 + log(1/𝜖)). 
Proof: 

• First, we prove Ωa(𝑑) samples are required.  
• We know that 𝜖-approximate non-distributed sample compression schemes for 

any fixed 𝜖 (say 1/3), require Ωa(𝑑) samples.  
• Next, we prove Ωa(log	(1/𝜖)) samples are required.  

• Not actually – this proof is 6 pages long. 
  

Some Definitions 
• We define analogous complexity classes of P, NP and coNP. 

• 𝐻 is in P if there is an efficient protocol (in terms of sample complexity) for the 
realizability problem. 

• 𝐻 is in NP if there is a poly-log proof that certifies realizability. 
• 𝐻 is in coNP if there is a poly-log proof that certifies non-realizability. 

• VC-Dimension(H) 
• The size of the largest 𝑆 ⊂ 𝑋 s.t. ∀𝑇 ⊂ 𝑆, ∃ℎ ∈ 𝐻 s.t. {𝑠|𝑠 ∈ 𝑆 ∧ ℎ(𝑠) = 1} = 𝑇 

• CoVC-Dimension(H) (aka dual Helly number) 
• The smallest 𝑘 s.t. every non-realizable sample has a non-realizable subsample of 

size at most 𝑘 
• Also - separator between proper and improper learning of linear separators 

(SVMS) with optimal sample complexity (finite = proper) (Bousquet et al, 2020) 
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CoVC/VC-dimension Examples 
Consider the following hypothesis classes: 
 

𝐻 = 	{𝑠 ⊂ [𝑛]	: |𝑠| = 1}, 	𝑋 = [𝑛] 
• VC-Dim(H) = 	1 
• CoVC-Dim(H) = 	𝑛.  

• The sample labeled −1 everywhere of size 𝑛 is unrealizable and has no non-
realizable subsample. 

 

𝐻 = 	{[𝑛] → {−1,1}	: 	∀𝑖 ≥
𝑛
2 , 	ℎ

(𝑖) = −1} 
• VC-Dim(H) = n/2 
• CoVC-Dim(H) = 1.  

• Every non-realizable sample must contain an example (𝑖, 	1)	with 𝑖	 ≥ 	𝑛/2, 
which is not realizable. 

 
𝐻 = 	{𝑓: ℝ" → {−1,1}: 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤 ⋅ (𝑥, 1)),𝑤 ∈ 𝑅"mn	} 

 
• VC-Dimension = 𝑑 + 1.  

• Radon’s Theorem – Any set of 𝑑 + 2 points in ℝ"  can be partitioned into two 
sets whose convex hulls intersect. 

• {𝑣 ∈ ℝ"	: 𝐿p(𝑣) = 𝐿n(𝑣) = 1} ∪ {𝟎} 
• CoVC-Dimension ≤ 2𝑑 + 2 

• Carathéodory’s Theorem – If 𝑥 ∈ ℝ"	lies	in	the	convex	hull	of	a	set 𝑃, 	then 𝑥 
can be written as the convex combination of at most 𝑑 + 1 points in 𝑃.  

• Let 𝑆 be a non-realizable set and denote the positive and negatively labelled 
points 𝑆m, 	𝑆_. The convex hulls of	𝑆m and 𝑆�	intersect. 

• 𝑥 lies in the convex hull of some 𝑑 + 1 points in 𝑆� and of some 𝑑 + 1 points in 
𝑆m. 

• The union of these (of size 2𝑑 + 2) is non-realizable. 
 
Main Result  
Theorem 5. The following statements are equivalent for a hypothesis class 𝐻 

i. 𝐻 in in P 
ii. 𝐻 is in NP ∩ 	coNP 
iii. 𝐻 has finite VC dimension and finite coVC dimension 
iv. There exists a protocol for the realizability problem for 𝐻 with sample 

complexity Oa(𝑑𝑘�log	(|𝑆|)) for 𝑑 = 𝑉𝐶	𝑑𝑖𝑚(𝐻) and	𝑘 = 𝑐𝑜𝑉𝐶	𝑑𝑖𝑚(𝐻) 
We will prove this by showing 𝑖 ⇒ 𝑖𝑖 ⇒ 𝑖𝑖𝑖 ⇒ 𝑖𝑣 ⇒ 𝑖 . Note that showing 𝑖𝑣 ⇒ 𝑖 ⇒ 𝑖𝑖	is trivial. 
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𝑯 in NP ∩ 	coNP ⇒ 𝑯 has finite VC dimension and coVC dimension 
Theorem 6. For every class 𝐻 with VC dimension 𝑑 ∈ ℕ ∪ {∞}, 	 

𝑁�
'�(𝑛) = 	Ωa(min(𝑑, 	𝑛)) 

Proof: 
• Lemma 4. Let 𝐻 be a hypothesis class and let 𝑅 ⊆ 𝑋	be a subset of size 𝑛 that is 

shattered by	𝐻.  ∃𝐹E, 𝐹F	that map 𝑛 bit-strings to labelled examples from 𝑅 such that for 
every 𝑥, 𝑦 ∈ {0,1}', 𝑥 ∩ 𝑦 = ∅ iff the joint sample 𝑆 = ⟨𝐹E(𝑥); 𝐹F(𝑦)⟩	is realizable by 𝐻.  
Proof: 

• Since 𝑅 is shattered by 𝐻, it follows that a sample 𝑆 with examples from 𝑅 is 
realizable by 𝐻 if and only if it contains no point with two opposite labels. Set 
𝐹E(𝑥) = {(𝑖, 1): 𝑥� = 1}	and set 𝐹F(𝑦) = {(𝑖, −1): 	𝑦� = 1}. 	 

• If 𝑖 ∈ 𝑥 ∩ 𝑦	then having (𝑖, 	1) ∈ 𝐹E(𝑥)	and (𝑖, 	 − 1) ∈ 𝐹F(𝑦)	implies that the 
joint sample 𝑆 is not realizable. On the other hand, since 𝑅 is shattered, we have 
that if 𝑥 ∩ 𝑦 = ∅, then 𝑆 is realizable.  

• Let	𝑅	be a shattered set of size	𝑑. Since all 𝑥 ∈ 	R can be encoded by 𝑂(𝑙𝑜𝑔(𝑑))	bits, it 
follows that every NP-proof of sample complexity	𝑇 for the realizability problem for 𝐻 
implies an NP-proof for DISJd with bit-complexity 𝑂(𝑇	𝑙𝑜𝑔(𝑑)) in Yao’s model.  

• NP��(DISJd) = Ω(𝑑) so T = Ω(𝑑) (or all of 𝑅 can be sent). QED. 
 
Theorem 7. For every class 𝐻 with coVC dimension 𝑘 ∈ ℕ ∪ {∞}, 	 

𝑁�
��'�(𝑛) = 	Θa(min(𝑘, 	𝑛)) 

Proof of upper bound (lower bound similar to 6): 
• assume that the coVC dimension is 𝑘	 < 	∞.  
• If 𝑆	 = 	⟨𝑆E; 𝑆F⟩	is not realizable then it contains a non-realizable sample 𝑆 of size at 

most coVC-dim(𝐻) = 𝑘	that serves as a proof that 𝑆 is not realizable. If 𝑘 = ∞, 	then the 
whole sample 𝑆 serves as a proof of size	𝑛	that it is not realizable.  

 
𝑯 has finite VC and coVC dimension ⇒ 𝑯 has a protocol with bounded sample complexity. 
For every class 𝐻 with VC-dim(𝐻) = 𝑑	and coVC-dim(𝐻) = 𝑘 there exists a protocol for the 
realizability problem over 𝐻 with sample complexity 𝑂(𝑑𝑘�𝑙𝑜𝑔𝑘	𝑙𝑜𝑔|𝑆|). 	 
Proof idea: 

• We give a protocol derived as a tailored version of adaboost s.t. at iteration 𝑡 Alice and 
Bob agree on a hypothesis ℎ� which is	an	𝛼-weak hypothesis for 𝛼 = n

�
− n

�P
 for Alice’s 

distribution 𝑝�E on 𝑆E and Bob’s distribution 𝑝�F on 𝑆F. 
• This protocol will output “non-realizable” if at any iteration such a protocol doesn’t 

exist. If it never outputs this after 𝑂(𝑘 log|𝑆|) rounds, it outputs “realizable.” 
 
How many samples are enough at iteration 𝒕 to achieve the desired 𝜶? 

• 𝝐-net theorem. Let H be a class of VC dimension 𝑑 and let 𝑆 be a realizable sample. For 
every distribution 𝑝 over	𝑆	there exists a subsample 𝑆′ of	𝑆	of size 𝑂(𝑑log(1/𝜖)/𝜖) s.t. 

∀ℎ ∈ 𝐻	: 𝐿¢£	(ℎ) = 0	 ⇒ 𝐿�(ℎ) ≤ 𝜖. 
• Thus, at each iteration a sample of size 𝑂(𝑑𝑘 log(𝑘)) suffices. 
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We now observe two claims that will all but suffice to show the protocol works as desired. 
 
Claim 6.1. Let	𝐻	be a class with coVC dimension 𝑘 > 0. For any unrealizable sample 𝑆 and for 
any ℎn, … , ℎ¦ ∈ 𝐻, there is (𝑥, 𝑦) ∈ 𝑆 so 

1
𝑇§1[ℎ�(𝑥) ≠ 𝑦]

¦

�©n

≥
1
𝑘 

 
Proof: Pick some unrealizable subsample 𝑆ªof	𝑆	s. t. 	|𝑆ª| ≤ 𝑘. Note that 𝐿«£(ℎ) ≥ 1/𝑘 

max
(¬,)∈«£

1
𝑇§1[ℎ�(𝑥) ≠ 𝑦]

¦

�©n

≥
1
|Sª| §

1
𝑇

(¬,)∈«£
⋅§1[ℎ�(𝑥) ≠ 𝑦]
¦

�©n

 

	≥
1
𝑇§

1
|𝑆ª| § 1[ℎ�(𝑥) ≠ 𝑦]

(¬,)∈«£

¦

�©n

≥
1
𝑘 

 
Lemma 2. Set 𝜂 in Adaboost to be 𝑙𝑛2. Let 𝑇	 ≥ 	2𝑘	log|𝑆|	for k > 0, and have 
ℎn, 	. 	. 	. 	, 	ℎ¦	denote the weak hypotheses returned by an arbitrary 𝛼-weak learner with 𝛼 =
n
�
− n

�P
 during the execution of Adaboost. Then, for every (𝑥, 	𝑦) ∈ 𝑆: 	 

1
𝑇§1[ℎ�(𝑥) ≠ 𝑦] ≤

1
𝑘

¦

�©n

 

 
NTS: If the protocol terminates then the sample is realizable. 

• If 𝑇 ≥ 4(𝑘 + 1) log |𝑆| (by lemma 2) 

∀(𝑥, 𝑦) ∈ ⟨𝑆E, 	𝑆F⟩	:§1[ℎ�(𝑥) ≠ 𝑦]
¦

�©n

<
1

2(𝑘 + 1) 

• Thus, by claim 6.1, the sample is realizable. 
• Further, this guarantees that if the given sample is not realizable, then this protocol will 

find such a sample. 
• Thus, we have shown 𝑖 ⇒ 𝑖𝑖 ⇒ 𝑖𝑖𝑖 ⇒ 𝑖𝑣 ⇒ 𝑖  

 
 
Conclusions 
 

• The sample complexity of the realizability problem	over	𝐻 is either 𝑂(log𝑛)	or	Ωa(𝑛). 
• Convex Set Disjointness can be decided by Oa(𝑑²log	 𝑛) points. 
 

𝐏 = 𝐍𝐏 ∩ 𝐜𝐨𝐍𝐏 for Realizability Problems 
This is analogous to the classic result in standard communication complexity. The derivation 

of the result, however, comes about in an entirely different manner, in that the algorithm 
showing this is a boosting protocol parameterized by VC-Dimension and coVC-Dimension. 
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It is also of note that while in standard communication complexity, deterministic 
communication complexity is symmetrically upper bounded by nondeterministic and co-
nondeterministic communication complexity, 𝑂(𝑁p ⋅ 𝑁n), this is not the case here. The authors 
speculate this may be because while decision problems are closed under negation, realizability 
problems are not. 

 
Open Questions, Further Research 

• Closing the gap for the Convex Set Disjointness problem. 
Ωa(𝑑 + log𝑛), Ω(𝑑 log(𝑛/𝑑)) , 𝑂·(𝑑² log 𝑛) 

• Provide a combinatorial upper bound on 𝑁�
'�(𝑛) 

• This would be implied by another open problem – the existence of proper 
sample compression schemes of polylogarithmic sample size. 

• Distributed Sample Compression for more than two parties 
• Multiclass categorization. 
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