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Communication Complexity and Applications

Lecturer: Yuhao Li

1 Log-rank Conjecture

The log-rank conjecture is one of the most fundamental open problems in the communication
complexity. It states that the deterministic communication complexity of a two-party Boolean
matrix is polynomially related to the logarithm of the rank of the input matrix over reals.

The motivation that we try to use logarithm of the rank to fully capture the deterministic
communication complexity (up to some polynomial factors) starts from the following theorem by
Mehlhorn and Schmidt:

Theorem 1 ([11]). Let F : X × Y → {0, 1}. Then

PCC(F ) ≥ log rank(MF ).

Throughout this lecture notes, we will use PCC(·) to denote the deterministic communication
complexity of the input Boolean matrix.

The log-rank conjecture, proposed by Lovász and Saks [9], states that the lower bound is tight
up to polynomial factors.

Conjecture 2 (Log-rank Conjecture [9]). There exists a universal constant C such that for every
F : X × Y → {0, 1},

PCC(F ) ≤ O((log rank(MF ))
C).

Despite it being fundamental, important, and fascinating, little progress has been made in the
past three decades. Note that there is also a simple upper bound PCC(F ) ≤ rank(MF ), but it is
exponentially worse than the conjectured bound. Both of the upper bound and the lower bound
have been non-trivially improved. We state the state-of-the-art as follows.

The best-known upper bound is from Lovett [10].

Theorem 3 ([10]). For any Boolean function F ,

PCC(F ) ≤ O(
!

rank(MF ) · log rank(MF )).

The best-known lower bound is from Göös, Pitassi, and Watson [4], which implies that if the
log-rank conjecture is true, then the universal constant C should be at least 2.

Theorem 4 ([4]). There exists a sequence of functions fn, whose log-rank goes to infinity, such
that

PCC(Fn) = Ω̃(log2 rank(MFn)).
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There is another line studying the log-rank conjecture restricted to a special families of func-
tions. In particular, there has been extensive attention on the lifting functions where the inner
function is XOR (i.e., F (x, y) = f(x ⊕ y) for a boolean function f). Maybe coincidentally, the
best-known upper bounds for these XOR functions are the same as the general upper bounds, with
different techniques by Tsang, Wong, Xie, and Zhang [14].

Theorem 5 ([14]). For any n-variable boolean function f , we let f⊕(x, y) := f(x⊕ y). Then

PCC(f⊕) ≤ O(
"

rank(Mf⊕) · log rank(Mf⊕)).

In the rest of this notes, we will prove these two upper bounds for the XOR functions and
general functions. Note that although Theorem 5 is a corollary of Theorem 3, the techniques are
different and might be of independent interests. For the motivation to study log-rank conjecture
for the lifting functions, we refer interested readers to a recent survey by Knop, Lovett, McGuire,
and Yuan [6].

2 Proof of Theorem 5

Before we go into the details of the proof, let’s recall the Fourier analysis and see how it connects
with our log-rank conjecture.

2.1 Fourier Analysis

For any real function f : {0, 1}n → R, the Fourier coefficients are defined as f̂(s) = 2−n
#

x f(x)χs(x),

where χs(x) := (−1)s·x. Then the function f can be written as f =
#

s f̂sχs. The Fourier sparsity

of f , denoted as ‖f̂‖0, is defined as the number of nonzero Fourier coefficients. The ℓ1-norm of f̂ ,
denoted as ‖f̂‖1, is defined as

#
s |f̂s|. We include the following simple fact:

Fact 6. For any boolean function f : {0, 1}n → {0, 1}, we have ‖f̂‖1 ≤
"

‖f̂‖0.

Proof. By Cauchy-Schwarz inequality, we have

(‖f̂‖1)2

=

$
%

s

f̂s · sgn(f̂s)
&2

≤
$
%

s

f̂2
s

&
·
$
%

s

(sgn(f̂s))
2

&

=‖f̂‖0.

A very helpful observation here is that, the rank of the communication matrix rank(Mf⊕) is

exactly equal to the Fourier sparsity ‖f̂‖0.
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Observation 7 ([1]). For any function f : {0, 1}n → R, we have

rank(Mf⊕) = ‖f̂‖0.

We have related the RHS of the log-rank conjecture to Fourier sparsity. Now we will convert
the LHS PCC(f⊕) to the parity decision tree.

2.2 Parity Decision Tree

Parity decision tree is an extension of the standard decision tree model, where each internal node
can query an arbitrary parity. For a boolean function f : {0, 1}n → {0, 1}, we denote the minimal
depth of a parity decision tree by PDT(f). A simple observation is that PCC(f⊕) ≤ 2 · PDT(f),
since Alice and Bob can finish the communication by simulating the parity decision tree: At each
internal node of the parity decision tree, when they need to compute a parity of x⊕ y (where Alice
knows x and Bob knows y), they locally compute the parity of x and y and exchange these two
bits.

Observation 8. For any boolean function f : {0, 1}n → {0, 1}, we have

PCC(f⊕) ≤ 2 · PDT(f).

2.3 Main Protocol

The main communication protocol is to construct a parity decision tree via a notion so called degree
kill rank1.

Definition 1 (Degree Kill Rank [14]). Let f ∈ F2[x1, · · · , xn] be a boolean function and suppose
its F2-degree deg2(f) = d. Then the degree kill rank of f , denoted by DKR(f), is defined as the
minimum integer r such that f can be expressed as

f = ℓ1f1 + · · ·+ ℓrfr + f0,

where the F2-degree of each ℓi is 1 and the F2-degree of each fi is at most d− 1.

The construction of parity decision based on the degree kill rank is as follows: Since each the
F2-degree of each ℓi is 1, each ℓi is a parity. Then we query all ℓi(x) and get the answers ai. Then
we face a new function f ′ =

#r
i=1 aifi + f0. Notice that the F2-degree of f ′ is at most d − 1 and

it can also be proven that both ‖f̂‖0 and ‖f̂‖1 are non-increasing. We recursively find the degree
kill rank until f is a F2-degree 0 function.

Recall that F2-degree is upper bounded by log ‖f̂‖0 for any boolean function f . Notice that if
we can prove the DKR(f) is upper bounded by O(logC ‖f̂‖0) for some universal constant C, then
we know that PCC(f⊕) ≤ O(logC+1 rank(Mf⊕)), which implies the validity of log-rank conjecture
for XOR functions. Unfortunately we haven’t known it yet. Tsang, Wong, Xie, and Zhang proved
the following lemma to get Theorem 5.

Lemma 9 ([14]). For any boolean function f : {0, 1}n → {0, 1}, we have DKR(f) ≤ O(‖f̂‖1).
1The name of degree kill rank is from the lecturer. In the papers [2, 14] the authors called it polynomial rank. The

notion of rank of polynomials is from mathematics, but using “rank” would be confusing in the context of log-rank
conjecture.
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2.4 The Notion of Rank

Before proving the Lemma 9, I would like to explain a bit the notion of rank (of polynomials) in
mathematics, and its connection and difference from our degree kill rank.

We quote the definition of rank (of polynomials) from a paper by Green and Tao [5].

Definition 2 (Rank, Definition 1.5 in [5]). Let d ≥ 0, and let P : Fn → F be a function. We
define the degree d rank rankd(P ) of P to be the least interger k ≥ 0 for which there exist poly-
nomials Q1, · · · , Qk ∈ Pd(Fn) and a function B : Fk → F such that we have the representation
P = B(Q1, · · · , Qk). If no such k exists, we declare rankd(P ) to be infinite (since Fn is finite-
dimensional, this only occurs when d = 0 and P is non-constant.)

From the view point of theoretical computer science, especially the query complexity, the notion
of rank can be understood as the minimal non-adaptive queries of degree-d queries to know the
function P . However, in our context, the communication protocol/parity decision tree should be
adaptive. Note that in the main protocol, the queries of ℓi are also non-adaptive, but the adaptivity
is from the construction of degree kill rank after knowing the F2-degree d− 1 function f ′.

2.5 Proof of Lemma 9

To finish the proof of Theorem 5, it remains for us to prove the Lemma 9 given that ‖f̂‖1 ≤"
‖f̂‖

0
=

!
rank(Mf⊕). We introduce a complexity measure called parity kill number, denoted by

C⊕
min(f), where the name is from [13]. The parity kill number is defined as

C⊕
min(f) = min{co-dim(H)|H is an affine subspace on which f is a constant}.

We include a simple observation:

Observation 10 (Corollary 20 in [14]). For any f : {0, 1}n → {0, 1}, we have DKR(f) ≤ C⊕
min(f).

So it suffices for us to upper bound the parity kill number by O(‖f̂‖1).

Proof. We consider a greedy folding process. We sort the parities to be γ1, · · · , γm such that
|f̂(γ1)| ≥ · · · ≥ |f̂(γm)|. We fold β = γ1 + γ2 and let b = 0 if sgn(f̂(γ1)) = sgn(f̂(γ2)); let b = 1
otherwise. Then we use

#
i∈β xi = b as a linear restriction.

The crucial claims of this greedy folding process are as follows.

• After at most O(‖f̂‖1) steps, the largest absolute value of Fourier coefficient will be at least
1/2, i.e., |f̂(γ1)| ≥ 1/2;

• For each step, ‖f̂‖1 will decrease 2 · |f̂(γ1)|.

• When ‖f̂‖1 ≤ 1, it will be a constant function after one more step.

So we have C⊕
min ≤ O(‖f̂‖1).

For a more formal and complete proof, we refer interested readers to Lemma 30 in he original
paper [14].
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3 Proof of Theorem 3

Now we are going to prove the general upper bounds Theorem 3. (Maybe) Totally different from the
previous proof, the techniques here are mainly based on analyzing discrepancy and large monochro-
matic rectangles.

We first recall the theorem by Nisan and Wigderson [12], which shows the equivalence between
the log-rank conjecture and large monochromatic rectangles.

Theorem 11 ([12]). Assume that for any function f : X × Y → {−1, 1} of rank(Mf ) = r there
exists a monochromatic rectangle of size |R| ≥ 2−c(r)|X × Y |. Then we have

PCC(f) ≤ O(log2 r +

log r%

i=1

c(r/2i)).

In particular, by master theorem, if c(r) ≤ p(r) for some polynomial p, then we have PCC(f) ≤
p(r); if c(r) ≤ O(logC r) for some universal constant C, then we have PCC(f) ≤ O(logC+1 r).

We will include the Lovett’s proof of c(r) ≤ O(
√
r log r) by discrepancy, which leads to The-

orem 3. Before that, let us introduce a lemma by Gavinsky and Lovett [3], which relaxes the
condition in Theorem 11, showing that it actually suffices for us to find a large rectangle that is
“closed” to be monochromatic. Let E[f ] := 1

|X×Y |
#

(x,y) f(x, y). For a subrectangle R, we let

E[f ] := 1
|R|

#
(x,y)∈R f(x, y)

Lemma 12 ([3]). Let f : X × Y → {−1, 1} be a boolean function with rank(Mf ) = r and E[f ] ≥
1− 1/2r, then there exists a monochromatic rectangle R with |R| ≥ |X × Y |/8.

3.1 Discrepancy Method

Let f : X × Y → {−1, 1} and µ be a distribution over X × Y . The discrepancy of f w.r.t. µ is

discµ := max
R

''''''

%

(x,y)∈R
µ(x, y)f(x, y)

''''''
.

The discrepancy of f is its discrepancy for the worse case distribution,

disc := min
µ

max
R

''''''

%

(x,y)∈R
µ(x, y)f(x, y)

''''''
.

From [7, 8], we know that disc(f) ≥ 1/8
!

rank(Mf ). And this lower bound is sharp when the
function f is the inner product function.

3.2 Put everything together

Given Theorem 11, Lemma 12, and disc(f) ≥ 1/8
!

rank(Mf ), it suffices to prove the following
lemma:

Lemma 13 (Main Lemma, [10]). For every f : X × Y → {−1, 1}, there exists a rectangle R such
that

5



Communication Complexity and Applications Lecture #14: Spring, 2022

• |R| ≥ 2−O(log r/δ)|X × Y |;

• ER[f ] ≥ 1− 1/2r,

where r = rank(Mf ) and δ = disc(f).

The high-level idea to prove Lemma 13 is to iteratively purify the matrix. More precisely, we
can relax Lemma 13 to following lemma.

Lemma 14 ([10]). Let f : X × Y → {−1, 1} and E[f ] = 1− β ≥ 0 and disc(f) = 3δ. Then there
exists a rectangle R such that

• |R| ≥ 2−O(2/δ)|X × Y |;

• ER[f ] ≥ 1− β/2,

Notice that we can iteratively use Lemma 14 O(log r) times, then Lemma 13 follows. To
prove Lemma 14, we need the last technical lemma, in whose proof we will use the (definition of)
discrepancy.

Lemma 15 ([10]). Let f : X × Y → {−1, 1} with E[f ] = α ≥ 0 and disc(f) = 3δ. Then there
exists a rectangle R such that

ER[f ] ≥ α+ δ(1− α2)
|X × Y |

|R| .

Intuitively, this tells us that we can always find a relatively large subrectangle that is slightly
more biased.

Proof of Lemma 15. We will design a specific distribution µ such that we can take advantage of
the discrepancy. We define µ as

µ(x, y) =

(
1/(1 + α)|X × Y | f(x, y) = 1;
1/(1− α)|X × Y | f(x, y) = −1.

(1)

Then we have
#

(x,y) µ(x, y)f(x, y) = 0. By the definition of discrepancy, we know that there
exists a subrectangle R1 such that

''''''

%

(x,y)∈R1

µ(x, y)f(x, y)

''''''
≥ 3δ.

We partition the whole matrix according R1 to {R1, R2, R3, R4}, then we know that there exists a
R ∈ {R1, · · · , R4} such that

#
(x,y)∈R µ(x, y)f(x, y) ≥ δ.

By some calculation, we have for this subrectangle R,

ER[f ] ≥ α+ δ(1− α2)
|X × Y |

|R| .

The proof of Lemma 14 based on Lemma 15 is a bit technical and doesn’t use any property of
rank(Mf ) or disc(f). So we refer the interested readers to the original paper [10].
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